THE MINIMAL SPANNING TREE IN A
COMPLETE GRAPH AND A FUNCTIONAL LIMIT
THEOREM FOR TREES IN A RANDOM GRAPH.

SVANTE JANSON

ABSTRACT. The minimal weight of a spanning tree in a complete graph K,, with independent,
uniformly distributed random weights on the edges, is shown to have an asymptotic normal
distribution. The proof uses a functional limit extension of results by Barbour and Pittel on
the distribution of the number of tree components of given sizes in a random graph.

1. INTRODUCTION AND RESULTS

Assign random weights T;;, 1 <4 < j < n, to the edges of the complete graph K,
with vertex set {1,...,n}, and let W,, be the minimum weight of a spanning tree of K.
We assume that the weights are independent and identically distributed, with a uniform
distribution on [0, 1]. It was proved by Frieze [5] that

W, —((3) =) k™?=1202...
k=1

o0

in probability as n — oo, see also Bollobs [3]. The main purpose of the present paper is
to show that W,, has an asymptotic normal distribution.

Theorem 1. Let W, be the weight of the minimal spanning tree. Then
n'?(W, —((3)) -5 N(0,0?)

with
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Remark 1.1. We do not know whether there exists any simpler expression for 2. A
numerical summation yields o2 ~ 1.6857.

As is well-known (and will be described in detail in Section 3), W, is closely linked to
properties of the number of components of a random graph, in particular the number of
tree components. Our proof of Theorem 1 uses this, and is based on a functional limit
theorem for component counts. We define a random graph process G, (t) (where ¢ > 0
is interpreted as time) by taking the edge set of G,,(t) to be {ij : T;; < t}, with T;; as
above. Hence T;; now is interpreted as the (random) time the edge ij appears. Note that
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G, (t) = K, for t > 1; hence all the evolution occurs on [0, 1], although we for convenience
allow also t > 1. Define, for £ > 1 and 0 < ¢t < oo,

kk72

Nk(f) — k' tk—le—kt
and, for k,1 > 1 and ¢,u > 0,
(t — D)kl (£) pr(u), kE>1,t<u,
op(t,u) = ¢ (b= Dkl (t)p(u) + e D g (t), k=1,1t<u,

(t — V)klpg (£)pr(u) + %t’“l(u —t)(lu — k) kel k<t <,

and
opi(t, u) = ow(u,t), t>u.

Theorem 2. Let Xy, (t) be the number of isolated trees of order k in G, (t). Then, for
k> 1,
Xin(t/n) — E Xg,(t/n)  a

— Vi(2 1.1
o A0 (1)
and x
(/1) — nu(t
N
as n — oo, in D([0,00]), jointly for any finite set of k, where (Vy (t));:o:1 are continuous

jointly Gaussian stochastic processes with Vi(0) = Vi(00) = 0, EVi(t) =0, 0 < t < o0,
and covariance functions Cov(Vg(t), Vi(u)) = ogi(t, u).

The convergence here is in the Skorohod topology on D(]0, oc]), which can be obtained
from the perhaps better know space D(]0,1]), see Billingsley [2], by a (monotone) change
of parameter. For convergence to a continuous limit (the only case that really interests
us), convergence in D([0, 00]) is equivalent to uniform convergence. We refer to [2] for
properties of the Skorohod topology and of convergence in distribution in it.

Theorem 2 implies, in particular, that (1.1) holds for every fixed ¢; this has been proven
earlier, by different methods, by Barbour [1] (fixed k) and Pittel [10] (joint convergence
for all k). Moreover, the cases k = 1 (isolated vertices) and k = 2 (isolated edges) were
treated in [8, Sections 11 and 12].

Remark 1.2. Pittel [10, Theorem 1] also gives a similar (but somewhat different) limit
theorem for the random graph G, with m = [en/2] for a fixed ¢ > 0. This too follows by
our method, more precisely by [8, Theorem 9(iv)] using [8, Proposition 4.2] and estimates
from Section 2 below. We will not consider G,,,,, further in this paper.

Remark 1.3. Pittel [10] used his results on tree counts to prove asymptotic normality of
the order of the giant component in a random graph G(n, c¢/n), ¢ > 1. It should be possible
to use our Theorem 2 to obtain a functional version of this, i.e. process convergence of
the order of the giant component in G(n,t/n), ¢ > 1, to a Gaussian stochastic process
on (1,00), but some details remain to be verified and we leave this as a conjecture. (The
same applies to the number of edges in the giant component of G(n,t/n) or the number
of components of G(n,t/n).)

Remark 1.4. Results similar to Theorem 2 may be obtained by the same method for counts
of specific types of trees, for example the numbers of isolated paths of different lengths in

G (t).



Remark 1.5. Donald Knuth (personal communication) has recently suggested studying the
minimum weight spanning pseudoforest for random weights as above, where a spanning
pseudoforest is a subgraph of K, with n edges and only unicyclic components. (See Gabow
and Tarjan [6] for the problem of finding the minimum weight spanning pseudoforest
for given (non-random) weights.) Let W, denote the minimum weight of a spanning
pseudoforest. We will show in Section 3 that Theorem 1 holds also with W,, replaced by
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2. PROOF OF THEOREM 2.

We begin by studying the first two moments of Xy, (), but let us first introduce some
notations. We let C7, Cs, ... denote universal constants whose values are unimportant (the
industrious reader may substitute suitable numbers), while C'(k) denotes a ”constant” that
depends on k but not on any other variable. Similarly, O and o denote estimates that are
uniform in all relevant variables, while f = O (g) means the same as |f| < C(k)g. We let
(n) = H’f(n — i + 1), the decreasing factorial, and observe for future use the following
estimate.

Lemma 2.1. If 1 <k <n andn >4, then

(n)y < Ci(n—k/2—3/2)F.
Proof. By the assumptions n — k/2 —3/2 > (n — 3)/2 > n/8 > 0. By concavity of the
logarithm (or because (n + 1 —i)(n —k +1i) < (n — k/2 + 1/2)? by the conjugate rule),

k
In(n)y = In(n—i+1) <kln(n—k/2+1/2)

i=1

and thus

(n)x n—k/2+1/2\" 2 k
(n—k/2—3/2)k < (n—k/2—3/2) B (H n—k/2—3/2>
< (1+ 177_6)1’g < p16k/n < elf.

O

We introduce some more notation. Let 7%, be the set of trees of order k£ in the complete
graph K,; by Cayley’s theorem [4],

kk—2
Tin| = (Z) KF? = T”k(l +Ok(n1)).

For each o € Tgy, let I,(t) be the indicator that is 1 if v is an isolated tree in G, (¢), and

0 otherwise. Hence
Xin(t) = ) Ia(t).
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The expectation E I, (t) = P(I,(t) = 1) is the same for each a € Tg,. We denote it by
Prn(t), and it is easily seen that, for 1 <k <nand 0 <t <1,

E 1, (t) = prn(t) = tF71(1 — 1) RR+@) k41 ey

Hence, for 0 <t <1,

n —_ —_ nkK— ,2 — o
EX,m(f) = |ﬁn|pkn(f) — (k)kk 24k 1(1 —t) k—k2/2 3k/2+1‘

We state this formula together with two useful estimates derived from it as a lemma.

Lemma 2.2.
(i) If 0 <t <1, then

E X (t) = (:) kk—2tk—1(1 B t)nk—k2/2—3k/2+1.

(ii) Fork>1,n>3 and 0 <t < oo,
E X (t) = npx(nt) + Og(e7"*/?).
(iii) If k,n>1 and 0 <t <1, then
E Xpn (1) < Conk™/2e7n/2,
For 0 <t <1 andn >4, also

(1 —8)"2E Xpn(t) < Cynk=5/2¢ /2,

Proof. (i) is already proved.
For (ii), consider first the case nt?> < 1. Then 0 <t < 1, and by (i), for n > k,

E X (t) = 1;2 (n)xt" 'exp (—nkt + O(k>t) + O(nkt?))
= nug(nt) exp (O(k*t) + O(nkt®) + O(k*/n))

(nt) ex

npuk(nt) (1+ Okt + nt* + 1/n))

= npg(nt) + O (((n)* " + (nt)**1) e=*"")
(nt) +

= npg(nt ( knf/2)

If nt? > 1 we obtain similarly, by (i) and the trivial fact that X, (¢) = 0 for ¢ > 1 and
n >3,

2
2
S nk+1tk+lefknt+k

— Ok (efknt/2)

and
npr(nt) < n2t?ug(nt) = Ok (e *F1/?).



Hence (ii) follows in both cases.

For (iii), we may assume that 1 < k¥ < n and n > 3. Then, setting z = (n — k/2 —
3/2)t > nt/2—3t/2 and using Lemma 2.1 and Stirling’s formula together with the estimate
re™® <e

kk—2
Ean(f) < - (n)ktkfl(l - t)k(nfk/273/2)

k—2

k
< Cy A

k—2
< Cl nmk*lefk:x

k!
kk—2

(n . k/2 o 3/2)ktk—le—kt(n—k/2—3/2)

< Cln faz)kfl —x

e

e

kk2

—k+1,—nt/2+3/2

< (Cin e

Lk+1/2p0—k
< CyeP k512112,
The same argument proves the final estimate. O

We turn to second moment calculations.

Consider Cov (I,(t),I5(u)), where a € Ty, 8 € Ty and 0 < t < u < 1 (for simplicity we
here and sometimes in the sequel omit the subscript n). Recall that E (1,(t)13(u)) is the
probability that « is a component of G,,(¢) and that 3 is a component of G, (u) at a later
time w. There are three cases:

(i) @ and B are (vertex-)disjoint. If we expand EI,(t)Ig(u) and EI,(t) E Iz(u) as
products over the edges in K,,, the only difference is that the former contains one factor
1 — u for each of the kl edges joining a and g, while the latter contains two factors 1 — ¢
and 1 — u. Hence

B 10 (615 () = pi(pu(w)(1 — ) (2.1)

(ii) anNB # 0, but a« € B. If a is a component of G,,(t) and u > ¢, then any component

of G, (u) that intersects o has to contain o. Hence

ET1,(t)I3(u) = 0. (2.2)
(iii) @ C B. In order for a to be a component in G, (¢) that grows to a component /3
in G,,(u), we have to have T, < t for each edge e in a, t < T, < u for each e in § with
exactly one endpoint in «, T, < u for each e in 8\ «, and T, > u for every other e with
one or two endpoints in 4. Hence, if there are j edges joining a to '\ a,
B L (8)I5(u) = t*~H(u — £)Tu! =F=3 (1 — o) (=D () =141, (2.3)
Let By, be the number of pairs (o, 3) with « € Tg, 8 € T; and N B # 0, and let
bri = Byi/|Tk||T;|. Note that, for fixed & and [,
n—=k kl
=k _ K + Og(n?). (2.4)
(r)1

Now, Cov(Xk(t),Xl(u)) =Y aeTi E(Ia(t)Ig(u)) — EXy(t) E X;(u). There are |T||Ti| —
BET
By = (1—0bg;)|Tx||T7| terms of type (i) in the sum, and if ¢ < u we obtain from (2.1)—(2.3),

Cov (X5 (1), Xi(u)) = (1~ bi)| Tel| Talpr (B)pe (w) (1 — )75 + Y~ B Lo (8)15(u)
aCp

b =1—

- EXk(f) EXZ(U,)

=EX, () EXp(w)(1— ) F (1 — by — (1= ") + 3" E L (t)I5(u)
aCp (2-5)
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Again there are three cases:
(i) If k >l and t <wu <1, then a C 8 cannot occur, and

Cov (Xy (1), Xi(u)) = E X5 (t) E X (u)(1 — ) (1 — (1 — )% — byy). (2.6)
(ii) If k =1 and t < u < 1, the only terms with @ C ( are those with & = (. Since
B I ()1, (u) = t*=1(1 —u)("_k)k+( )=F41 = (t/u)E=1p, (u) when a € Ty,

ZE = (t/u)* "' E Xj (u)

and (2.5) yields

Cov (X (t), Xi(u))
= E X, () EXy(u)(1 =) (1 = (1 = )" = b)) + (¢/u)" " E Xy (u), (2.7)
(iii) If K < I and ¢t < u < 1, we partition the sum over a C ( further.
Let Ny;; be the number of pairs (a, §) with a € T, # € T/ and « C 3, such that there
are j vertices in 8\ a adjacent to o, 1 < j <[ — k. This number may be calculated as
follows.

There are |T;| choices of a. For each of these, the remaining [ — k vertices in [ may
be chosen in (7]'—:) ways. We may then select the j vertices adjacent to o in (l k) ways

and connect them to « in k/ ways. Finally, we complete 3 by adding a rooted foreq‘r on
the [ — k new vertices, with the j selected vertices as roots; there are j(I — k)!'=%=7=1 such
forests, see [4] and [11]. Hence we find

n—k\[l—k\, .. i
Nklj_']H(l_k)( j )kjj(l—k)l k—j3—1

n—k l—k—1 . :
= kil — k) =k
w(i ) (0w

and, by (2.3), with L =12/2 +31/2 — 1,

> EIL( ZNW& =) I — )M E

aCp
n—k\ j_ 1 nl L k I—k—j I—k—j
= | Tl Ik t E k7(u—t) (1 — k) Ty'—k=a

= [Tx| <T;_lf>t’“(1 — u)"’*Lk(u — ) (k(u— ) + (L — k)yu) "

== k‘ﬁ| (7::) tkil(u _ t)(lu _ kt)l*kfl(l _ u)nlfL’

where we used the binomial theorem (changing the summation index to 5 — 1). Hence
(2.5) yields

Cov (Xi(t), Xi(u)) = EXg(t) EXy(u)(1 — ) (1 — (1 — 1) — by)

+ K| Ty (T;__:)tkl(u —t)(lu — k)71 — )™ (2.8)

The formulae (2.4) and (2.6)—(2.8) yield immediately the following asymptotical result.



Lemma 2.3. For any fized k,1 > 1 and t,u > 0,

- cov (X (2). X0 (%)) = ot wsn o

Lemma 2.4. For fixed k > 1 and t > 0,

Var(an(%)> =n as n — oo.

Proof. By definition,

orr(t,t) = (t = DE? i (t)® + pi () = pr(8) (1 + (¢ — DE>pe(t)).
If t > 1, this is obviously positive. If 0 <¢ < 1 and k£ > 2, then
AT <_°

1
I - 4\/27r

Similarly, if 0 < ¢ < 1 and k = 1, then (1 —t)k%ux(t) = (1 —t)e~* < 1. Hence op(t,t) >0
whenever ¢ > 0, and the result follows by Lemma 2.3.

kk
(1 = k() = (1= )ty (te )" 22 <

We will also use the following uniform estimates.

Lemma 2.5. Forallk,n>1 andt >0,
Var Xy, (t) < Cynk=%/2e /2.
If t <1 and n > 4, then also

(1 —¢)~2 Var Xy, (¢) < Cynk%/2e /2,
Proof. We may assume 0 <t <1 and k < n. Then, by (2.7),

Var (Xpn () = (B Xen (8)) (1 =) ¥ (1= (1 = )% — bgr,) + E X (£)
< (BXpn(®)*(1 =07 (1 = ba) (1 = (1= )*) + B Xy (1)
= E Xpn (1)(1 — bp) [ Ton| (1 — ) F prn (8) (1 — (1 — £)*") + E Xy (1)
= B X (1) T lprn () (1= (1= O)F) + B Xpn (1)
=E Xpn (t) (E X i (¢ N1 —(1— )" ) + 1)

Since 1 — (1 — t)¥" < k2t and, by Lemma 2.2 (iii),
EtE Xy x(t) < Cot(n — k)e” ("0H2 < 0y

this yields
Var an(t) < CG Ean(t)a
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and the result follows by Lemma 2.2(iii) again. O

We also have to study the drift &, (#) of X, (f), i.e. the expected rate of change of
Xgn(t) in an infinitesimal interval (¢, t+dt). (More precisely, &g, (2) = limas— o4 E(X;m(t—i—
At)—Xpn(t) | Fi)/At, where Fy is the o-field generated by all events up to time ¢.) Isolated
trees of order k may be both created and destroyed as new edges are added (except for
k = 1), and we thus write

Ern (1) = &5, (1) — &,,(1),

separating creations and destructions.

An isolated tree in G,,(t) is destroyed when any of nk — k?/2 — 3k/2 + 1 edges is added,
and since each edge is added with intensity (1 — ¢)~!, conditionally on not already being
present, this yields

Een(t) = (nk — K?/2 = 3k/2+ 1)(1 — )T Xpn (1), 0<t<L (2.9)

Similarly, an isolated tree of order k is created when two isolated trees, of orders j and
k — 7, say, are joined by an edge. For each such pair of (disjoint) isolated trees, there are
j(k — j) possible edges that will join the trees, and thus (the factor % is needed because
we have considered unordered pairs of trees),

k—1
Ga® =333 3" ik —i)(1— 1) M a(t)Ts(1), 0<t<l. (2.10)
i=1 a€T; BGT’“’@’
BNa=

Lemma 2.6. For each k> 1 and alln>1 and t > 0,

Var (Ekn(f)) < C7(k)n?’e*"t/2.

Proof. Clearly &g, (t) = 0 for ¢ > 1; hence we may assume t < 1. We then have
Var (&, (1)) < 2Var (& (t)) + 2 Var(¢;,,(t)), and, by (2.9) and Lemma 2.5,

Var(fk_n(t)) <n?k*(1—1t)72 Var(an(t)) < Cynde /2,

Hence it remains only to consider Var(&; (¢)). We obtain from (2.10)

k—1

STtk )ik ) Y (1 1) Cov(Ia() 5, L(HI5(1). (2.11)

4,j=1 a,3,7,0

Var (E:ﬂ (f)) =

N

where we sum over alla € T;, B € Ty, v € Tj, 6 € Ty, such that aNpf=~yNdJ = 0. Let
us first consider the terms where «, 3,7, are pairwise disjoint. Then, similarly to (2.1),

B I (t)15(t) B L (8)15(t) = (1 — )" B L (1) Is() L, (1) I (1),
and thus

Cov (I, (t)I5(t), L, (t)I5(t)) = (1 — (1 — t)’“Q) E L, (t)Ig(t) L, (t)I5(t)

=(1-0- t)k2)pi,n(t)pkfi,nfi(t)pj,nfk(t)pkfj,nfkfj(t)'



The number of such quadruples (e, 3,7, d) with given ¢ and j equals |7; || Tk—i.n—il| Tjn—k|
‘Tk—jn—k—4| and their total contribution to the inner sum in (2.11) is thus, using Lemma
2.2(iii),

(=71 = (0=t )EXin () B Xpiinoi(8) B Xjnp(#) E Xpjin—p—s (1)
< C3C3k*n(n — i) (n — k) (n — k — §)e™/2-(0=0t2 < Cgk2nde™mt/2,

Summing over ¢ and 7 we obtain an estimate of the required order. There still remains
the terms where two (or more) of «, 3,7, d intersect. In this case, if the intersecting trees
do not coincide, I,(t)Ig(t)I,(t)I5(t) = 0 and the covariance in (2.11) is negative. Hence,
for an upper bound we only have to consider the cases § = § with a, 3,~ disjoint, and
a =1, =47 (up to relabelling). For the first case,

Cov (L (t)15(1). I, ()15(t)) < EIo(t)I5(t)15(t) = pin(t)pr—im—i(t)pin—r(t)

and the total contribution to the inner sum of (2.11) is, for fixed i, using Lemma 2.2(iii)
again, bounded by

(1 — t)72 Eszn(t) EXk*i,nfi(t) EXZ’n,k(t) S 0302271367"'5/2.

For the second case we similarly get, for each i, a contribution < Cyn2e~"*/2. The lemma

follows. O

We next use the orthogonal decomposition in [8], which can be briefly described as
follows. Let, for 0 <t <1, I'(t) = I.(t) — t; note that EI(¢f) = 0, which is the central
point in the theory. Each I,(t) equals a product

II =& I O-rw)= ] e+ [] @-t-1), (2.12)

e€A(a) e€B(a) e€A(a) e€B(a)

for certain edge sets A(«) and B(«); A(«) is the set of edges in «, and B(«) is the set of all
other edges in K,, that have at least one endpoint in . Expanding the product in (2.12),
we see that I, (t) equals a linear combination of products [ [, I;(t), where C' ranges over
the subsets of A(a) U B(«); summing over a € T, and collecting terms according to the
isomorphism type of the graph spanned by the edges in the set C', we finally arrive at the
decomposition

X (t) =Y thin (H; 1) S (H; 1),
H

where H ranges over unlabelled graphs (without isolated vertices), 9y, (H;t) are some

deterministic functions and
Su(H;t) =Y J[ L),
F ecF

where F' ranges over all subgraphs of K,, that are isomorphic to H (counted with multi-
plicity aut(H ), for convenience). See [8] for further details.

We do not have to calculate the coefficients Qﬁlm(H, t) exactly, but it will be important
to know that the terms when H is not a tree are sufficiently small.
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Lemma 2.7. Suppose that H is not a tree. If H has v (non-isolated) vertices and e edges,
and t = 7/n with T > 0 fized, then (for n > 1)

n"/2412 |y, (H;1)| < Cro(k, H, 7).

Proof. Let us consider one of the terms in the construction above. Fix a and C, and
suppose that C consist of k —1 — j of the k — 1 edges in A(«) and m of the edges in B(«),
and that the graph F' spanned by the edges in C is isomorphic to H. Further, suppose
that H has ¢ components, and that w > 0 of the vertices in « do not appear among the
vertices of F' (because they are not endpoints of any edge in C'). We study the construction
of F' in three steps. First we start with a and remove j edges; this leaves a forest with k
vertices, k — 1 — j edges and j + 1 components (including isolated vertices). Secondly, we
add m edges from B, which may only reduce the number of components. Finally, the w
remaining isolated vertices are removed. This yields the relations

e=k—1—7+m
c<j+1—w.

Furthermore, the resulting coefficient of [T,z I.(£), b(t) say, equals 7 (1—¢)1B(@)[=m(—1)m.

Hence
ne/2+c+wt6/2‘b(t)| < ne/2+_7'+1te/2+.7 — n(nt)e/2+_j

or
n|b(t)| < nlmeme/2gme 2 (nt)e/ 2 (2.13)

When summing over o and collecting the terms that contribute to &kn(H t), we note that
several different choices of @ and C' C A(a) U B(«) may give the same F. In particular,
there are (";”) < n® choices of the w vertices in « that do not appear in F', but apart
from that, the number of possibilities is finite and independent of n (for n large enough).
Hence (2.13) implies

k—1
[Ben(H:1)] < Oy, Hynb=e /27612 3 () /243
§=0
and, with ¢t = 7/n,
. k-1
nv/2t6/2‘¢kn(H; f)‘ < Cll(ka H)nl—(2r3+e—1))/2 Z 7_e/2+_7"
5=0

Now, v < ¢+ e, with strict inequality except when H is a forest. Hence 2c +e —v =
¢+ (c+e—wv) > 2 unless H is a connected forest, i.e. a tree, which completes the proof.
O

We are now prepared to apply the results of [8]. We first consider a fixed k& > 1.

First, by Lemmas 2.4, 2.5 and 2.6 and [8, Proposition 4.10], with p,, = 7/n and 3, =
n'/? (1 > 0 fixed), Xj, (7/n) is “almost finitely dominated” by e.g. the family of all graphs.
(This means that the variable can be expressed as a function of small subgraph counts, up
to a small remainder term.) Moreover, by Lemma 2.7 and [8, Proposition 4.6], X, (7/n)
is almost finitely dominated by the family of all trees. We now apply [8, Theorem 14],
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with H the family of all trees, p, = 1/n, p = 0, B, = n'/?, and @(t) = C7(k)'/?e /4.
Apart from the facts established above and in Lemma 2.6, this theorem also requires that

n"/2= oy (H; m/n) [/n = g (H; 7 /1) = ax (H;7)

for every tree H and 7 > (0 and some functions ay(H; 7). This can be shown by the argu-
ment in the proof of Lemma 2.7, but it can also be avoided completely by the subsequence
argument in the proofs of [8, Theorems 3 and 13] (it is unfortunate that this version of
the theorem is not stated explicitly in [8]). Consequently, we obtain from [8, Theorem 14],
using Lemma 2.3,

Xgn(t/n) ?ﬁ}:zxkn(t/n) L V) asn - oo,

in D([0,00]), where Vi (#) is a continuous Gaussian process with mean EVj(¢) = 0 and
covariance function

E(Vi(t)Vi(u)) = lim Cov(Xpn(t/n), Xin(u/n)) = opr(t, u).

n— 00

This proves the first assertion in Theorem 2 for a fixed k, and the second follows because
n /2 (E Xpn(t/n) — nux(t)) — 0, uniformly in ¢ > 0,

by Lemma 2.2(ii). Joint convergence for several different k follows by the argument above
and the Cramr-Wold device, cf. [8, Remark 8.2]. O

3. PROOF OF THEOREM 1.

The minimal spanning tree may be found by the greedy algorithm, see Kruskal [9];
consider the edges in order of increasing weights and select all edges that do not connect
two vertices that already are connected by some sequence of selected edges. In other
words, we select the edges in G,,(t) that decrease the number of components when they
appear. If N(¢) is the number of selected edges up to time ¢, and K(t) is the number of
components of G,,(t), then K(t) =n — N(t). Hence, letting M be the set of edges in the
minimal spanning tree,

W,=> T. = Z/Olf(t<Te)dt—/Ol2(1—1(t>Te))dt

eEM e€M e€M
:/1(n1N(t))dt:/1(K(t)l)dt. (3.1)

In order to analyze this further, we study different types of components of G,,(t) separately.
We already have defined X, (¢) as the number of components of G,,(¢) that are trees of
order k. We further let Yy, (¢) be the number of unicyclic components of order k, and
7, (t) the number of components with more than one cycle. Clearly,

K(t) = Xn: Xpn () + En: Yien (1) + Zn(t)
k=1 k=3

and the theorem follows from (3.1) and the following five lemmas.
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Lemma 3.1.

nl/2 (é/ﬂlen(t) dt—g'/olEan(t) dt) 45 N(0,0?)

with

o’ = Z/ / ori(t, u) dt du.
Jo Jo

k=1

Lemma 3.2.

Z/ E X (t) dt = ¢(3) + O(1/n).
k=170

Lemma 3.3.

EZ/ Vi (£) dt = O(1/n)
k=3"0

and thus
n1/2/ ZYkn(t) dt 25 0.
0 k=3

Lemma 3.4. .
E/ \Z0(#) — 1] dt = O(log n/n)
J0

and thus

1
n1/2/ (Zn(t) — 1) dt 25 0.
J0

o) o] 0o 2 oo 00 00 . k- Ni_D -
2 = _T (t+k—DE @+ 7))
o2 = Z_/O /0 Ukl(t,U)dtdufE—QZZ TRT ] TR

Proof of Lemma 8.1. For convenience, we introduce the normalized variables

X 1) = =l Renll,

note that X; (t) =0 when k > n or ¢t > 1. By Theorem 2,
« d

in D([0,00]) as n — oo, for every k; since the integral over a finite interval is a continuous
functional on D([0, 0c]), this implies

A A
/ X7 (t/n)dt -2 / Vi (t) dt
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for any A < co. Moreover, by the joint convergence for any finite set of k. also

N A N A
> [ x4 Y [T 52)

for every A, N < oo. We want to extend this to A = N = oo, and therefore observe that
by Lemma 2.5,

X7, (t/n) |2 = Var (X5, (t/n))"/? < Crak5/4e /4, (3.3)
ince t/n)|l2 = ori(t,t = ||Vk(t)||2 as n — oo by Lemma 2.3, also
Since || X}, 12 = v, by L 2.3, al
V()2 < Crok /e 1/, (3.4)

Since Y p_, [Tk %/4e t/*dt < 0o, (3.4) implies that the variable

U:Z/ Vi, (t) dt
k=10

is well-defined in L2. Moreover, if

=
Il
g i Mz Mz

ZQ*:*
S
Il

) v
> [ e

U = / X3, (t/n) dt = Z/ X; (t/n)d

then Uy — U in L?, and thus in distribution, as N — oo, while U, — U} in L? (and
thus in probability) uniformly in n as N — oo, because by (3.3),

1UNn = Upll2 < (Z/ + Z / >||X,m (t/n)| dt

N+1"

(Z/ +Z/ )c k=® et dt — 0.

N+1

Finally, Uy, N Un as n — oo for each N by (3.2). This implies, by [2, Theorem 4.2],
that
v LU as n — oo. (3.5)

n

Since U is the limit of (Riemann) sums of the jointly normal random variables Vi (t), U
has a normal distribution; the parameters are given by

EU:Z/ EVi(t) dt =
1 J0
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and

/OOC ,/OOOE(Vk(t)Vl(u)) dt du

= ii/w /OO ()’kl(t,u) dt du.
0 0

Thus U ~ N(0,02). The result now follows from (3.5), because by our definitions,

v =nS” [ X0 (1) di
>
= \/EZ/ (Xkn(t) — E Xy (2)) dt.
k=170
O

Proof of Lemma 3.2. Let pg, = fol E X, (t) dt. By Lemma 2.2(i) and evaluation of a beta
integral

(ﬂ) 2 DD (nk — K2/2 — 3K/2 + 2)
Hen = v

k [(nk — k2/2 — k/2+2)
_ (ks (k —1)!

K7 (nk —k2/2 —k/24+ 1),

k-3 ()

(nk —k2/2 —k/2+ 1)
A Taylor expansion of the logarithm yields, for £ < n/2 say,
k—1

' k(k—1 k3
log(n)g = klogn—i—Zlog(l — %) = klogn — % +O(—),
1

and similarly

k2
log(nk — k2/2 — k/2 + 1) = klog(nk — k?/2 — k/2+ 1) + O(—)

nk

ko1 1 k2
=kl log(l — — — — + — —
e log(nk) + klog( 2n  2n + nk) +O(nk)

k? kK3
Hence, if 1 < k < /n,
k
_ 1k-3_" E_fs E_fs —17.-2
kn = k (nk)keXp(O(n))—k (1+0()) =k + 07

For /n < k < n we instead use Lemma 2.1 to conclude (assuming as we may n > 4),

(n—k/2—3/2)*

— Ok 2.
(nk —k2/2 — 3k/2)k — !

HEkn S Clkkig
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For k > n, we trivially have ug, = 0.

Consequently,
n Vn
‘Z,U,kn Z]ﬁ‘ ‘ Zﬂkn*k?"-{-Zl-{-Cl
1 1 Na
< %2%4-0142/?_3

1 vn
L O
n

O

Proof of Lemma 3.3. Let m(k) be the number of connected graphs with & edges on k
(labelled) vertices. Then

B (l) = (Z)m(k)tk(l gk ()

and thus, evaluating a beta integral as in the proof of Lemma 3.2,

e () R T

N k=2 = k2T Dy

Since m(k) = 1(k —1)! 25;03 k)50 < (k—1)lek < Ci6k* =12, see e.g. [3, Theorem 18], we
obtain using Lemma 2.1 for 3 < k < n and n > 4,

(n —k/2 —3/2)*
(nk — k2/2 — 3k/2)k+1
kl.73/2
"n—kJ2—3/2
S 018k73/2n71

1
/ E Yo (t) dt < Cy7kF=1/?
0

=4

The result follows because 7" k32 < . O

Proof of Lemma 3.4. We consider the integrals over [0,3logn/n| and [3logn/n, 1] sepa-
rately. Let Z, be the number of times during the evolution of G,,(¢) that a component
with at least two cycles is formed (either by the creation of an edge joining two uni-
cyclic components or by the creation of an edge joining two vertices in the same unicyclic
component). Clearly Z,(t) < Z, for every ¢, and thus

3logn

3logn/n 3logn/n
/ E|Zn(t)—1|dt</ (7, +1)dt — (FZ0 +1).
J0 J0

It was proved in [7] that E Z, = O(1) (in fact, EZ, — 5m/8v/3 as n — oo); hence

3logn/n 1
/ B|Za(t) = 1] dt = O(=22).
Jo n
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On the other hand, let £ be the event that G,,(3logn/n) is connected and has more than
n edges. If £ happens, then Z,, (t) = 1 for all ¢ > 3logn/n; thus we conclude from the
trivial estimate |Z, (t) — 1| < n that

/1 EZn(t)—1|dt</1 nP(ES) dt < nP(ES) = O(n=Y),

logn/n J3logn/n

since P(£¢) = O(n~2) as is easily shown, cf. [3, Exercise I1.15]. The lemma follows. [
Proof of Lemma 8.5. We first observe that

ot w)] < Vi@l Vi(u)lls < Ok 4et/41=5/4¢=w/4

by Cauchy-Schwarz’ inequali‘ry and (3.4), and thus >° 3 [ [ |ogi(t, u)| < co. This and the
gamma integrals [ ug(t)dt = [tu(t)dt = k=3 imply easily that all integrals and sums
below are finite.

By the definitions,

22// (rk;fudfdu—QZ/ / ori(t,t+ s)dsdt

k,l=1 k,l=1
—2( Iy (k1) +Zlg +Z Z Is(k,l)>,
k,l=1 k=11l=k+1

where

/000 /OOO Kl(t — 1) g (t) p (t + s) ds dt,
() = /ooo /OOO e " (t) ds dt,
a(k:1) / / mtk Vo(ls + (L — k)t) TF T e gs ag,

Binomial expansions and standard integrations yield

k.k 1ll 1

Il(k,‘,l) = A / / fk 1 f+ 9)1 1 —(k-H)f s dt ds

kk 1ll 1] 1 ) ) )
— o / / < . > fk+z 7tk-{—zfI)Slflfzef(k+l)t7ls dt ds

_Skk 1]l1 (1—1)! (k+i—1)! (k+if(k+l))(l*75*1)!
TR a1 (k + D)F+itT i
-1

o (k4= D)VERE2 (1 — )
- _Z KVl (k 4 1)k+it1 ’

0o 0o kk—2 kk—2 E—1)!
I(k) = / e ds / N th=te Mt = k1 x ( o L kY,
J0 J0 : :
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and, for [ > k,

1 l—k—1

I3(k,1) = T ]7 Z/ / <’ - >(1 f)igh=1Higl—k-1=i

Sl*kfzeflsflt ds dt

I—k-1 _ .
S k=1 (1—k—1)! (L Ry ki D~ ki)
k!

k(R k1) JEvi kil
& (kiR 0 R
- Z L) [k+i+2 (I —k—1).

=0

Summing and substituting / =4+ 7 in I; and [ = k 4+ 7 + j in I3, we obtain

[ olNe ol ¢

(k4+i— 1) EF=1( 4+ 5)2% N
_2Zk 44‘2222 k!4l k‘—|-7+7)k+1+2 (*(k+7‘+-7)+7‘+-7)

k=11:i=0 j=1

and the result follows, using the well-known formula Y ;" k= * = 7*/90. g

We have completed the proof of Theorem 1, and it remains only to indicate the small
modifications needed to show the corresponding result for spanning pseudoforests stated
in Remark 1.5.

It is not difficult to see that the minimum weight pseudoforest consists of the edges in
G, (t) that have at least one endpoint in a tree component when they appear (cf. Gabow
and Tarjan [6, Lemma 2.1]). Each such edge decreases the number of tree components by
one; thus, if N'(¢) denotes the number of selected edges that has appeared up to time ¢,
then N'(t) = n — X(t), where X (t) = 37, Xy, (t) is the number of tree components of
G, (t). An argument as above then shows

1 1 n 1
W,;:/ (nN’(t))dt:/ X(t)dt:Z/ Xin(t) dt
0 0 k=170

and the result follows by Lemmas 3.1, 3.2 and 3.5. (Thus Lemmas 3.4 and 3.5 are not
needed for spanning pseudoforests.)
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