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The standard definition of the complex interpolation space [Xo, X1]s due to
Calderdn [2] uses (Xo+X7)-valued analytic functions in the strip {z : 0 < Rez < 1},
see below for details. Is it possible to use only functions that are analytic in the
half-plane {z: 0 < Re z}?

There is a variant of this question which arises since, as shown by Cwikel [3],
the space [Xo, X1]p may also be defined using analytic functions in the annulus
{z: Ry < |z| < Ro}. Is it possible to use only functions that are analytic in the
entire disc {z : |z| < Ro}?

The main purpose of this paper is to show that, in general, these questions have
a negative answer, even if we suppose X; C Xg. This is done by an explicit counter
example.

Section 1 contains some definitions and an equivalence theorem showing that the
two questions above are equivalent.

The counter example is given in Section 2. The reason for considering this
particular example is given in Section 3. Section 4 contains some additional results.
Some of these concern special cases where the answer to the above question is
positive. One such case is when (Xp, X1) is a couple of Banach lattices with X; C
Xp. Section 5 is an appendix written by Michael Cwikel which presents another
case where the answer is positive.

ACKNOWLEDGMENT. I thank Michael Cwikel for posing the questions studied here,
as well as for encouraging me, many years later, to write up my counter example.

1. Preliminaries
We introduce some notation. If X and Y are Banach spaces, then X =Y means
that the spaces contain the same elements and that the norms are equivalent (but
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not necessarily equal); similarly, X C Y means that the inclusion is continuous (but
not necessarily isometric). C will be used to denote unspecified constants (possibly
depending on some parameters that are kept fixed); the meaning may change from
one occurrence to the next.

Suppose that (Xo,X;) is a Banach couple. We define Fs = Fg(Xp, X1) as the
space of all functions F' from the closed strip S = {0 < Rez < 1} into Xy + X
that are bounded and continuous on S and analytic on the interior S, and such
that ¢ — F(j + it) is a bounded and continuous map of the real line into X; for
j=0,1. We let

|Fll7s = sup ~ sup [|F(j +it)]|x;.
j=0,1 —co<t<oo

The complex interpolation space [Xo, X1]g is defined for 0 < § < 1 by
[X(),Xl],g = {F(G) - F S fs},

equipped with the natural quotient norm ||z|| = inf{||F||z, : F(0) = =z}, cf.
Calderén [2] and Bergh and Lofstrom [1].

REMARK. It is customary to impose also the condition that F(j +it) — 0 in X
as t — oo, which is convenient for some purposes but not for ours; it is easily seen
that this yields the same interpolation space. (On the other hand, the continuity
condition on the boundary is essential, see [4].)

For the half-plane version, we let Fg = Fu(Xo, X1) be the space of bounded
continuous functions on the closed half-plane H = {z : Rez > 0} that are analytic
on the open half-plane H = {z : Rez > 0} and such that the restriction to S
belongs to Fg. We regard Fg as a subspace of Fg; it is easily seen that Fg is a
closed subspace of Fg, and thus a Banach space. We define, again for 0 < 0 < 1,

Cy (X0, X1) ={F(0) : F € Fu(Xo,X1)};

this is a Banach space with the natural quotient norm. It should be clear that C;
is an interpolation method.

Moreover, it follows easily, e.g. by applying linear functionals in (Xo+ X;)*, that
if FF € Fp(Xo,X1) and z € H, then F(z) is given by the integral ffooo F(it) P, (t)dt,
where P, (t) denotes the appropriate Poisson kernel. Since ¢ — F'(it) by assumption
is a bounded continuous map into Xy, this integral converges in Xy, and z — F(2)
is a bounded continuous map of H into X;. Hence

Fr(Xo, X1) = Fu(Xo, XoN X7)

and thus
Cy (Xo, X1) = Cf (Xo, Xo N X1). (1.1)
It is obvious that
Cy (Xo, X1) C [Xo, X1]g (1.2)
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and (1.1) thus implies
Cy (Xo,X1) C [Xo, Xo N X1lp- (1.3)

The first question given in the introduction is whether equality holds in (1.2).
We see from (1.1) that it is natural to consider the case X; C X, only; this is
equivalent to asking whether equality always holds in (1.3). A counter example is
given in the next section, but first we introduce the annulus and disc versions of
the definitions above.

Let Ry and R; be two fixed real numbers with 0 < R; < Ry, and define Ry =
R RY, 0 < 6 < 1. We consider the annulus A = {z: R; < |2| < Ry} and the disc
D={z:]z| < Ro}.

We define Fa4 = Fa(Xo,X1) as the space of all bounded, continuous functions
F from A into X, + X; that are analytic on A, and such that ¢t — F(Rje') is a
continuous map of the real line into X; for 7 = 0, 1; we let

I1Fllz, = sup sup [|F(2)]lx;-
j=0,1 ‘Z‘:RJ'

We also define Fp = Fp(Xp, X1) as the space of all bounded continuous func-
tions from D into Xy 4+ X, that are analytic on D and such that the restriction
to A belongs to Fa(Xo, X;). We regard Fp as a subspace of F4, and we use the
subspace norm; Fp is a closed subspace and thus a Banach space. It is easily seen,
as for Fg above, that Fp(Xo, X1) = Fp(Xo, Xo N X1).

Cwikel [3] showed that the complex method may be defined using analytic func-
tions in an annulus; more precisely,

[Xo,Xl]g = {F(Rg) :F e .7‘—A(X0,X1)}.
Cwikel’s method also shows the corresponding result for the half-plane and disc.

PROPOSITION 1. For every Banach couple (X, X1),

C;(Xo,Xl) = {F(Rg) cF e fD(Xo,Xl)}.

PROOF. Let v =1In(Ry/Ry) > 0. First, if F € Fp, then G(z) = F(Rpe™"*) € Fn,
and thus F(Ry) = G(8) € C; (Xo, X1).

Conversely, if F € Fg, let Fi(z) = (%)QF(z) Then F; € Fg, with
Fi(0) = F(9), and ||F1(2)||xo+x, < C/(1+ |2|?). Hence the sum

Fy(2) = Y Fi(z+2rik/v)
k=—oc0

converges for all z € H; moreover, Fy € Fp and Fy(f) = Fy(f) = F(f), because
Fi (6 + 27wik/y) = 0 when k # 0, and ||F>(2)||x,+x, < C/(1+ Rez). Since F; is
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periodic with period 27i/7, we may define

In(Ro/z)
)

G(2) :FQ( 0 < |2| < Ro,

regardless of the branch of the logarithm. Then G is an analytic (X, + X;)-valued
function in the punctured disc D \ {0}, and since ||G(2)||x,+x, = 0 as z — 0, the
origin is a removable singularity and if we define G(0) = 0, G becomes analytic in
D. Tt is easily seen that G € Fp and G(Ry) = F>(f) = F(6), which completes the
proof. O
Consequently, the two questions in the introduction are equivalent.

2. A counter example

Let Ry, R1 and 6 be given with 0 < Ry < Rg and 0 < 6 < 1, and let ag = In Ry,
a=1InR;. Thus Ry = Ry™"R{ = e(' =)0t We may without loss of generality
assume Ry = 1, and thus ag > 0, a; < 0 and

(1—-0)ag + 0oy = 0. (2.1)
Let FL denote the space of Fourier coefficients of functions in L!(T):

FL={(f(n)_ : f € L"(T)};

this is a Banach space with the norm ||(f(n))>®°llrr = | fll1:-
Define also corresponding weighted spaces by

FLy = {(zn)% : (e7™xp)>*, € FL},

where « is a real number, with ||(x,)®,||lFr., = [|[(e7"*%y), ||Fr. Note that if
(24)%° € FL,, then
|[zn] < ™ |(24) o llPLa- (2.2)
It is known that [F' Loy, F'La,]o = FL1_p)ag+6a, = F'L, see e.g. [7].
Let Xg = FLy, + FL,,, and X; = FL,,; we claim that, cf. (1.2),

Cy (Xo, X1)  [Xo, X1 (2.3)
In order to see this, we first observe that
[Xo0,X1]o D [FLay, FLu,Jo = FL.

On the other hand, we claim that if (z,)* € C; (Xo,X1) and ¢ > 1/6, then

> lzn]?/n < co. (2.4)

Consequently, in order to verify (2.3) it suffices to show that there is a sequence
(25)% € FL such that (2.4) fails. This can be done by explicit examples, such as
1/Inln(3 + |n|), cf. Zygmund [14], Theorem V.1.5, or by observing that otherwise
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the closed graph theorem would imply > 7 |f(n)|?/n < C for some C' < 0o and all
f € LY(T) with ||f||z1 < 1, but that is false as the sequence of Fejér kernels shows.

We turn to the proof of (2.4). We use the characterization with Fp in Proposition
1.

Suppose that F € Fp(FLy, + FLy,,FLy,) with ||F|| < 1. We write F(z) =
(fn(2))>®,, thus each f, is analytic in D and continuous on D; we further expand
each f, as a Taylor series

[ee]
fn(Z) = Zankzk:
k=0
and set a,r = 0 for k < 0.
If |z| = Ry, then F(z) € FLy, + FL,,, with norm <1 and thus, cf. (2.2),

u(2)] < max(enao gnary = { €0 20
nE S ’ “lenr,  p<o.

Consequently, for any k,

lankRG| < sup |fu(2)| < €™, n >0
|z|=Ro
or, recalling that Ry = e™°,

|G ntm| < Ry "~ el = e M0, n>0, —co<m < oco. (2.5)

We now turn to z with |2| = R;. By assumption, F(Rie®) = (fan(Rie))>,
belongs to the unit ball of FL,, for every real . Hence there exist g; € L'(T),
with [|g¢]|zr < 1, such that

oo

Gi(n) = e " fu(Rre') = e M ap Rie™ =Y e R (2.6)
k=0 k=0

Moreover, the mapping ¢ —+ g; is a continuous map R — L!(T).
Let 75 be the translation operator on L' (T) given by 7,9(t) = g(t — s) and thus

(rs9)"(n) = e~""*g(n) (2.7)

Since, for any ¢ and €,

Tetegtre — Tegellnr < T4 (gere — g0l + [|Tee9t — Tegellnn
= |gt4e — gellor + 1729¢ — g¢llrr,
it follows that ¢ —+ 7;g; is a continuous map into L'(T). Thus we may define, for
m € Z, the Bochner integral

2
B = == e~ Mg, dt € Ll(T),
0
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with ||Am||r < 1. Then, by (2.7) and (2.6),

2m 2w o0
hm(n) — %/ e—zmte—mt/g\t(n) dt = %/ Zanke—m(n—k)ez(k—m—n)t dt
0 0 k=0
= apntme™™, n,m € 7.

In particular, fu, (n) = 0 if n +m < 0. We also see that
Jannim| = €™ B ()] < e [l < e (2.8)

Let v, be the sequence (anni+m)5oe;, and let £9(1/n) be the sequence space
{(@n)7° : 227 2] ?/n < oo} ~

Consider first the case m < 0. Then hy;,(n) = 0 when n < 0, so h,, belongs
to the analytic Hardy space H' C L'. By Hardy’s inequality, see Zygmund [14],
Theorem VII.8.7,

o0

1 =1~
>~ Slanatnl = ™™ 3 ()] < Cem [l < Ce™m
1 1

and thus, using (2.8),

oo o0

3 1 1
=|an,ntm]? < e-(a—l)mm} :_|an,n+m| < Cemtonm,
n n

1 1

or in the notation just introduced,
lomllea(1/my < Ce™ ™™, m < 0. (2.9)

Consider next the case m > 0. Then ?Lm(n) = 0 when n < —m, and the shifted
sequence (ag—m k)7 _,, is the Fourier transform of the function e~ ™e™tp,, (t)
in H'. Hence Hardy’s inequality yields

o0 o0 o0

1 1 1
—|Y%n,n+m < 1 — —|Un,n+m < 1 " —m
> i < (41—l < (m+1) Y ok

1 1 1
< (m+1)Clle” ™™ h,, ()||z1 < C(m +1)e” "™,
We combine this with (2.5) and obtain

oo

1 =1
Z =t pngm|? < (17 Deom Z —|anntm| < C(m + 1)e~(@=Heom=orm (9 10)
1 n 1 n

From (1 — #)ap + fay = 0 we obtain gag = ¢f8(ag — a1) and (¢ — Dag + a1 =
(g0 — 1)(ap — a1). Hence (2.10) yields

lvmllea(/my < Cm'/1e=(0—1/0)(a0—01) m > 0. (2.11)
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Since a3 < 0 and (8 — 1/¢)(ap — ) > 0, (2.9) and (2.11) together imply

> Awmllesqiymy < oo,

m=—00

and thus Y% v, € £7(1/n). But

o0 (o] 50 o0 00
va = ( Z an,n+m)n:1 = (Z an,k)nzl = (fn(]-));z.ozl
—00 m=—00 k=0

This proves (2.4) for the sequence (x,)°, = (fn(1))®°, = F(1) = F(Ry), and the
proof is complete.

3. Background

The example in Section 2 solves our problem, but how was it found? The couple
(FLyy+FLy,, FL,,) may look rather unnatural at the first sight, but the following
argument shows that this is in fact the canonical (counter) example.

If g, X and A are Banach spaces such that A C g, and J C B(ﬁ, )A(;) is a
Banach space of bounded linear operators A )A(;, then the orbit of A under J
is the subspace of X given by {32° Tya; : 3° Tl sllailla < oo} (with the sum
S Tja; converging in X). This is a Banach space with ||z|| = inf Yo Tl s llas| a
over all such representations of z.

A particularly important example is when (Ag, A1) and (Xo, X1) are two Banach
couples, A = Ay + Ay, X = Xo+ X; and J = {T € B(A,X) | T:(Ag, 4;) —
(X0, X1)} is the space of all linear operators from Ag + 4; to Xy + X; that map
Ap into Xy and A; into X;. We then denote the orbit of a space A C Ay + Ay
by G(Ap, A1, A; Xo,X1). For fixed Ag, A; and A # {0}, this is an interpolation
method, and it is easily seen that this is the minimal interpolation method that
satisfies F'(Ag, A1) D A.

Now consider the action of this interpolation method on the couple (Xo, XoNX1).
Since

T: (Ao,Al) — (Xo,XO ﬂXl) < T:4)— Xo, T: A — Xo, T: A — X,
— T (AO +A1,A1) — (X(),Xl),

we obtain the following identity.

PROPOSITION 2. Let (Ag, A1) and (Xo, X1) be Banach couples, and A C Ag + A;.
Then

G(Ao, A1, A; Xo, Xo N X1) = G(Ao + A1, A1, A; Xo, X1).
PROPOSITION 3. Let (Ao, A1) be a Banach couple and A C Ag + Ay. If F is an
interpolation method, then the following are equivalent.

(i) F(Xo0,X1) D G(Ao, A1, A4; X0, X1) for all Banach couples (Xo,X1) such
that XO 2 Xl.
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(ii) F(Xo,XoNX1) D G(Ao, A1, A; Xo, XoNX) for all Banach couples (Xo, X1).
(i) F(Ap+ A1,A;) D A.

PROOF. The equivalence of (i) and (ii) is clear.
By the comments before Proposition 2, (iii) holds if and only if

G(Ag+ Ay, Ay, A; Xo, X1) C F(Xo, Xy)

for every couple (Xg, X1), which by Proposition 2 easily is seen to be equivalent to
(ii). O

The complex method of interpolation [ Xy, X1]g can be characterized as the orbit
G(FLay, FLoy, FL(1—_)ag+6a,; X0, X1) for any real ag and a; with ag # ai, see
[7]. We thus have the following corollaries.

COROLLARY 1. Let ag # a1 and 0 < 6 < 1. Then, for any Banach couple (Xo, X1),

[X07X0 le]H = G(FLao +FLoq:FLOéUFL(lf@)aOJrQal;XOaXl)-

COROLLARY 2. Let ag # a1 and 0 < 0 < 1 and let F be an interpolation method.
Then F(Xo,X1) D [Xo, X1]s for all Banach couples (Xo, X1) with Xo O X1, if and
only if

F(FLozg + FLC!17FLC!1) 2 FL(1—9)(X0+0Q1'

Corollary 2 thus shows that if CJ(XO,Xl) D [Xo,X1]p fails for any couple
(Xo, X1), then it fails for (F Ly, + FLqa,, FLg,).

4. Further comments

The interpolation method C’; is probably not of much practical use, but let
us nevertheless give a couple of results for it. First, as another example of the
propositions in Section 3, consider the +-method defined by Peetre [12]. It was
shown in [7] that this method, there and here denoted by G, can be characterized
as G(Co,a0»C0,a15 Co,(1-8)ao+a1; X0, X1), Where ¢ o is a weighted version of ¢y =
{(zn)® : zn = 0 as |n| = oo}.

It is easily verified (we omit this) that C} (co,aq + €0,015C0,01) 2 €0,(1—0)a0+0a: -
Proposition 3 thus implies, together with (1.2), the following.

PROPOSITION 4. For any Banach couple (Xo, X1) such that Xo O X1,
G1(Xo, X1) C Cf (X0, X1) C [Xo, Xilp-

In particular, this shows that if (Xo, X7) is a Banach couple such that Xy D X3
and
G1(Xo, X1) = [Xo, X1]o, (4.1)
then [Xg, X1]s may be defined using Xy-valued functions F' that are analytic in a
half-plane or disc, as defined in detail in Section 1.
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REMARK. One important case when (4.1) holds, pointed out to me by Michael
Cwikel, is for a couple of lattices on the same measure space (Q2,%, ) i.e. when
X; =Y;(C) is the complexification of a Banach lattice Y; of real valued measurable
functions on Q) for j = 0,1. This fact has been observed by a number of authors.
(Sometimes they impose additional conditions.) For the reader’s convenience let us
list some results which can be combined to immediately prove it:

(i) the continous inclusion [Xo, X1]y C Y3 ?V(C) (see [2] section 13.6 (i) p. 125),
(i) the continuous inclusion Y3 Y (C) C Ga(Xy, X1) (see [11] Lemma 8.2.1 p.
453.)

The rest of these “ingredients” also hold for arbitrary Banach couples (Xg, X1).
(iii) the density of Xo N X3 in [Xo, X1]p ( [2] p. 116) and the fact that the closure
of XO N X1 in GQ(Xo,Xl) is G1 (Xo,Xl). ([7] Theorem 8 P 60)

(iv) the continuous inclusion G1(Xo, X1) C [Xo, X1]s. (See [12] p. 176 or [7] p. 67).

The interpolation method C; can also be represented as an orbit method. Define
Py (zp)%,, = (x,)5°, the restriction of a doubly infinite sequence to non-negative
indices, and let FLY = P, (FL,), equipped with the quotient norm.

PROPOSITION 5. Let ag > ay. Then for any Banach couple (Xo, X1),

Cy (Xo,X1)=G(FL! ,FLY ,FL}

op? o1 (170)a0+0a1;X0’X1)'

ProoF. We may assume (1 — 0)ag + 6a; = 0. We use Proposition 1, choosing
Ry = e® and R; = e, and thus Rg = 1. First, suppose that = (z,)%,, is a finite
sequence of complex numbers, i.e. a sequence with all but finitely many elements
0. Then F(z) = (2,2")§° defines an entire analytic function into FLL NFL} and
if 2= Rje', j =0 or 1, then

int) int ) 00

IEEprt, = l@ae™)5 lro+ < (@ae™)Zcllre = [1(za)ZsllFL-

Hence F(z) € Fp(FL{ ,FL{ ) with norm < ||z||rz, and thus Pyz = F(1) €
Cy(FL{,,FLY,) with norm < ||z||pL. The set of all finite sequences is dense in

FL, so by continuity

FLT =Py (FL)C Cf(FL} ,FLL),

ap?
which implies, by the minimality of the interpolation functor G,

G(FL+ FLzl,FL+;X0,X1) g C;(Xo,Xl)

@p?

for every Banach couple (Xg, X1).
In order to prove the converse, suppose that F' € Fp(Xo, X1), and expand F'
as a Taylor series F(2) = Yo" zx2¥, with 2, € Xo N Xy. If (a,)®, € FLg,, then
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a, = e f(n) for some f € L'(T) and (with Xp-valued integrals)

2w 2m >
1 —it it — lim L —it it 1 Y
= | (") F(Roe') dt = lim 5 i fle ’)F(rRoe’)dt—l%;f(n)r”Rgxn
o0
= 7!1/‘Hi T;)r”ana:n. (4.2)

Hence the mapping T : (an)>,
map FL,, = Xp, and

1T ((an) =)o < NI fllr SlngF(ROeit)on < an) Zoll7 Lo, 1F |75 -

= lim, ~ Y07 r™apzy, is a well-defined linear

Since T'a obviously depends on P,a only, we can also regard 7" as a bounded linear
map F Lj;o — Xop.
Similarly if (a,)5° € FLY , then a, = e”alfl(n), n > 0, for some f; € L'(T)

a1
and, by the same argument as in (4.2),

2w
T((an)°) = 5= ; fi(eT)F(Rie™) dt,

with the integral convergent in X. It follows that T: FL — X;. Thus

T:(FL}

«p?

FLY ) — (X0, X1),

and we see also that ||T'|| < ||F||#,. Furthermore, if f € L'(T), then by the same
argument again,

2
z (e7™)F(e")dt = T((f(n)%y)-

Pr3 —00
Thus, if we let f * F' denote the Xy-valued function
2T
fxF(2) =5 fle ™)F(ze")dt,

27
0

andY = G(FL ,FLY ,FL*"; Xy, X1), then by the definition of the latter space,
f«FQ)=T(f)eY with ||f«FQ)lly <|fll:[|F]|F- (4.3)

It is easily seen that f x F € Fp(Xo, X;) for all f € L'(T), and that, if K,
denotes the n:th Fejér kernel, K,, «x F — F in Fp(Xo,X1) as n — oo; moreover,
(fxg)xF = fx(gxF) for all f,g € L*(T). Define y, = K,, * K,, x F(1). By (4.3),
Yn € Y. Furthermore,

Yn — Ym = (Kn + Kp) x (K, — Ki) x F(1)
and thus, by (4.3) for (K, — Kp,) * F,

lyn — ymlly < NEKn + Kpllp [[(Kn — Kip) * Fll 7y, <2|| Ky % F — Ky % Fl| 7, — 0,
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as n,m — oo. Hence {y,} is a Cauchy sequence in Y, so y, —» y € Y. But
K,xK,*F — Fin Fp(Xo, X1), and thus y, — F(1) in C;(Xo,Xl). Consequently
F(1) =y € Y, which completes the proof. O

REMARK. It is also possible to define interpolation methods using harmonic func-
tions in a half-plane or disc, see Janson and Peetre [9]. The resulting interpolation
spaces contain the ones given by analytic functions, and are in general larger.

For harmonic interpolation, we do not know if the half-plane and and disc ver-
sions always yield the same interpolation spaces, or even if the disc interpolation
spaces are independent of the ratio Ro/R; as in the analytic case, cf. Proposition
1.

For the disc version, with fixed Ry = e*® and R; = €™, the following analogues
of the results above hold. (We omit the proofs.)

First, a somewhat more complicated version of the argument in Section 2 shows
that, at least for the disc version, the harmonic interpolation space for the couple
(FLy, + FLy,,FL,,) does not contain the standard complex method space.

Furthermore, the method has an orbit description as G(Aa,, Aoy, Aay; X0, X1),
where A, = {(a,)% : (e*Ma,)® € FL}.

An argument similar to the one in Section 2 shows that for the couple (A4, , 4a, ),
the standard complex method space does not contain the harmonic interpolation
space. Consequently, even assuming Xy, O X;, the harmonic method and the
standard complex method are not comparable.

Finally, the harmonic method space is included in the one given by Ovchinnikov’s
method ¢, [10], denoted by Hp in [7]. It follows that for ‘tame’ couples, the
harmonic and analytic disc methods coincide with the standard complex method.

5. Appendix:
ANOTHER CASE WHERE C;(XO,Xl) = [Xo, X1]p-
by Michael Cwikel

Here we consider couples (X, X1) which can be obtained by “one sided reitera-
tion”.

THEOREM 5.1. Let (Xo,X1) be a Banach couple satisfying X; C Xo. Suppose that
there exists another Banach space B such that (Xg, B) forms a Banach couple and
such that

X1 = [Xo, Blg for some § € (0,1).
Then
O;(XO,Xl) = [X(),Xl],g fOT‘ all 6 € (0, ].)

ProoF. Let (Yp, Y1) be the Banach couple obtained by setting Yy = X; and Y7 =



12 SVANTE JANSON IMCP

Xp,and let « =1 — 3. Le. we have Yy C Y] and
Yo = [B,Via (5.2)

(We introduce Yy and Y; and « because this is the easiest way of adapting
our original version of this proof, which was written without access to a definitive
version of the previous sections of this paper, to the format of the notation used in
those sections.)

The proof of this theorem amounts to showing that [Xo, X1]p C C’j (X0, X4) for
all § € (0,1). This is of course equivalent to showing that

[Yo,YV1]y C Cf ,(Y1,Yp) for all @ € (0, 1). (5.3)

We may suppose without loss of generality that BNY; is dense in B, since if not
we can simply replace B by B° = [B, Y1]o, the closure of BNY] in B, which satisfies
[B°,Y1]a = [B,Y1]s- (Cf. [2] Paragraph 9.3 p. 116.) It follows immediately from
(5.2) that

lally, < llall ™ llell3,
for every a € BN Y;. But since also [|ally, < Cllally, for some constant C, we
deduce that ||ally, < Ce/(1=2) ||a|| 5 for all such a. Using the density of B NY;
in B we deduce that the previous estimate holds for all @ € B and so obtain the
continuous embedding
B C Y. (5.4)

By [2] Paragraph 9.3 p. 116, the spaces [B,Y1]; and [Yp, Y1]; are the completions
of B and of Yj respectively in Y. Since B = BNY] is dense in Yj, it follows that
[B,Y1]1 = [Yo,Y1]:. Applying [2] Paragraph 9.3 p. 116 once more, we have that
Y0, [Yo,Y1i]1]o = [Yo,Y1]p and so [Yp,Yi]s = [[B,Yila,[B,Y1]i],- Applying the
reiteration formula (see [3] p. 1005) to this latter space we deduce that

[Yo,Y1]o = [B,Y1](1—6)a+o- (5.5)

Let us now consider an arbitrary fixed element a € [Yp,Y1]p. By (5.5) it can
be represented in the form a = ¢; ((1 — 0)a + ) for some ¢g; € Fs(B,Y1). Now
let g2(2) = g1 ((1 — z)a+ z). Then g2 is a continuous and bounded B +Y; = V)

—Q
1—a?
strip. Furthermore g»(f) = a and the restrictions of g» to the lines Rez = =%
and Re z = 0 are continuous bounded B valued and [B, Y], = Yo valued functions
respectively.

The next step will be to use the construction defined in [3] p. 1008. (Cf. also the
proof of Proposition 1 above.) This enables us to construct from g, a new function
g3 which has all the properties listed above for g, and also the additional property

that g3(z 4 2mi) = g3(2) for all z in the strip Rez € [{=%,1] . (The functions w(z)

valued function on the strip Re z € [ 1] and it is analytic in the interior of this

and e°*=9” which were used in that construction on the strip Re z € [0, 1] of course
also satisfy estimates of the required form on the wider strip which we need here.)
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Now we define yet another continuous and bounded Y7 valued function g4, this time
on the annulus |z| € [e=*/(1=) ¢] by setting g4(2) = gz(logz). Here, because of
the 27i periodicity of g3, the choice of branch of log z is irrelevant. Clearly g4 is
analytic in the interior of the annulus, and furthermore its restrictions to each of
the three circles of radius v := e~*/(1=9) 1 and e respectively are continuous maps
into the Banach spaces B, Yy and Y; respectively.

It will be convenient, for each r > 0, to let C,. denote the circle |z| = r oriented
in the anticlockwise direction. We can now introduce the function

=06+ on ([ 00 (- 2a)x). 69

Obviously gs(e’) = a. Furthermore, since the integral in (5.6) is a continuous B
valued function of z in the region |z| > v and is also analytic in that region, we
deduce that g5 is a continuous Y7 valued function on the annulus |z| € [1,¢] and is
analytic in its interior. Furthermore the restrictions of the g5 to the circles Cy and
C. are continuous maps into Yy and Y; respectively. By Cauchy’s integral formula
we also have, whenever |z| € (v, e), that

95(z>=2im.< 2o [ ¢ 604)

But the formula on the right defines an analytic Y; valued function in the disk
|z] <e.

Let us now define Fp(Y1,Ys) = Fp(Xo, X1) as in Section 1, for the particular
choice of radii R; = 1 and Ry = e. The preceding discussion shows that g5 ex-
tends to a function in Fp(Y1,Yy). Consequently, by Proposition 1, a = gs5(e?) =
g5 (R§R1™?) is an element of C;"_,(¥7,Y). This establishes (5.3) and so completes
the proof of the theorem. O

REMARK. The norms ||a||0;(XO’X1) and ||al|;x, x,j, must of course be equivalent.
By making obvious appropriate norm estimates at each step of the above proof it
is possible to show that the constants of equivalence of these norms depend only
on 6, B and the norms of the continuous embeddings of B into Xy and X;.

REMARK. The preceding theorem shows that the scale of spaces used in the counter
example of Section 2 provides an apparently new example of a scale of complex inter-
polation spaces which cannot be continued beyond a certain value of the parameter.
Other examples of related phenomena have been considered by Kalton [?7], by N.
and V. Zobin [13] and also by Zafran (see the Appendix on pp. 297-298 of [8]).

For a discussion of a related phenomenon, where the continuation of the scale
exists but is not unique, see [8] pp. 295-297.

In view of Theorem 11 of [5] pp. 273-274 (cf. also Theorem 10 on p. 272)
this “non-continuability” of the complex interpolation scale for the Banach cou-
ple (FLy, + FLy,, FL,,) suggests the possibility that an appropriate modification
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of this couple might provide the setting for a counterexample to settle a long stand-
ing open question about compact operators and the complex interpolation method.
See also [6] for various simplifications and reductions of this problem. The reader
who wishes to consider this possibility should probably keep in mind that if there is
a counterexample for the above question then there is necessarily a counterexample
in the context of domain couples of the form (¢'(FL} ),¢'(FL )) and/or range
couples ((*(FLZ ), L>°(FLY)) (See [6] Proposition 3, p. 356) and furthermore it
should be possible to show via arguments of equicontinuity etc. or from a special
case treated in [2] p. 118 that compactness of operators is preserved by the complex
method in the context of domain couples of the form (FL/, ,FL/, ) and/or range
couples (FLYY, FLY).

@p?
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