
THE MINIMAL SPANNING TREE IN ACOMPLETE GRAPH AND A FUNCTIONAL LIMITTHEOREM FOR TREES IN A RANDOM GRAPH.Svante JansonAbstract. The minimal weight of a spanning tree in a complete graphKn with independent,uniformly distributed random weights on the edges, is shown to have an asymptotic normaldistribution. The proof uses a functional limit extension of results by Barbour and Pittel onthe distribution of the number of tree components of given sizes in a random graph.1. Introduction and resultsAssign random weights Tij , 1 � i < j � n, to the edges of the complete graph Knwith vertex set f1; : : : ; ng, and let Wn be the minimum weight of a spanning tree of Kn.We assume that the weights are independent and identically distributed, with a uniformdistribution on [0; 1]. It was proved by Frieze [5] thatWn ! �(3) = 1Xk=1k�3 = 1:202 : : :in probability as n ! 1, see also Bollobs [3]. The main purpose of the present paper isto show that Wn has an asymptotic normal distribution.Theorem 1. Let Wn be the weight of the minimal spanning tree. Thenn1=2�Wn � �(3)� d�! N(0; �2)with �2 = �445 � 2 1Xi=0 1Xj=1 1Xk=1 (i+ k � 1)! kk(i+ j)i�2ji! k! (i + j + k)i+k+2 :Remark 1.1. We do not know whether there exists any simpler expression for �2. Anumerical summation yields �2 � 1:6857.As is well-known (and will be described in detail in Section 3), Wn is closely linked toproperties of the number of components of a random graph, in particular the number oftree components. Our proof of Theorem 1 uses this, and is based on a functional limittheorem for component counts. We de�ne a random graph process Gn(t) (where t � 0is interpreted as time) by taking the edge set of Gn(t) to be fij : Tij � tg, with Tij asabove. Hence Tij now is interpreted as the (random) time the edge ij appears. Note thatSupported by the G�oran Gustafsson Foundation for Research in Natural Sciences and MedicinePrepared on October 9, 1997 Typeset by AMS-TEX1



2Gn(t) = Kn for t � 1; hence all the evolution occurs on [0; 1], although we for convenienceallow also t > 1. De�ne, for k � 1 and 0 � t <1,�k(t) = kk�2k! tk�1e�ktand, for k; l � 1 and t; u � 0,�kl(t; u) = 8><>: (t� 1)kl�k(t)�l(u); k > l; t � u;(t� 1)kl�k(t)�l(u) + e�k(u�t)�k(t); k = l; t � u;(t� 1)kl�k(t)�l(u) + kk�1k!(l�k)!tk�1(u� t)(lu� kt)l�k�1e�lu; k < l; t � u;and �kl(t; u) = �lk(u; t); t > u:Theorem 2. Let Xkn(t) be the number of isolated trees of order k in Gn(t). Then, fork � 1, Xkn(t=n)� EXkn(t=n)pn d�! Vk(t) (1.1)and Xkn(t=n)� n�k(t)pn d�! Vk(t) (1.2)as n ! 1, in D([0;1]), jointly for any �nite set of k, where �Vk(t)�1k=1 are continuousjointly Gaussian stochastic processes with Vk(0) = Vk(1) = 0, EVk(t) = 0, 0 � t � 1,and covariance functions Cov(Vk(t); Vl(u)) = �kl(t; u).The convergence here is in the Skorohod topology on D([0;1]), which can be obtainedfrom the perhaps better know space D([0; 1]), see Billingsley [2], by a (monotone) changeof parameter. For convergence to a continuous limit (the only case that really interestsus), convergence in D([0;1]) is equivalent to uniform convergence. We refer to [2] forproperties of the Skorohod topology and of convergence in distribution in it.Theorem 2 implies, in particular, that (1.1) holds for every �xed t; this has been provenearlier, by di�erent methods, by Barbour [1] (�xed k) and Pittel [10] (joint convergencefor all k). Moreover, the cases k = 1 (isolated vertices) and k = 2 (isolated edges) weretreated in [8, Sections 11 and 12].Remark 1.2. Pittel [10, Theorem 1] also gives a similar (but somewhat di�erent) limittheorem for the random graph Gnm, withm = [cn=2] for a �xed c > 0. This too follows byour method, more precisely by [8, Theorem 9(iv)] using [8, Proposition 4.2] and estimatesfrom Section 2 below. We will not consider Gnm further in this paper.Remark 1.3. Pittel [10] used his results on tree counts to prove asymptotic normality ofthe order of the giant component in a random graph G(n; c=n), c > 1. It should be possibleto use our Theorem 2 to obtain a functional version of this, i.e. process convergence ofthe order of the giant component in G(n; t=n), t > 1, to a Gaussian stochastic processon (1;1), but some details remain to be veri�ed and we leave this as a conjecture. (Thesame applies to the number of edges in the giant component of G(n; t=n) or the numberof components of G(n; t=n).)Remark 1.4. Results similar to Theorem 2 may be obtained by the same method for countsof speci�c types of trees, for example the numbers of isolated paths of di�erent lengths inGn(t).



3Remark 1.5. Donald Knuth (personal communication) has recently suggested studying theminimum weight spanning pseudoforest for random weights as above, where a spanningpseudoforest is a subgraph ofKn with n edges and only unicyclic components. (See Gabowand Tarjan [6] for the problem of �nding the minimum weight spanning pseudoforestfor given (non-random) weights.) Let W 0n denote the minimum weight of a spanningpseudoforest. We will show in Section 3 that Theorem 1 holds also with Wn replaced byW 0n. AcknowledgementThis research was done during a visit to IMA, Minneapolis. I thank Boris Pittel andother participants for stimulating discussions.2. Proof of Theorem 2.We begin by studying the �rst two moments of Xkn(t), but let us �rst introduce somenotations. We let C1; C2; : : : denote universal constants whose values are unimportant (theindustrious reader may substitute suitable numbers), while C(k) denotes a "constant" thatdepends on k but not on any other variable. Similarly, O and o denote estimates that areuniform in all relevant variables, while f = Ok(g) means the same as jf j � C(k)g. We let(n)k = Qk1(n � i + 1), the decreasing factorial, and observe for future use the followingestimate.Lemma 2.1. If 1 � k � n and n � 4, then(n)k � C1(n� k=2� 3=2)k:Proof. By the assumptions n � k=2 � 3=2 � (n � 3)=2 � n=8 > 0. By concavity of thelogarithm (or because (n+ 1� i)(n� k + i) � (n� k=2 + 1=2)2 by the conjugate rule),ln(n)k = kXi=1 ln(n� i+ 1) � k ln(n� k=2 + 1=2)and thus (n)k(n� k=2� 3=2)k � �n� k=2 + 1=2n� k=2� 3=2�k = �1 + 2n� k=2 � 3=2�k� �1 + 16n �k � e16k=n � e16: �We introduce some more notation. Let Tkn be the set of trees of order k in the completegraph Kn; by Cayley's theorem [4],jTknj = �nk�kk�2 = kk�2k! nk�1 +Ok(n�1)�:For each � 2 Tkn, let I�(t) be the indicator that is 1 if � is an isolated tree in Gn(t), and0 otherwise. Hence Xkn(t) = X�2Tkn I�(t):



4The expectation E I�(t) = P(I�(t) = 1) is the same for each � 2 Tkn. We denote it bypkn(t), and it is easily seen that, for 1 � k � n and 0 � t � 1,E I�(t) = pkn(t) = tk�1(1� t)(n�k)k+(k2)�k+1; � 2 Tkn:Hence, for 0 � t � 1,EXkn(t) = jTknjpkn(t) = �nk�kk�2tk�1(1� t)nk�k2=2�3k=2+1:We state this formula together with two useful estimates derived from it as a lemma.Lemma 2.2.(i) If 0 � t � 1, thenEXkn(t) = �nk�kk�2tk�1(1� t)nk�k2=2�3k=2+1:(ii) For k � 1, n � 3 and 0 � t <1,EXkn(t) = n�k(nt) +Ok(e�nt=2):(iii) If k; n � 1 and 0 � t � 1, thenEXkn(t) � C2nk�5=2e�nt=2:For 0 � t < 1 and n � 4, also(1� t)�2 EXkn(t) � C3nk�5=2e�nt=2:Proof. (i) is already proved.For (ii), consider �rst the case nt2 � 1. Then 0 � t � 1, and by (i), for n � k,EXkn(t) = kk�2k! (n)ktk�1 exp ��nkt+O(k2t) +O(nkt2)�= n�k(nt) exp �O(k2t) +O(nkt2) +O(k2=n)�= n�k(nt) �1 +Ok(t+ nt2 + 1=n)�= n�k(nt) +Ok��(nt)k�1 + (nt)k+1� e�knt�= n�k(nt) +Ok(e�knt=2):If nt2 > 1 we obtain similarly, by (i) and the trivial fact that Xkn(t) = 0 for t � 1 andn � 3, EXkn(t) � nktk�1e�tnk+k2� nk+1tk+1e�knt+k2= Ok(e�knt=2)and n�k(nt) � n2t2�k(nt) = Ok(e�knt=2):



5Hence (ii) follows in both cases.For (iii), we may assume that 1 � k � n and n � 3. Then, setting x = (n � k=2 �3=2)t � nt=2�3t=2 and using Lemma 2.1 and Stirling's formula together with the estimatexe�x � e�1, EXkn(t) � kk�2k! (n)ktk�1(1� t)k(n�k=2�3=2)� C1 kk�2k! (n� k=2 � 3=2)ktk�1e�kt(n�k=2�3=2)� C1 kk�2k! nxk�1e�kx� C1nkk�2k! (xe�x)k�1e�x� C1n kk�2kk+1=2e�k e�k+1e�nt=2+3=2� C1e5=2nk�5=2e�nt=2:The same argument proves the �nal estimate. �We turn to second moment calculations.Consider Cov (I�(t); I�(u)), where � 2 Tk; � 2 Tl and 0 � t � u � 1 (for simplicity wehere and sometimes in the sequel omit the subscript n). Recall that E (I�(t)I�(u)) is theprobability that � is a component of Gn(t) and that � is a component of Gn(u) at a latertime u. There are three cases:(i) � and � are (vertex-)disjoint. If we expand E I�(t)I�(u) and E I�(t) E I�(u) asproducts over the edges in Kn, the only di�erence is that the former contains one factor1� u for each of the kl edges joining � and �, while the latter contains two factors 1� tand 1� u. Hence E I�(t)I�(u) = pk(t)pl(u)(1 � t)�kl: (2.1)(ii) �\� 6= ;, but � * �. If � is a component of Gn(t) and u � t, then any componentof Gn(u) that intersects � has to contain �. HenceE I�(t)I�(u) = 0: (2.2)(iii) � � �. In order for � to be a component in Gn(t) that grows to a component �in Gn(u), we have to have Te � t for each edge e in �, t < Te � u for each e in � withexactly one endpoint in �, Te � u for each e in � n �, and Te > u for every other e withone or two endpoints in �. Hence, if there are j edges joining � to � n �,E I�(t)I�(u) = tk�1(u� t)jul�k�j(1� u)(n�l)l+(l2)�l+1: (2.3)Let Bkl be the number of pairs (�; �) with � 2 Tk, � 2 Tl and � \ � 6= ;, and letbkl = Bkl=jTkjjTlj. Note that, for �xed k and l,bkl = 1� (n� k)l(n)l = kln +Ok;l(n�2): (2.4)Now, Cov�Xk(t);Xl(u)� = P�2Tk�2Tl E (I�(t)I�(u)) � EXk(t) EXl(u). There are jTkjjTlj �Bkl = (1�bkl)jTkjjTlj terms of type (i) in the sum, and if t � u we obtain from (2.1){(2.3),Cov�Xk(t);Xl(u)� = (1� bkl)jTkjjTljpk(t)pl(u)(1� t)�kl +X��� E I�(t)I�(u)� EXk(t) EXl(u)= EXk(t) EXl(u)(1 � t)�kl(1� bkl � (1� t)kl) +X��� E I�(t)I�(u):(2.5)



6Again there are three cases:(i) If k > l and t � u � 1, then � � � cannot occur, andCov�Xk(t);Xl(u)� = EXk(t) EXl(u)(1 � t)�kl�1� (1� t)kl � bkl�: (2.6)(ii) If k = l and t � u � 1, the only terms with � � � are those with � = �. SinceE I�(t)I�(u) = tk�1(1� u)(n�k)k+(k2)�k+1 = (t=u)k�1pk(u) when � 2 Tk,X� E�I�(t)I�(u)� = (t=u)k�1 EXk(u)and (2.5) yieldsCov�Xk(t);Xl(u)�= EXk(t) EXl(u)(1 � t)�kl�1� (1� t)kl � bkl�+ (t=u)k�1 EXk(u); (2.7)(iii) If k < l and t � u � 1, we partition the sum over � � � further.Let Nklj be the number of pairs (�; �) with � 2 Tk, � 2 Tl and � � �, such that thereare j vertices in � n � adjacent to �, 1 < j � l � k. This number may be calculated asfollows.There are jTkj choices of �. For each of these, the remaining l � k vertices in � maybe chosen in �n�kl�k� ways. We may then select the j vertices adjacent to � in �l�kj � waysand connect them to � in kj ways. Finally, we complete � by adding a rooted forest onthe l� k new vertices, with the j selected vertices as roots; there are j(l� k)l�k�j�1 suchforests, see [4] and [11]. Hence we �ndNklj = jTkj�n� kl � k��l � kj �kjj(l � k)l�k�j�1= jTkj�n� kl � k��l � k � 1j � 1 �kj(l � k)l�k�jand, by (2.3), with L = l2=2 + 3l=2 � 1,X��� E I�(t)I�(u) = l�kXj=1Nkljtk�1(u� t)jul�k�j(1� u)nl�L= jTkj�n� kl � k�tk�1(1� u)nl�L l�kXj=1�l � k � 1j � 1 �kj(u� t)j(l � k)l�k�jul�k�j= jTkj�n� kl � k�tk�1(1� u)nl�Lk(u� t)�k(u� t) + (l � k)u�l�k�1= kjTkj�n� kl � k�tk�1(u� t)(lu� kt)l�k�1(1 � u)nl�L;where we used the binomial theorem (changing the summation index to j � 1). Hence(2.5) yieldsCov�Xk(t);Xl(u)� = EXk(t) EXl(u)(1 � t)�kl�1� (1� t)kl � bkl�+ kjTkj�n� kl � k�tk�1(u� t)(lu� kt)l�k�1(1� u)nl�L: (2.8)The formulae (2.4) and (2.6){(2.8) yield immediately the following asymptotical result.



7Lemma 2.3. For any �xed k; l � 1 and t; u � 0,1n Cov�Xkn� tn�;Xln�un�� �! �kl(t; u) as n!1: �Lemma 2.4. For �xed k � 1 and t > 0,Var�Xkn� tn�� � n as n!1:Proof. By de�nition,�kk(t; t) = (t� 1)k2�k(t)2 + �k(t) = �k(t)�1 + (t� 1)k2�k(t)�:If t � 1, this is obviously positive. If 0 < t < 1 and k � 2, then(1� t)k2�k(t) = (1� t)tkkk! (te�t)k�2e�2t � 14 ekp2�k e�(k�2) � e24p2� < 1:Similarly, if 0 < t < 1 and k = 1, then (1� t)k2�k(t) = (1� t)e�t < 1. Hence �kk(t; t) > 0whenever t > 0, and the result follows by Lemma 2.3. �We will also use the following uniform estimates.Lemma 2.5. For all k; n � 1 and t � 0,VarXkn(t) � C4nk�5=2e�nt=2:If t < 1 and n � 4, then also(1� t)�2VarXkn(t) � C5nk�5=2e�nt=2:Proof. We may assume 0 � t � 1 and k � n. Then, by (2.7),Var�Xkn(t)� = �EXkn(t)�2(1� t)�k2�1� (1� t)k2 � bkk�+ EXkn(t)� �EXkn(t)�2(1� t)�k2(1� bkk)�1� (1� t)k2�+ EXkn(t)= EXkn(t)(1 � bkk)jTknj(1 � t)�k2pkn(t)�1� (1� t)k2�+ EXkn(t)= EXkn(t)jTk;n�kjpk;n�k(t)�1� (1� t)k2�+ EXkn(t)= EXkn(t)�EXk;n�k(t)(1 � (1� t)k2) + 1�Since 1� (1� t)k2 � k2t and, by Lemma 2.2 (iii),k2tEXk;n�k(t) � C2t(n� k)e�(n�k)t=2 � C2;this yields VarXkn(t) � C6 EXkn(t);



8and the result follows by Lemma 2.2(iii) again. �We also have to study the drift �kn(t) of Xkn(t), i.e. the expected rate of change ofXkn(t) in an in�nitesimal interval (t; t+dt). (More precisely, �kn(t) = lim4t!0+ E�Xkn(t+4t)�Xkn(t) j Ft)=4t, where Ft is the �-�eld generated by all events up to time t.) Isolatedtrees of order k may be both created and destroyed as new edges are added (except fork = 1), and we thus write �kn(t) = �+kn(t)� ��kn(t);separating creations and destructions.An isolated tree in Gn(t) is destroyed when any of nk�k2=2� 3k=2+1 edges is added,and since each edge is added with intensity (1 � t)�1, conditionally on not already beingpresent, this yields��kn(t) = (nk � k2=2� 3k=2 + 1)(1 � t)�1Xkn(t); 0 � t < 1: (2.9)Similarly, an isolated tree of order k is created when two isolated trees, of orders j andk � j, say, are joined by an edge. For each such pair of (disjoint) isolated trees, there arej(k � j) possible edges that will join the trees, and thus (the factor 12 is needed becausewe have considered unordered pairs of trees),�+kn(t) = 12 k�1Xi=1 X�2Ti X�2Tk�i�\�=; i(k � i)(1� t)�1I�(t)I�(t); 0 � t < 1: (2.10)Lemma 2.6. For each k � 1 and all n � 1 and t � 0,Var��kn(t)� � C7(k)n3e�nt=2:Proof. Clearly �kn(t) = 0 for t � 1; hence we may assume t < 1. We then haveVar��kn(t)� � 2Var��+kn(t)�+ 2Var���kn(t)�, and, by (2.9) and Lemma 2.5,Var���kn(t)� � n2k2(1� t)�2Var�Xkn(t)� � C5n3e�nt=2:Hence it remains only to consider Var��+kn(t)�. We obtain from (2.10)Var��+kn(t)� = 14 k�1Xi;j=1 i(k � i)j(k � j) X�;�;;�(1� t)�2 Cov�I�(t)I�(t); I(t)I�(t)�; (2.11)where we sum over all � 2 Ti, � 2 Tk�i,  2 Tj, � 2 Tk�j such that �\� =  \ � = ;. Letus �rst consider the terms where �; �; ; � are pairwise disjoint. Then, similarly to (2.1),E I�(t)I�(t) E I(t)I�(t) = (1� t)k2 E I�(t)I�(t)I(t)I�(t);and thus Cov�I�(t)I�(t); I(t)I�(t)� = �1� (1� t)k2�E I�(t)I�(t)I(t)I�(t)= �1� (1� t)k2�pi;n(t)pk�i;n�i(t)pj;n�k(t)pk�j;n�k�j(t):



9The number of such quadruples (�; �; ; �) with given i and j equals jTi;njjTk�i;n�ijjTj;n�kjjTk�j;n�k�jj and their total contribution to the inner sum in (2.11) is thus, using Lemma2.2(iii),(1� t)�2�1� (1� t)k2�EXi;n(t) EXk�i;n�i(t) EXj;n�k(t) EXk�j;n�k�j(t)� C3C32k2tn(n� i)(n� k)(n� k � j)e�nt=2�(n�i)t=2 � C8k2n3e�nt=2:Summing over i and j we obtain an estimate of the required order. There still remainsthe terms where two (or more) of �; �; ; � intersect. In this case, if the intersecting treesdo not coincide, I�(t)I�(t)I(t)I�(t) = 0 and the covariance in (2.11) is negative. Hence,for an upper bound we only have to consider the cases � = � with �; �;  disjoint, and� = , � = � (up to relabelling). For the �rst case,Cov�I�(t)I�(t); I(t)I�(t)� � E I�(t)I�(t)I(t) = pi;n(t)pk�i;n�i(t)pi;n�k(t)and the total contribution to the inner sum of (2.11) is, for �xed i, using Lemma 2.2(iii)again, bounded by(1� t)�2 EXi;n(t) EXk�i;n�i(t) EXi;n�k(t) � C3C22n3e�nt=2:For the second case we similarly get, for each i, a contribution � C9n2e�nt=2. The lemmafollows. �We next use the orthogonal decomposition in [8], which can be briey described asfollows. Let, for 0 � t � 1, I 0e(t) = Ie(t) � t; note that E I 0e(t) = 0, which is the centralpoint in the theory. Each I�(t) equals a productYe2A(�) Ie(t) Ye2B(�)�1� Ie(t)� = Ye2A(�)�I 0e(t) + t� Ye2B(�)�1� t� I 0e(t)�; (2.12)for certain edge sets A(�) and B(�); A(�) is the set of edges in �, and B(�) is the set of allother edges in Kn that have at least one endpoint in �. Expanding the product in (2.12),we see that I�(t) equals a linear combination of productsQe2C I 0e(t), where C ranges overthe subsets of A(�) [B(�); summing over � 2 Tkn and collecting terms according to theisomorphism type of the graph spanned by the edges in the set C, we �nally arrive at thedecomposition Xkn(t) =XH  ̂kn(H; t)Sn(H; t);where H ranges over unlabelled graphs (without isolated vertices),  ̂kn(H; t) are somedeterministic functions and Sn(H; t) =XF Ye2F I 0e(t);where F ranges over all subgraphs of Kn that are isomorphic to H (counted with multi-plicity aut(H), for convenience). See [8] for further details.We do not have to calculate the coe�cients  ̂kn(H; t) exactly, but it will be importantto know that the terms when H is not a tree are su�ciently small.



10Lemma 2.7. Suppose that H is not a tree. If H has v (non-isolated) vertices and e edges,and t = �=n with � > 0 �xed, then (for n � �)nv=2te=2j ̂kn(H; t)j � C10(k;H; �):Proof. Let us consider one of the terms in the construction above. Fix � and C, andsuppose that C consist of k� 1� j of the k� 1 edges in A(�) and m of the edges in B(�),and that the graph F spanned by the edges in C is isomorphic to H. Further, supposethat H has c components, and that w � 0 of the vertices in � do not appear among thevertices of F (because they are not endpoints of any edge in C). We study the constructionof F in three steps. First we start with � and remove j edges; this leaves a forest with kvertices, k� 1� j edges and j + 1 components (including isolated vertices). Secondly, weadd m edges from B, which may only reduce the number of components. Finally, the wremaining isolated vertices are removed. This yields the relationse = k � 1� j +mc � j + 1� w:Furthermore, the resulting coe�cient ofQe2F I 0e(t), b(t) say, equals tj(1�t)jB(�)j�m(�1)m.Hence ne=2+c+wte=2jb(t)j � ne=2+j+1te=2+j = n(nt)e=2+jor nwjb(t)j � n1�c�e=2t�e=2(nt)e=2+j : (2.13)When summing over � and collecting the terms that contribute to  ̂kn(H; t), we note thatseveral di�erent choices of � and C � A(�) [ B(�) may give the same F . In particular,there are �n�vw � � nw choices of the w vertices in � that do not appear in F , but apartfrom that, the number of possibilities is �nite and independent of n (for n large enough).Hence (2.13) impliesj ̂kn(H; t)j � C11(k;H)n1�c�e=2t�e=2 k�1Xj=0(nt)e=2+jand, with t = �=n,nv=2te=2j ̂kn(H; t)j � C11(k;H)n1�(2c+e�v)=2 k�1Xj=0 �e=2+j :Now, v � c + e, with strict inequality except when H is a forest. Hence 2c + e � v =c+ (c + e � v) � 2 unless H is a connected forest, i.e. a tree, which completes the proof.�We are now prepared to apply the results of [8]. We �rst consider a �xed k � 1.First, by Lemmas 2.4, 2.5 and 2.6 and [8, Proposition 4.10], with pn = �=n and �n =n1=2 (� > 0 �xed), Xkn(�=n) is \almost �nitely dominated" by e.g. the family of all graphs.(This means that the variable can be expressed as a function of small subgraph counts, upto a small remainder term.) Moreover, by Lemma 2.7 and [8, Proposition 4.6], Xkn(�=n)is almost �nitely dominated by the family of all trees. We now apply [8, Theorem 14],



11with H the family of all trees, pn = 1=n, p = 0, �n = n1=2, and '(t) = C7(k)1=2e�t=4.Apart from the facts established above and in Lemma 2.6, this theorem also requires thatnv=2�e=2 ̂kn(H; �=n)=pn =  ̂kn(H; �=n)! ak(H; �)for every tree H and � � 0 and some functions ak(H; �). This can be shown by the argu-ment in the proof of Lemma 2.7, but it can also be avoided completely by the subsequenceargument in the proofs of [8, Theorems 3 and 13] (it is unfortunate that this version ofthe theorem is not stated explicitly in [8]). Consequently, we obtain from [8, Theorem 14],using Lemma 2.3, Xkn(t=n)� EXkn(t=n)pn d�! Vk(t) as n!1;in D([0;1]), where Vk(t) is a continuous Gaussian process with mean EVk(t) = 0 andcovariance functionE�Vk(t)Vk(u)� = limn!1Cov�Xkn(t=n);Xkn(u=n)� = �kk(t; u):This proves the �rst assertion in Theorem 2 for a �xed k, and the second follows becausen�1=2�EXkn(t=n)� n�k(t)�! 0; uniformly in t � 0;by Lemma 2.2(ii). Joint convergence for several di�erent k follows by the argument aboveand the Cramr-Wold device, cf. [8, Remark 8.2]. �3. Proof of Theorem 1.The minimal spanning tree may be found by the greedy algorithm, see Kruskal [9];consider the edges in order of increasing weights and select all edges that do not connecttwo vertices that already are connected by some sequence of selected edges. In otherwords, we select the edges in Gn(t) that decrease the number of components when theyappear. If N(t) is the number of selected edges up to time t, and K(t) is the number ofcomponents of Gn(t), then K(t) = n�N(t). Hence, letting M be the set of edges in theminimal spanning tree,Wn = Xe2M Te = Xe2M Z 10 I(t < Te) dt = Z 10 Xe2M�1� I(t � Te)�dt= Z 10 �n� 1�N(t)�dt = Z 10 �K(t)� 1� dt: (3.1)In order to analyze this further, we study di�erent types of components of Gn(t) separately.We already have de�ned Xkn(t) as the number of components of Gn(t) that are trees oforder k. We further let Ykn(t) be the number of unicyclic components of order k, andZn(t) the number of components with more than one cycle. Clearly,K(t) = nXk=1Xkn(t) + nXk=3Ykn(t) + Zn(t)and the theorem follows from (3.1) and the following �ve lemmas.



12Lemma 3.1. n1=2� nXk=1Z 10 Xkn(t) dt� nXk=1Z 10 EXkn(t) dt� d�! N(0; �2)with �2 = 1Xk;l=1Z 10 Z 10 �kl(t; u) dt du:Lemma 3.2. nXk=1Z 10 EXkn(t) dt = �(3) +O(1=n):Lemma 3.3. E nXk=3Z 10 Ykn(t) dt = O(1=n)and thus n1=2 Z 10 nXk=3Ykn(t) dt p�! 0:Lemma 3.4. EZ 10 jZn(t)� 1j dt = O(log n=n)and thus n1=2 Z 10 �Zn(t)� 1� dt p�! 0:Lemma 3.5.�2 = 1Xk;l=1Z 10 Z 10 �kl(t; u) dt du = �245 � 2 1Xi=0 1Xj=1 1Xk=1 (i+ k � 1)! kk(i+ j)i�2ji! k! (i + j + k)i+k+2 :Proof of Lemma 3.1. For convenience, we introduce the normalized variablesX�kn(t) = Xkn(t)� EXkn(t)pn ;note that X�kn(t) = 0 when k > n or t > 1. By Theorem 2,X�kn(t=n) d�! Vk(t)in D([0;1]) as n!1, for every k; since the integral over a �nite interval is a continuousfunctional on D([0;1]), this impliesZ A0 X�kn(t=n) dt d�! Z A0 Vk(t) dt



13for any A <1. Moreover, by the joint convergence for any �nite set of k, alsoNX1 Z A0 X�kn(t=n) dt d�! NX1 Z A0 Vk(t) dt (3.2)for every A;N <1. We want to extend this to A = N =1, and therefore observe thatby Lemma 2.5, kX�kn(t=n)k2 = Var�X�kn(t=n)�1=2 � C12k�5=4e�t=4: (3.3)Since kX�kn(t=n)k2 ! �kk(t; t)1=2 = kVk(t)k2 as n!1 by Lemma 2.3, alsokVk(t)k2 � C12k�5=4e�t=4: (3.4)Since P1k=1 R10 k�5=4e�t=4 dt <1, (3.4) implies that the variableU = 1Xk=1Z 10 Vk(t) dtis well-de�ned in L2. Moreover, ifUN = NX1 Z N0 Vk(t) dt;U�Nn = NXk=1Z N0 X�kn(t=n) dt;U�n = 1Xk=1Z 10 X�kn(t=n) dt = nXk=1Z n0 X�kn(t=n) dt;then UN ! U in L2, and thus in distribution, as N ! 1, while U�Nn ! U�n in L2 (andthus in probability) uniformly in n as N !1, because by (3.3),kU�Nn � U�nk2 � � NX1 Z 1N + 1XN+1Z 10 �kX�kn(t=n)k2 dt� � NX1 Z 1N + 1XN+1Z 10 �C12k�5=4e�t=4 dt! 0:Finally, U�Nn d�! UN as n! 1 for each N by (3.2). This implies, by [2, Theorem 4.2],that U�n d�! U as n!1: (3.5)Since U is the limit of (Riemann) sums of the jointly normal random variables Vk(t), Uhas a normal distribution; the parameters are given byEU = 1X1 Z 10 EVk(t) dt = 0



14and VarU = EU2 = 1Xk=1 1Xl=1 Z 10 Z 10 E�Vk(t)Vl(u)� dt du= 1Xk=1 1Xl=1 Z 10 Z 10 �kl(t; u) dt du:Thus U � N(0; �2). The result now follows from (3.5), because by our de�nitions,U�n = n nXk=1Z 10 X�kn(t) dt= pn nXk=1Z 10 �Xkn(t)� EXkn(t)� dt: �Proof of Lemma 3.2. Let �kn = R 10 EXkn(t) dt. By Lemma 2.2(i) and evaluation of a betaintegral �kn = �nk�kk�2�(k)�(nk � k2=2� 3k=2 + 2)�(nk � k2=2� k=2 + 2)= (n)kk! kk�2 (k � 1)!(nk � k2=2� k=2 + 1)k= kk�3 (n)k(nk � k2=2� k=2 + 1)k :A Taylor expansion of the logarithm yields, for k � n=2 say,log(n)k = k logn+ k�1X1 log(1� in ) = k logn� k(k � 1)2n +O�k3n2�;and similarlylog(nk � k2=2� k=2 + 1)k = k log(nk � k2=2� k=2 + 1) +O� k2nk�= k log(nk) + k log(1� k2n � 12n + 1nk ) +O� k2nk�= k log(nk)� k22n +O�kn + k3n2�:Hence, if 1 � k � pn,�kn = kk�3 nk(nk)k exp�O(kn )� = k�3�1 +O(kn )� = k�3 +O(n�1k�2):For pn < k � n we instead use Lemma 2.1 to conclude (assuming as we may n � 4),�kn � C1kk�3 (n� k=2 � 3=2)k(nk � k2=2� 3k=2)k = C1k�3:



15For k > n, we trivially have �kn = 0.Consequently, ��� nX1 �kn � 1X1 k�3��� � pnX1 j�kn � k�3j+ 1Xpn (1 +C1)k�3� C13n 1X1 1k2 + C14 1Xpn k�3� C15n : �Proof of Lemma 3.3. Let m(k) be the number of connected graphs with k edges on k(labelled) vertices. ThenEYkn(t) = �nk�m(k)tk(1� t)nk�k2+(k2)�kand thus, evaluating a beta integral as in the proof of Lemma 3.2,Z 10 EYkn(t) dt = �nk�m(k) �(k + 1)(nk � k2=2 � k=2 + 1)k+1= m(k) (n)k(nk � k2=2� k=2 + 1)k+1 :Since m(k) = 12 (k� 1)!Pk�3j=0 kj=j! < (k� 1)!ek � C16kk�1=2, see e.g. [3, Theorem 18], weobtain using Lemma 2.1 for 3 � k � n and n � 4,Z 10 EYkn(t) dt � C17kk�1=2 (n� k=2� 3=2)k(nk � k2=2� 3k=2)k+1= C17 k�3=2n� k=2� 3=2� C18k�3=2n�1:The result follows because P11 k�3=2 <1. �Proof of Lemma 3.4. We consider the integrals over [0; 3 log n=n] and [3 log n=n; 1] sepa-rately. Let eZn be the number of times during the evolution of Gn(t) that a componentwith at least two cycles is formed (either by the creation of an edge joining two uni-cyclic components or by the creation of an edge joining two vertices in the same unicycliccomponent). Clearly Zn(t) � eZn for every t, and thusZ 3 log n=n0 E jZn(t)� 1j dt � Z 3 logn=n0 E( eZn + 1) dt = 3 log nn (E eZn + 1):It was proved in [7] that E eZn = O(1) (in fact, E eZn ! 5�=8p3 as n!1); henceZ 3 log n=n0 E jZn(t)� 1j dt = O� lognn �:



16On the other hand, let E be the event that Gn(3 log n=n) is connected and has more thann edges. If E happens, then Zn(t) = 1 for all t � 3 log n=n; thus we conclude from thetrivial estimate jZn(t)� 1j � n thatZ 13 log n=n E jZn(t)� 1j dt � Z 13 log n=n nP(Ec) dt � nP(Ec) = O(n�1);since P(Ec) = O(n�2) as is easily shown, cf. [3, Exercise II.15]. The lemma follows. �Proof of Lemma 3.5. We �rst observe thatj�kl(t; u)j � kVk(t)k2kVl(u)k2 � C212k�5=4e�t=4l�5=4e�u=4by Cauchy-Schwarz' inequality and (3.4), and thusPPR R j�kl(t; u)j <1. This and thegamma integrals R �k(t) dt = R t�k(t) dt = k�3 imply easily that all integrals and sumsbelow are �nite.By the de�nitions,�2 = 2 1Xk;l=1ZZt�u �kl(t; u) dt du = 2 1Xk;l=1Z 10 Z 10 �kl(t; t+ s) ds dt= 2� 1Xk;l=1 I1(k; l) + 1Xk=1 I2(k) + 1Xk=1 1Xl=k+1 I3(k; l)�;where I1(k; l) = Z 10 Z 10 kl(t� 1)�k(t)�l(t+ s) ds dt;I2(k) = Z 10 Z 10 e�ks�k(t) ds dt;I3(k; l) = Z 10 Z 10 kk�1k! (l � k)! tk�1s�ls+ (l � k)t�l�k�1e�ls�lt ds dt:Binomial expansions and standard integrations yieldI1(k; l) = kk�1k! ll�1l! Z 10 Z 10 (t� 1)tk�1(t+ s)l�1e�(k+l)t�ls dt ds= kk�1k! ll�1l! l�1Xi=0 Z 10 Z 10 �l � 1i �(tk+i � tk+i�1)sl�1�ie�(k+l)t�ls dt ds= l�1Xi=0 kk�1k! ll�1l! (l � 1)!i! (l � 1� i)! (k + i� 1)! �k + i� (k + l)�(k + l)k+i+1 (l � i� 1)!ll�i= � l�1Xi=0 (k + i� 1)! kk�1li�2(l � i)k! i! (k + l)k+i+1 ;I2(k) = Z 10 e�ks dsZ 10 kk�2k! tk�1e�kt dt = k�1 kk�2k! (k � 1)!kk = k�4;



17and, for l > k,I3(k; l) = kk�1k! (l � k)! l�k�1Xi=0 Z 10 Z 10 �l � k � 1i �(l � k)itk�1+ill�k�1�isl�k�ie�ls�lt ds dt= l�k�1Xi=0 kk�1k! (l � k)! (l � k � 1)!i! (l � k � 1� i)! (l � k)ill�k�1�i (k + i� 1)!lk+i (l � k � i)!ll�k�i+1= l�k�1Xi=0 (k + i� 1)! kk�1(l � k)i�1k! i! lk+i+2 (l � k � i):Summing and substituting l = i+ j in I1 and l = k + i+ j in I3, we obtain�2 = 2 1Xk=1 k�4 + 2 1Xk=1 1Xi=0 1Xj=1 (k + i� 1)! kk�1(i+ j)i�2jk! i! (k + i+ j)k+i+2 ��(k + i+ j) + i+ j�and the result follows, using the well-known formula P11 k�4 = �4=90. �We have completed the proof of Theorem 1, and it remains only to indicate the smallmodi�cations needed to show the corresponding result for spanning pseudoforests statedin Remark 1.5.It is not di�cult to see that the minimum weight pseudoforest consists of the edges inGn(t) that have at least one endpoint in a tree component when they appear (cf. Gabowand Tarjan [6, Lemma 2.1]). Each such edge decreases the number of tree components byone; thus, if N 0(t) denotes the number of selected edges that has appeared up to time t,then N 0(t) = n�X(t), where X(t) =Pnk=1Xkn(t) is the number of tree components ofGn(t). An argument as above then showsW 0n = Z 10 �n�N 0(t)� dt = Z 10 X(t) dt = nXk=1Z 10 Xkn(t) dtand the result follows by Lemmas 3.1, 3.2 and 3.5. (Thus Lemmas 3.4 and 3.5 are notneeded for spanning pseudoforests.) References1. A.D. Barbour, Poisson convergence and random graphs, Math. Proc. Camb. Phil. Soc. 92 (1982),349{359.2. P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.3. B. Bollob�as, Random Graphs, Academic Press, London, 1985.4. A. Cayley, A theorem on trees, Q. J. Pure Appl. Math. 23 (1889), 376{378.5. A.M. Frieze, On the value of a minimal spanning tree problem, Discrete Appl. Math. 10 (1985), 47{56.6. H.N. Gabow and R.E. Tarjan, A linear-time algorithm for �nding a minimum spanning pseudoforest,Information Processing Letters 27 (1988), 259{263.7. S. Janson, Multicyclic components in a random graph process, Random Struct. Alg. 4 (1993), 71{84.8. S. Janson, Orthogonal decompositions and functional limit theorems for random graph statistics,Memoirs Amer. Math. Soc. 534 (1994).9. J.B. Kruskal, The expected number of components under random mapping functions, Amer. Math.Monthly 61 (1954), 392{397.10. B. Pittel, On tree census and the giant component in sparse random graphs, Random Struct. Alg. 1(1990), 311{342.11. A. R�enyi, Some remarks on the theory of trees, Publ. Math. Inst. Hungar. Acad. Sci. 4 (1959), 73{85.Department of Mathematics, Uppsala University, PO Box 480, S-751 06 Uppsala, SwedenE-mail address: svante.janson@math.uu.se


