
A Note on Triangle-Free GraphsPaul Erd}os, Svante Janson, Tomasz  Luczak, Joel Spencer1 IntroductionThere is a natural, if imprecise, notion that the requirement of trianglefree-ness on a graph G forces it into a bipartite-like form. In an extreme case,if G has n vertices and e = bn24 c edges then Tur�an's Theorem gives that itmust be the bipartite graph Kbn=2c;dn=2e. Our concern here is what happenswhen e is smaller, must G still exhibit bipartite-like behavior. Very roughly,our answer is: Yes, if e� n3=2, No otherwise.We de�ne B(G) to be the maximal number of edges over all inducedbipartite subgraphs of G. We de�ne f(n; e) to be minB(G) over all G withn vertices and e edges. We de�ne g(e) to be minB(G) over all G with eedges so that g(e) = minn f(n; e).Theorem 1. c1e1=3 � g(e) � c2e1=3 ln2 eTheorem 2. For e < c5n3=2c1e1=3 � f(n; e) � c2e1=3 ln2 ewhile for c5n3=2 < e < n2=4c3e3n�4 � f(n; e) � c4e3n�4 ln2 nHere c1; c2 : : : represent absolute positive constant whose optimal values wedo not attempt to compute. The polylogarithmic factor between lower andupper bounds would be very nice to eliminate but we have not been able todo so.2 In a paper of Erd}os. . .The upper bound of Theorem 1 is based on a 1961 paper by the seniorauthor [1]. There it is shown that the random graph G on n vertices andn3=2A�1=2 edges (A a su�ciently large constant) almost surely contains atrianglefree graph G1 with no independent set of size x = An1=2 lnn. Inmodern language the random G(n; p) with edge probability p = A�1=2n�1=2almost surely has this property. Let B+(G1) be the maximal number of1



edges of G1 on a subset of 2x vertices. Then B(G1) � B+(G1) almostsurely and B+(G1) � B+(G) tautologically. NowPr[B+(G) � �] �  n2x! �2x2 �� !p� � n2x 2ex2p� !� = o(1)for � = cn1=2 ln2 n. That is, B(G1) = O(n1=2 ln2 n) almost surely. Thusthere exist G1 with n vertices, e = O(n3=2) edges withB(G1) = O(n1=2 ln2 n) = O(e1=3 ln2 e)as claimed.3 Two Proofs of a Lower BoundHere we give two arguments that g(e) = 
(e1=3).For the �rst proof we showg(e) � min1�d�e d + f(e� d(d2 + 1))where we interpret f(a) as zero if a is negative. The conclusion g(e) =
(e1=3) follows from elementary analysis. Let G be a graph with e edgesand let d be the maximal degree deg(x) over x 2 V (G). Let N(x) denotethe set of neighbors of x, an independent set as G is trianglefree. Considerthe restriction of G to x[N(x), B(G) � deg(x) = d. Let N2(x) denote thevertices at distance two from x. Let H be G with vertices x[N(x)[N2(x)deleted. At most 1 + d + d(d � 1) = d2 + 1 vertices and hence at mostd(d2 + 1) edges have been deleted so that H has an induced bipartite A�Bwith f(e� d(d2 + 1)) edges. But then (A[ fxg)� (B [N(x)) is an inducedbipartite graph with d + f(e� d(d2 + 1)) edges.The second proof is probabilistic. Take c = :1 for de�niteness and wewish to show g(e) � ce1=3. We can assume d � ce1=3 since, as already stated,B(G) � d. Pick a random subset S of the vertices byPr[x 2 S] = p = ce�2=3>From S delete all pairs of points at distance one or two, yielding a randomset S�. Let T be the set of neighbors of points of S�. >From T delete ally; y0 for which there is a path xyy0x0 of length 3 with x; x0 2 S�. Then Grestricted to S� [ T� is an induced bipartite graph { indeed, the union of2



stars centered at the x 2 S�. Let X be the number of edges in this randomrestriction. We claim E[X] = 
(e1=3)Let us concentrate on a single edge fx; yg of G. With probability p(1�p) =
(e�2=3) we select x but not y in S. Now if we don't have x 2 S�; y 2 T�we must have some x0 6= x; y at distance one or two from x or y. Thereare at most 2(d2 + 1) potential such x0 so the probability some such x0 2 Sis at most 2(d2 + 1)p which is certainly less than :01 by our choice of c.With probability at least :99 this does not occur. Thus the probability thatx 2 S�; y 2 T� is still 
(e�2=3). The bound on E[X] follows by the linearityof expectation. Some choice must reach the expectation so there exist S; Tand hence S�; T� with X � c2e1=3 as desired.4 n vertices, e edgesHere we show Theorem 2. Suppose e � c5n3=2. Clearly f(n; e) � g(e) =
(e1=3). The construction of Theorem 1 has e = �(n3=2). For e � c5n3=2there is such a constuction with n0 = �(e3=2) � n vertices. Adding isolatedvertices if necessary gives a graph G with n vertices, e edges and B(G) =O(e1=3 ln2 e).Now suppose e > c5n3=2 and we show f(n; e) = O(e3n�4 ln2 n). Asf(n; e) � �n2� tautologically we can further assume e = o(n2). Set m = e2n�3and split the n vertices in disjoint sets Ii, 1 � i � nm , each of size m.There is a graph G0 on vertex set 1; : : : ; nm with �((n=m)3=2) edges andB(G1) = O((n=m)1=2 ln2(n=m)). De�ne G on n vertices by blowing up pointi into set Ii. That is, the vertex set is the union of the Ii and x 2 Ii; y 2 Ijare joined if and only if i; j are adjacent in G0. Then G is trianglefree andhas �(m2(n=m)3=2) = �(e) edges withB(G) = O(m2(n=m)1=2 ln2(n=m)) = O(e3n�4 ln2(n=m)) = O(e3n�4 ln2 n)as desired.Finally, we turn to the lower bound. Set d = 2e=n, the average degree.Remove sequentially vertices of degree at most, say, d=10. This can removeat most nd=10 = e=5 edges so one is left with an induced graph G0 on n0 � nvertices and at least :8e edges, all degrees at least d=10. Now, restricting ourattention to G0 we �nd an induced subgraph of the form N(x)�N(y). Notethat since G0 is trianglefree this graph will be an induced bipartite graph. (If3



the sets intersect we consider it as N(x)�N(y)�N(x).) Set f(x; y) equalto the number of edges in N(x)�N(y). Observe that f(x; y) is precisely thenumber of paths of length three from x to y since each path xaby correspondsto a unique edge ab. Thus P f(x; y) gives the number of ordered 3-pathsin G0. But this number is at least (1:6e)(:1d � 1)2 = 
(ed2) since we canchoose the ordered edge ab is at least 1:6e ways and then neighbors x of aand y of b. Therefore P f(x; y) = 
(ed2). We deduce that for the averagex; y and hence for some x; yf(x; y) = 
(ed2=(n0)2) = 
(ed2=n2) = 
(e3n�4)as desired.References[1] P. Erd}os, Graph Theory and Probability II, Canad. J. Math 13 (1961),346-352
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