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Let us start with a classic result due to Bollobds and Erdés (1976) a
Matula (1976). Its proof, based on the second moment method, can be foun
also in Bollobas (1985, Chapter XI).

Theorem 7.1. Fore >0 andb=1/(1 - p), set
ki = [2log, n — 2log, log, np + 2log,(e/2) + 1 +¢/p). (14

Then, for p = p(n) such that p>n? for every 6 > 0 but p < ¢ for so
c< LRaas

k-e < a(Gn,p)) < k..

Remark 7.2. In fact, Bollobds and Frdés (1976) and Matula (1976) prove
that in the above range of p(n), the stability number a(G(n, p)) is asymptof
ically concentrated on at most two points, that is, there is a sequence fc(
such that a.a.s. k(n) < a(G(n,p)) < k(n) + 1.

In this section we will concentrate on the case when p = p(n) < log_2 _

Then, in order to avoid dealing with logarithms of base b, instead of k.. it |
convenient to use the functions k.., defined as

2 ;
ks — [I—J(lognp —loglognp +1 —log2 + E)J (7.

Elementary calculations show (Exercise!) that for p < log™2 n, € > 0, and
large enough, we have k_s, SokuivSibsant ke sk 72735, and so it do
not matter very much whether we use k4. or ki, to estimate a(G(n, p)).

Let X (k) = X (k;n, p) denote the number of stable sets of size k in G(n, p)
Since a(G(n,p)) > k if and only if X (k) > 0, the most natural way of han
dling a(G(n, p)) is to study the behavior of X (k). First we will estimate t _
probability P(X (k) > 0) for k_, <k < ke, using the second moment method.
The following lemma shows that this approach works well for p = p(n) whicl
does not tend to 0 too fast.

Lemma 7.3. Let e > 0, and k. be defined as in (7.2). Then there exists a
constant C. > 0 such that for Ce/n < p=p(n) <log™*n, we have

P(X (k.) > 0) <EX(k.) =0 (7.3)

and
EX(k_¢) = o0

as n — co. Furthermore, if log>n/\/n < p < log™2n, then

P(X (k-¢) > 0) = 1 — o(1)
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und if Ce/n < p < log’ n//n, then for large n

ke 2 )
= = >exp| —— ’ (7.5)
B (-0 > 02 exp (- 5 ) 2 o (-5
In particular, if log? n/y/n < p < log™*n, then a.a.s.
k-e < a(G(n,p)) < k.. (7.6)

I'roof. The first moment of X (k. ) is rather easy to handle. For instance, for
np large enough,

(o= (Fom (2572))°

B 1)) o
< et exp (—p(f—_“)) < exp(—¢k./2) = 0.
= \2(lognp — loglog np) 2

We leave to the reader an elementary verification (Exercise!) that if np > C,
where C; is a sufficiently large constant, then for large n

E X (k) =

EX(k_:) > exp(ek—./2) = oo, (7.7)

and concentrate on the proof of (7.4) and (7.5).

Let us set, for convenience, ¥k = k_. and X = X(k), and assume that
(' /n < p < log™%n with C. large enough. As we have already n.xentloneft}i
uir proof is based on a standard second moment argument, that is, we wi
sstimate E X2 and then deduce (7.4) and (7.5) from (3.3). Note first that

MHa-p@ sk, HaHa-pe-6
a2
RIS

k\ (n—k I k
=7 gfl(;?fi(l —p)~ ) = Z%

=1 (k

EX?
EX)?

(7.8)

where
k\ (n—k :
a; = (i)((f)‘i)(l_p)(‘z) for e —ln 2k
k
Iurthermore, let
. 2 ;
b= L = 1) 1-p~

His (i+1)(n—2k+’i+l)

It is not hard to see that for small 4, the sequence b; dec.rt?ases with ¢ because
of the factor i + 1 in the denominator, for intermediate ¢ it grows due to.the
factor (1-p)~* and, finally, when the difference k—1 becomes small, b; declines



