Let us start with a classic result due to Bollobás and Erdős (1976) and Matula (1976). Its proof, based on the second moment method, can be found also in Bollobás (1985, Chapter XI).

Theorem 7.1. For $0 < \varepsilon < b = 1/(1 - p)$, set

$$
\hat{k}_{\pm \varepsilon} = \left[2 \log_b n - 2 \log_b \log_b np - 2 \log_b (\varepsilon/2) + 1 \pm \varepsilon/p \right].
$$

Then, for $p = p(n)$ such that $p > n^{-\delta}$ for every $\delta > 0$ but $p \leq c$ for some $c < 1$, a.a.s.

$$
\hat{k}_{-\varepsilon} \leq \alpha(G(n, p)) \leq \hat{k}.
$$

Remark 7.2. In fact, Bollobás and Erdős (1976) and Matula (1976) proved that in the above range of $p(n)$, the stability number $\alpha(G(n, p))$ is asymptotically concentrated on at most two points, that is, there is a sequence $\hat{k}(n)$ such that a.a.s. $k(n) = \alpha(G(n, p)) \leq \hat{k}(n) + 1$.

In this section we will concentrate on the case when $p = p(n) \leq \log^{-2} n$. Then, in order to avoid dealing with logarithms of base b, instead of $\hat{k}_{\pm \varepsilon}$ it is convenient to use the functions $k_{\pm \varepsilon}$, defined as

$$
k_{\pm \varepsilon} = \left[2 \left(\log np - \log \log np + 1 - 2 \pm \varepsilon \right) \right].
$$

Elementary calculations show (Exercise!) that for $p \leq \log^{-2} n$, $\varepsilon > 0$, and n large enough, we have $\hat{k}_{-\varepsilon} \leq k_{-\varepsilon} \leq \hat{k}_{-\varepsilon}$ and $\hat{k} \leq k \leq \hat{k}_{3\varepsilon}$, and so it does not matter very much whether we use $\hat{k}_{\pm \varepsilon}$ or $k_{\pm \varepsilon}$ to estimate $\alpha(G(n, p))$.

Let $X(k) = X(k; n, p)$ denote the number of stable sets of size k in $G(n, p)$. Since $\alpha(G(n, p)) \geq k$ if and only if $X(k) > 0$, the most natural way of handling $\alpha(G(n, p))$ is to study the behavior of $X(k)$. First we will estimate the probability $P(X(k) > 0)$ for $k_{-\varepsilon} \leq k \leq k_\varepsilon$, using the second moment method. The following lemma shows that this approach works well for $p = p(n)$ which does not tend to 0 too fast.

Lemma 7.3. Let $\varepsilon > 0$, and $k_{\pm \varepsilon}$ be defined as in (7.2). Then there exists a constant $C_\varepsilon > 0$ such that for $C_\varepsilon/n \leq p = p(n) \leq \log^{-2} n$, we have

$$
P(X(k_\varepsilon) > 0) \leq \mathbb{E} X(k_\varepsilon) \to 0
$$

and

$$
\mathbb{E} X(k_{-\varepsilon}) \to \infty
$$

as $n \to \infty$. Furthermore, if $\log^2 n/\sqrt{n} \leq p \leq \log^{-2} n$, then

$$
P(X(k_{-\varepsilon}) > 0) = 1 - o(1)
$$

and if $C_\varepsilon/n \leq p \leq \log^2 n/\sqrt{n}$, then for large n.

$$
P(X(k_{-\varepsilon}) > 0) \geq \exp \left(-\frac{k_{-\varepsilon}}{\log^3 np} \right) \geq \exp \left(-\frac{2}{p \log^2 np} \right).
$$

(7.5)

In particular, if $\log^2 n/\sqrt{n} \leq p \leq \log^{-2} n$, then a.a.s.

$$
k_{-\varepsilon} \leq \alpha(G(n, p)) \leq k_\varepsilon.
$$

(7.6)

Proof. The first moment of $X(k_\varepsilon)$ is rather easy to handle. For instance, for np large enough,

$$
\mathbb{E} X(k_\varepsilon) \leq \binom{n}{k_\varepsilon} (1-p)^{(k_\varepsilon)/2} \leq \binom{en}{k/2} \exp \left(-\frac{p(k_{-1})}{2} \right) \leq \exp \left(-\frac{p(k_{-1})}{2} \right) \to 0.
$$

We leave to the reader an elementary verification (Exercise!) that if $np \geq C_\varepsilon$, where C_ε is a sufficiently large constant, then for large n

$$
\mathbb{E} X(k_{-\varepsilon}) \geq \exp(\varepsilon k_{-\varepsilon}/2) \to \infty,
$$

(7.7)

and concentrate on the proof of (7.4) and (7.5).

Let us set, for convenience, $k = k_{-\varepsilon}$ and $X = X(k)$, and assume that $C_\varepsilon/n \leq p \leq \log^{-2} n$ with C_ε large enough. As we have already mentioned, our proof is based on a standard second moment argument, that is, we will estimate $\mathbb{E} X^2$ and then deduce (7.4) and (7.5) from (3.3). Note first that

$$
\frac{\mathbb{E} X^2}{(\mathbb{E} X)^2} - 1 = \frac{\binom{\binom{n}{k} - \binom{k}{k-1} (1-p)^{(k-1)}}{(1-p)^{(k-1)}}}{\binom{\binom{n}{k}}{(k-1)} (1-p)^{(k-1)}} - 1
$$

$$
\leq \sum_{i=1}^{k} \binom{k}{i} \frac{\binom{(n-k)}{i} (1-p)^{(i)}}{(k-1)} (1-p)^{(i)} = \sum_{i=1}^{k} a_i,
$$

where

$$
a_i = \frac{\binom{k}{i} \binom{(n-k)}{i} (1-p)^{(i)}}{(k-1)} (1-p)^{(i)}
$$

for $i = 1, 2, \ldots, k$.

Furthermore, let

$$
b_i = \frac{a_i}{a_i} = \frac{(k-i)^2}{(i+1)(n-2k+i+1)} (1-p)^{-i}.
$$

It is not hard to see that for small i, the sequence b_i decreases with i because of the factor $(1-p)^{-i}$ in the denominator, for intermediate i it grows due to the factor $(1-p)^{-i}$ and, finally, when the difference $k-i$ becomes small, b_i declines