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1 Introduction

There is a natural, if imprecise, notion that the requirement of trianglefree-
ness on a graph G forces it into a bipartite-like form. In an extreme case,
if G has n vertices and e = L"TQJ edges then Turdn’s Theorem gives that it
must be the bipartite graph K|, /2 /21 Our concern here is what happens
when e is smaller, must G still exhibit bipartite-like behavior. Very roughly,
our answer is: Yes, if e > n3/2, No otherwise.

We define B(G) to be the maximal number of edges over all induced
bipartite subgraphs of G. We define f(n,e) to be min B(G) over all G with
n vertices and e edges. We define g(e) to be min B(G) over all G with e
edges so that g(e) = min,, f(n,e).

Theorem 1.
cre'/? < g(e) < coet/31n2e

Theorem 2. For e < C5n3/2

cret/? < f(n,e) < coel/PIn? e
while for ¢sn3/? < e < n?/4
cze’n~t < fln,e) < cie®n"tn’n

Here ¢y, co ... represent absolute positive constant whose optimal values we
do not attempt to compute. The polylogarithmic factor between lower and
upper bounds would be very nice to eliminate but we have not been able to
do so.

2 In a paper of Erdos. ..

The upper bound of Theorem 1 is based on a 1961 paper by the senior
author [1]. There it is shown that the random graph G on n vertices and
n3/2A=1/2 edges (A a sufficiently large constant) almost surely contains a
trianglefree graph G with no independent set of size z = An'/?Inn. In
modern language the random G(n, p) with edge probability p = A1/2p 12
almost surely has this property. Let BT(G;) be the maximal number of



edges of G on a subset of 2z vertices. Then B(G;) < B™(G;) almost
surely and BT (G1) < BT (G) tautologically. Now

PF[B+(G) > a] < (;;) ((E))Z)a < n2z (2622]))& _ 0(1)

for « = en'/2In®n. That is, B(G;) = O(n'/?1n?n) almost surely. Thus
there exist G with n vertices, e = O(n%/?) edges with

B(G1) = O(n'?1n’n) = O(e'/?In%e)

as claimed.

3 Two Proofs of a Lower Bound

Here we give two arguments that g(e) = Q(e!/?).
For the first proof we show

. 2
g(e) > 121;26d + fle—d(d” +1))
where we interpret f(a) as zero if a is negative. The conclusion g(e) =
Q(e!/3) follows from elementary analysis. Let G be a graph with e edges
and let d be the maximal degree deg(z) over z € V(G). Let N(z) denote
the set of neighbors of z, an independent set as G is trianglefree. Consider
the restriction of G to U N(z), B(G) > deg(z) = d. Let N?(z) denote the
vertices at distance two from . Let H be G with vertices z U N (z) U N2(z)
deleted. At most 1 +d + d(d — 1) = d? + 1 vertices and hence at most
d(d? 4+ 1) edges have been deleted so that H has an induced bipartite A x B
with f(e —d(d? + 1)) edges. But then (AU {z}) x (BU N(z)) is an induced
bipartite graph with d + f(e — d(d? + 1)) edges.
The second proof is probabilistic. Take ¢ = .1 for definiteness and we
wish to show g(e) > ce'/?. We can assume d < ce'/? since, as already stated,
B(G) > d. Pick a random subset S of the vertices by

Pr[z € §] = p = ce™ /3

iJFrom S delete all pairs of points at distance one or two, yielding a random
set ST. Let T be the set of neighbors of points of S™. ;From T delete all
y,y’ for which there is a path zyy'z’ of length 3 with z,2’ € S~. Then G
restricted to ST U T~ is an induced bipartite graph — indeed, the union of



stars centered at the x € S7. Let X be the number of edges in this random
restriction. We claim

E[X] = Q(e'/3)

Let us concentrate on a single edge {z, y} of G. With probability p(1 —p) =
Q(e 2/3) we select  but not y in S. Now if we don’t have z € §~,y € T~
we must have some z’' # z,y at distance one or two from z or y. There
are at most 2(d? + 1) potential such 2’ so the probability some such 2’ € S
is at most 2(d? + 1)p which is certainly less than .01 by our choice of c.
With probability at least .99 this does not occur. Thus the probability that
z €8,y €T isstill Q(e=2/3). The bound on E[X] follows by the linearity
of expectation. Some choice must reach the expectation so there exist S, T
and hence S7, T~ with X > 6281/3 as desired.

4 n vertices, ¢ edges

Here we show Theorem 2. Suppose e < csn®/2. Clearly f(n,e) > g(e) =
Q(e'/3). The construction of Theorem 1 has e = ©(n?/?). For e < ¢5n3/?
there is such a constuction with n’ = ©(e%/2) < n vertices. Adding isolated
vertices if necessary gives a graph G with n vertices, e edges and B(G) =
O(e'/?n%e).

Now suppose e > ¢sn/2 and we show f(n,e) = O(e’n~*In?n). As
f(n,e) < (3) tautologically we can further assume e = o(n?). Set m = e*n™3
and split the n vertices in disjoint sets I;, 1 < ¢ < % each of size m.
There is a graph G on vertex set 1,...,.- with O((n/m)??) edges and
B(G1) = O((n/m)"/?1n?(n/m)). Define G on n vertices by blowing up point
i into set I;. That is, the vertex set is the union of the I; and z € I;,y € I;
are joined if and only if ¢, j are adjacent in Gy. Then G is trianglefree and
has ©(m?(n/m)3/?) = ©(e) edges with

B(G) = O(m?(n/m)?n?(n/m)) = O(e*n 4 In%(n/m)) = O(e*n"*1n?n)

as desired.

Finally, we turn to the lower bound. Set d = 2e/n, the average degree.
Remove sequentially vertices of degree at most, say, d/10. This can remove
at most nd/10 = e/5 edges so one is left with an induced graph G’ onn' <n
vertices and at least .8e edges, all degrees at least d/10. Now, restricting our
attention to G’ we find an induced subgraph of the form N(z) x N(y). Note
that since G’ is trianglefree this graph will be an induced bipartite graph. (If



the sets intersect we consider it as N(x) x N(y) — N(z).) Set f(z,y) equal
to the number of edges in N(x) x N(y). Observe that f(z,y) is precisely the
number of paths of length three from x to y since each path zaby corresponds
to a unique edge ab. Thus Y f(z,y) gives the number of ordered 3-paths
in G'. But this number is at least (1.6e)(.1d — 1) = Q(ed?) since we can
choose the ordered edge ab is at least 1.6e ways and then neighbors z of a
and y of b. Therefore Y f(z,y) = Q(ed?). We deduce that for the average
x,y and hence for some z,y

f(@,y) = Qed®/(n')?) = Qed® /n?) = Q(e’n™")

as desired.
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