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ABSTRACTA t � (n; k; �) covering design (n � k > t � 2) consists of a collection of k-elementsubsets (blocks) of an n-element set X such that each t-element subset of X occurs in atleast � blocks. Let � = 1 and k � 2t � 1. Consider a randomly selected collection Bof blocks; jBj = �(n). We use the correlation inequalities of Janson ([10], [1]) to showthat B exhibits a rather sharp threshold behaviour, in the sense that the probability thatit constitutes a t � (n; k; 1) covering design is, asymptotically, zero or one - according as�(n) = f�nt�=�kt�g(log �nt� � !(n)) or �(n) = f�nt�=�kt�g(log �nt� + !(n)), where !(n) ! 1is arbitrary. We then use the Stein-Chen method of Poisson approximation ([3]) to showthat the restrictive condition k � 2t� 1 in the above result can be dispensed with. Moregenerally, we prove that if each block is independently \selected" with a certain probabilityp, the distribution of the number W of uncovered t sets can be approximated by that ofa Poisson random variable provided that EjBj � f�nt�=�kt�g[(t � 1) logn + log logn + an],where an !1 at an arbitrarily slow rate.
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1. INTRODUCTION.A t� (n; k; �) covering design (n � k > t � 2) consists of a collection of k-element subsets(blocks) of an n-element set X such that each t-element subset of X occurs in (i.e., is asubset of) at least � blocks. The covering number C�(n; k; t) is de�ned to be the number ofblocks in a minimal t� (n; k; �) covering design. We shall, for most of this paper, restrictourselves to the case � = 1, and refer to C1(n; k; t), for brevity, as C(n; k; t). Packingdesigns are de�ned analogously, and will not be discussed here. There is an extensiveliterature on covering and packing designs; for a survey of important results, see the recentpapers by Mills and Mullin [11] and Sidorenko [13]. In Section 2, we shall assume, inaddition, that k � 2t� 1; this guarantees the validity of our main result by ensuring thatthe same block does not cover two disjoint t-sets. This rather restrictive assumption willbe dispensed with in Section 3. A general upper bound for C(n; k; t) was obtained byErd}os and Spencer [6], who proved thatC(n; k; t) � �nt��kt�f1 + log�kt�g: (1:1)An asymptotic improvement of this result was obtained by R�odl [12], who used a remark-able probabilistic method (now called the \R�odl nibble") to prove the Erd}os-Hanani [5]conjecture, namely that for each �xed k and t,limn!1C(n; k; t) �kt��nt� = 1; (1:2)see Spencer [14] for a simpler proof of (1.2).(1.1) has a probabilistic interpretation as follows: If one were to randomly selectf�nt�=�kt�gf1 + log �kt�g blocks, then there is a positive probability that the selected k-sets3



form a t� (n; k; 1) covering design. Furthermore, the fact that (1.1) has not been bettered,for arbitrary values of the parameters, suggests that this probability is rather low. Ifn is \large", however, there is, by (1.2), a positive probability that f�nt�=�kt�g(1 + o(1))randomly selected blocks would constitute a cover. Now, this probability is very likely tobe extremely small, since (1.2) states that one can get asymptotically close to a Steinersystem of any order - and the search for these systems is known to never be trivial.In this paper, we ask (and resolve) the following question: Is there, asymptotically,a relative paucity of t � (n; k; 1) covering designs of a certain size, followed by a suddenplethora - as the size (i.e., the number of blocks) crosses a threshold? In other words, if onerandomly selects a collection B of blocks; jBj = �(n), then what can be asserted about theasymptotic probability that B forms a t�(n; k; 1) covering design? We show that B exhibitsa rather sharp threshold behaviour in the sense that the probability that it constitutes acover is, asymptotically, zero or one - according as �(n) = f�nt�=�kt�g log �nt�(1 � �n) or�(n) = f�nt�=�kt�g log �nt�(1 + �n). Speci�cally, we prove the following result in Section 2:Theorem 1. Consider a collection B; jBj = �(n), of blocks of size k of the n-elementset X , chosen with respect to the uniform measure on the set of � (nk)�(n)� possible selections.Then, for k � 2t� 1,limn!1P(B forms a t� (n; k; 1) covering design) = 0 [�(n) = �nt��kt� log�nt�(1� �n)] (1:3)andlimn!1P(B forms a t� (n; k; 1) covering design) = 1 [�(n) = �nt��kt� log�nt�(1+ �n)] (1:4)where �n is any non-negative sequence that goes to zero slower than 1= log �nt�. In other4



words, the asymptotic probability that B forms a t� (n; k; 1) covering design is zero or one,according as �(n) = �nt�=�kt�(log �nt�� !(n)), where !(n)!1 is arbitrary.Our proof of the above result will be based on Janson's correlation inequalities ([10], [1]);see [1] for a wide variety of applications of these inequalities to problems emanating fromcombinatorics, number theory and graph theory.The main point behind the above theorem is, in the authors' view, as follows: Thesearch for Steiner systems (or t-designs with � � 2, in general) is a delicate art, withcombinatorial, algebraic and algorithmic methods being typically employed. (1.3) [and theauxiliary inequalities that go into its proof] provide a measure of exactly how dextrousone has to be in order to successfully conduct such a search; recall that the size of Steinersystems (or of the Sch�onheim lower bound on the size of t � (n; k; 1) covering designs) isapproximately �nt�=�kt�. On the other hand, (1.4) signals the level beyond which even arandom search for covering designs is likely to be successful at the very �rst try. Betweenthem, (1.3) and (1.4) show how sharp the threshold behavior for the numbers of coveringdesigns with a given number of blocks is.We next remedy the fact that Theorem 1 could only be proved for k � 2t�1: In Section3, we use the Stein-Chen method of Poisson approximation [3] to prove the following result,from which the threshold behaviour of the covering numbers (for all values of k and t) willbe seen to follow as an easy corollary, and from which one can deduce an extreme-valuelimit when the number of blocks is at the threshold level.Theorem 2. Consider a random collection B of k-subsets of the n-element set X ; we5



assume that B is obtained by randomly and independently choosing each k-set with prob-ability p. Let W denote the number of t-sets that are left uncovered by B, and set � =E(W ) = �nt�(1� p)(n�tk�t). Assume that p�n�t�1k�t�1� < 1. ThendTV(L(W );Po(�)) := supA�Z+ jP(W 2 A)�Xj2A e���jj! j��nt�e�p(n�tk�t) p�n�t�1k�t�1�1� p�n�t�1k�t�1� + 2e�p(n�tk�t) (1:5)where dTV denotes the usual total variation distance, Po(�) the Poisson random variable(r.v.) with mean �, and L(Z) the probability distribution of the r.v. Z. Furthermore,if we assume that p�n�t�1k�t�1� ! 0, the right hand side of (1.5) tends to zero as n ! 1provided that p � [(t� 1) logn+ log logn+ an]=�n�tk�t�, where an !1 is arbitrary, i.e., ifEjBj � f�nt�=�kt�g[(t� 1) logn+ log logn+ an].We devote the rest of this section to a brief overview of the Stein-Chen method andhow it relates, in particular, to Janson's correlation inequalities. Further theoretical details,and examples of the use of one or both techniques may be found in [1], [4] and [3]. Recentapplications of the Stein-Chen method in combinatorial situations (Ramsey theory, codingtheory, and the combinatorics of tournaments) have been provided by [7], [8] and [2]respectively.A random variable X with support on Z+ is said to have a Poisson distribution withparameter � (abbreviated X � Po(�)) if P(X = x) = e���x=x! Louis H. Y. Chenshowed in 1975 (see [3] for an account) that a r.v. X is distributed as Po(�) if andonly if E[�f(X + 1) � Xf(X)] = 0 for each bounded function f : Z+ ! R, so thatE[�f(W+1)�Wf(W )] may reasonably be expected to be small for a sumW =Pj2J Ij of6



indicator (zero-one) r.v.'s that has a distribution close to Po(�). Now, a judicious choice offunction f = f�;A actually leads to E[�f(W+1)�Wf(W )] = P(W 2 A)�Pj2A e���j=j!(see [3] for details), so that the total variation distance de�ned in (1.5) may be estimatedif one can bound supAE[�f�;A(W + 1)�Wf�;A(W )] in an e�ective manner. This is theessence of the Stein-Chen method. Now, various general theorems may be invoked towardsachieving this goal; for example, the coupling approach adopted by Barbour, Holst andJanson leads to the following result (Corollary 2.C.4 in [3]):Stein-Chen Approximation Theorem: Consider a sum W = Pj2J Ij of indicator r.v.'s,and set � = E(W ). Suppose that for each j, there exist indicator r.v.'s fJigi2J = fJijgi2Jsuch that L(Jij ; i 2 J ) = L(Ii; i 2 J jIj = 1): (1:6)Assume furthermore that for each i 6= j, Jij � Ii, i.e., that the indicators are positivelyrelated. ThendTV(L(W );Po(�)) � 1� e��� �Var(W )� �+ 2Xj P2(Ij = 1)�: (1:7)
Notice that the bound in (1.7) does not depend on the exact nature of the coupled variablesJij , but only on their existence, and on the monotonicity of the coupling (i.e., the positiverelatedness of the indicators).The correlation inequalities of Janson enable one to obtain precise estimates for thepoint probabilities P(W = 0) [and often for the upper and lower tail probabilities P(W �w) and P(W � w)] under the following general conditions: It is necessary that fW = 0g7



be expressible as \i2I �Bi, where the event Bi[= fAi � �Bg] occurs if and only if a set Ai isa subset of the complement of a \choice set" B, obtained by independently selecting eachpoint ! in a universal set 
 with probability p! [in our case, 
 consists of all k-subsets off1; 2; : : : ; ng, p! = p 8!, �B is the collection of unselected k-sets, Bi is the event that the itht-set is not covered by the selected k-sets, and Ai consists of the ensemble of k-supersetsof the ith t-set]. Under this set-up, the inequalities in [1] assert thatYi2I P( �Bi) � P(\i2I �Bi) � expf �2(1� ")gYi2I P( �Bi); (1:8)where P(Bi) � " for each i and � =Pi�j P(Bi\Bj), with i � j if i 6= j and Ai\Aj 6= ;.(1.8) [which is stated somewhat di�erently in [10]] often leads to a threshold phenomenonfor the random quantity in question, and usually yields sharper results than those obtainedby estimating the discrepancy jP(W = 0)� e��j[� dTV(L(W );Po(�))] on using the Stein-Chen method. It is indeed signi�cant, therefore, that we are able to improve on Theorem1 by using the Stein-Chen method; such examples are not easy to come by. In any case,we feel that many more combinatorial questions can probably be addressed (and solved)on using one or both techniques, and hope that this article plays a role in widening thepopularity of these methods.2. PROOF OF THEOREM 1.We start by proving (1.4). Let us denote the potential blocks by b1; b2; : : : ; b(nk) and create arandom collection B of blocks by selecting each k-set bi independently, and with probabilityp 2 (0; 1); p will be selected later. Notice that jBj is unspeci�ed, but that E(jBj) = p � �nk�.8



Now, the jth t-set will be uncovered by the random collection i� each of its �n�tk�t� supersetsof size k are unselected; the probability of this occurrence is (1 � p)(n�tk�t). We seek toestimate the probability that the selected blocks form a cover of the t-sets; this probabilitycan be denoted as P(T(nt)j=1 �Bj), where, by the above discussion, P( �Bj) = 1 � P(Bj) =1 � (1 � p)(n�tk�t): It is clear that for each j, Bj = fAj � �Bg, where Aj denotes the set ofall blocks that are supersets of jth t-set, so that by (1.8),P((nt)\j=1 �Bj) �(1� (1� p)(n�tk�t))(nt)�(1� e�p(n�tk�t))(nt)�1� �nt�e�p(n�tk�t); (2:1)and thus, at least when �nk�p(1� p) is large,P(B does not form a t� (n; k; 1) covering designj jBj = �nk�p)�P(B does not form a t� (n; k; 1) covering designj jBj � �nk�p)�3�nt�e�p(n�tk�t); (2:2)the �rst inequality above is obvious, while the second follows by (2.1), the observationthat P(CjD) � P(C)=P(D) and the central limit theorem or the fact that the median ofa binomial distribution is approximately (and asymptotically) equal to its mean. We nowchoose p to be flog �nt�=�n�tk�t�g(1 + �n), where �n is a sequence of non-negative numbersthat satis�es �n � 1= log �nt� to conclude, from (2.2), thatP(B does not form a t� (n; k; 1) covering designj jBj = �(n))! 0; (n!1); (2:3)where �(n) = f�nt�=�kt�g log �nt�(1 + �n); (2.3) can easily be seen to be equivalent to (1.4).Note that the assumption k � 2t� 1 was not used. Actually, (1.4) can be proved in a far9



more elementary way, but we have chosen to present the above proof based on (1.8) dueto the fact that this method nicely complements the proof of (1.3), which we turn to next:The upper half of (1.8), together with the fact that 1� x � expf�x=(1� x)g, yieldsP((nt)\j=1 �Bj) �(1� (1� p)(n�tk�t))(nt) � e �2(1��)�(1� expf�p�n� tk � t�=(1� p)g)(nt) � e �2(1��)� expf�[�nt�e�p(n�tk�t)=(1�p) � �2(1� �) ]g (2:4)where � is any number for which P(Bj) � �; j � 1; and
� =Xi�j P(Bi \Bj); (2:5)where i � j if i 6= j and Ai \ Aj 6= ;. We may assume that

P(Bj) = (1� p)(n�tk�t) � e�p(n�tk�t) � 1=e (2:6)i.e., that p � 1=�n�tk�t�, while it is not too hard to see, since k � 2t� 1, that
� =�nt� t�1Xs=2t�k�ts��n� tt� s�(1� p)2(n�tk�t)�(n�2t+sk�2t+s)��nt� t�1Xs=2t�k�ts��n� tt� s�(1� p)2(n�tk�t)�(n�t�1k�t�1)�t�nt�� nt� 1�e�p[(n�tk�t)+(n�t�1k�t )]� n2t�1(t� 1)!2 e�2p(n�t�1k�t ): (2:7)10



We next show that � is bounded: If we choose p = flog �nt�=�n�tk�t�g(1 � �n), where �n isany function that goes to zero with n, then, by (2.7),� � n2t�1(t� 1)!2 e�2p(n�t�1k�t )� n2t�1(t� 1)!2 expf�2 log�nt��n�t�1k�t ��n�tk�t� (1� �n)g�Ctn2t�1=nt(2��n) (2:8)for explicitly computible constants Ct and �n, where Ct depends only on t and �n ! 0 asn !1. Since t�n < 1 for large n, it follows from (2.8) that � ! 0 as n!1, and thus,by (2.4), that for su�ciently large nP((nt)\j=1 �Bj) � 2 expf��nt�e�p(n�tk�t)=(1�p)g: (2:9)If we re�ne our choice of p to flog �nt�=�n�tk�t�g(1 � �n), where �n is a sequence that goesto zero slower than 1= log �nt� � 1= logn, then (2.9) reveals that the probability of ourprocedure producing a cover of the t-sets is given byP((nt)\j=1 �Bj) � 2 expf��nt�e� log (nt)(1��n)=(1�p)g = 2 expf��nt� �n�p1�p g; (2:10)which may easily be checked to go to zero if p and �n are as speci�ed. We have thus provedthat for p = flog �nt�=�n�tk�t�g(1 � �n), and n large enough, using again the central limittheorem, P(B forms a t� (n; k; 1) covering designj jBj = �nk�p)�P(B forms a t� (n; k; 1) covering designj jBj � �nk�p)�6 expf��nt� �n�p1�p g ! 0 (n!1); (2:11)11



This proves (1.3).3. PROOF OF THEOREM 2.The r.v. W can clearly be expressed asP(nt)j=1 Ij , where Ij = 1 if the jth t-set is uncoveredby the selected blocks (and Ij = 0 otherwise). Since a t-set is uncovered if and only if noneof its �n�tk�t� supersets are selected, it follows that � = E(W ) = �nt�(1 � p)(n�tk�t). We neednext to de�ne the coupled variables fJijg so that they satisfy (1.6), and proceed as follows:If Ij = 1, i.e., if the jth t-set is uncovered, we \do nothing", letting Jij = Ii for each i. IfIj = 0, i.e., if the jth t-set is contained in at least one of the selected blocks, we pretendthat the latter had never been chosen, by reversing the coin 
ips that led to their selection.Finally, we let Jij = 1 if, as a result of this change, the ith set is no longer covered [Jij = 0otherwise]. It is clear that (1.6) holds, i.e., that this process leads to the accurate modelingof the global behaviour of the indicator variables, conditional on the fact that the jth t-setis uncovered. Moreover, this process can only lead to a previously covered set now beinguncontained in any block, so that the coupling is monotone. It remains to compute thetotal variation discrepancy given by (1.7): Similar to the development leading to (2.7), wehavedTV(L(W );Po(�)) �1� e��� �Var(W )� �+ 2Xj P2(Ij = 1)��Var(W )� � 1 + 2(1� p)(n�tk�t)�Pj Var(Ij)� + Pi 6=j [E(IiIj)�E(Ii)E(Ij)]� � 1 + 2e�p(n�tk�t)�Pi 6=j [E(IiIj)� E(Ii)E(Ij)]� + 2e�p(n�tk�t)12



� 1���nt� t�1Xs=0�ts��n� tt� s�(1� p)2(n�tk�t)�(n�2t+sk�2t+s)����nt�� 1	(1� p)(n�tk�t) + 2e�p(n�tk�t)���nt�� 1	(1� p)(n�tk�t)�(n�t�1k�t�1) � ��nt�� 1	(1� p)(n�tk�t) + 2e�p(n�tk�t)��nt�(1� p)(n�tk�t)�(1� p)�(n�t�1k�t�1) � 1	+ 2e�p(n�tk�t)��nt�e�p(n�tk�t) p�n�t�1k�t�1�1� p�n�t�1k�t�1� + 2e�p(n�tk�t) (3:1)
The second term on the right hand side of (3.1) tends to zero as n ! 1 if �n�tk�t�p ! 1as n!1. Let us assume that this condition holds and, furthermore, that p�n�t�1k�t�1�! 0.Then the �rst term on the right side of (3.1) tends to zero with n provided that �(n; k; t) =�nt�e�p(n�tk�t)p�n�t�1k�t�1� does. Let p =  (n)=�n�tk�t� where  (n)!1; we then have�(n; k; t) =�nt�e� (n) (n)�n�t�1k�t�1��n�tk�t�=�nt�e� (n) (n)(k� t)(n� t)�nt�1e� (n) (n)k � tt! (3:2)which goes to zero as n ! 1 (for �xed k and t) provided that  (n) = (t � 1) logn +log logn+ an where an !1 is arbitrary. This proves the theorem.Although Theorem 2 concerns collections with a random size, it is easy to deriveresults also for random collections of a �xed size:Corollary. The conclusion of Theorem 1 holds for each k and t. Furthermore, P(B formsa t� (n; k; 1) covering design)! expf�e�cg if jBj = �(n) = �nt�=�kt�flog �nt�+ c+ o(1)g.13



Proof. Consider �rst a collection B of random size as in Theorem 2. Theorem 2 impliesthat, with � = �nt�(1� p)(n�tk�t),e�� � �n � P(W = 0) � e�� + �n (3:3)where the error �n in Stein-Chen approximation tends to zero as n ! 1 provided thatp = [(t�1) logn+log logn+an]=�n�tk�t�, i.e., if EjBj = f�nt�=�kt�g[(t�1) logn+log logn+an],where an ! 1 is arbitrary. Note that the range of p's for which (3.3) provides a goodapproximation contains the value of p at which we are trying to establish a threshold,viz., t logn=�n�tk�t�. In other words, �n ! 0 as n ! 1 for all p's in a neighbourhood oft logn=�n�tk�t�. It is an easy matter, on the other hand, to verify that e�� goes to zero or oneaccording as EjBj = f�nt�=�kt�g log �nt�(1 � �n) or EjBj = f�nt�=�kt�g log �nt�(1 + �n), where�n is as in the statement of Theorem 1.Similarly, if p = 1�n�tk�t�(log�nt�+ c+ o(1)) (3:4)and � = �nt�(1� p)(n�tk�t), then �! e�c as n!1, and thus it follows, by (3.3), thatlimn!1P(W = 0) = expf�e�cg: (3:5)In order to treat the case of a random collection with �xed size �(n), we de�nep+ = (�(n) + nt=2 logn)=�nk� (3:6)and p� = (�(n)� nt=2 logn)=�nk�: (3:7)14



For simplicity we consider only the second part of the corollary in detail; the �rst partis proved in the same way (or by conditioning as in the proof of Theorem 1). Now, both p+and p� satisfy (3.4). Moreover, if we choose a random collection B+ as in Theorem 2 usingthe probability p+, then EjB+j = �(n) + nt=2 logn and VarjB+j � EjB+j = O(nt logn).Hence, by Chebyshev's inequality, P(jB+j < �(n)) ! 0 as n ! 1 and thus, using (3.5)for B+, P(B+ forms a t� (n; k; 1) covering design j jB+j = �(n))� P(B+ forms a t� (n; k; 1) covering design j jB+j � �(n))� P(B+ forms a t� (n; k; 1) covering design)=P(jB+j � �(n))! exp(�e�c) (3:8)Hencelim supn!1 P(B forms a t� (n; k; 1) covering design j jBj = �(n)) � exp(�e�c): (3:9)The opposite inequality, with lim inf, follows similarly using p�. This proves thecorollary.Remarks.(i) An analog of (1.1) for � � 2 was proved in [9], where it was shown that the coveringnumbers C�(n; k; t) exhibit a linear growth rate (in �) given, roughly, byC�(n; k; t) � �nt��kt�f1 + log�kt�+ (�� 1) log log�kt�g; (3:10)15



notice how subsequent coverings (after the �rst) take substantially fewer blocks to accom-plish.In a similar spirit, the methods of this paper may be used to investigate thresholdphenomena and Poisson approximations for random t � (n; k; �)-covering designs, � � 2,though the analysis is likely to get far more intricate. Speci�cally, we may let W =Pj Ij,where Ij = 1 if the jth t-set is covered at most � � 1 times. The fJijg sequence of theStein-Chen approximation theorem might not be as obvious to de�ne explicitly, but acoupling satisfying (1.6) certainly exists, and thus the total variation discrepancy is givenby (1.7) as before. The most serious technical challenge can be expected to be the e�ectiveestimation of Cov(Ii; Ij).(ii) Our main results can readily be adapted to the case when k and t go to in�nity withn at a slow enough rate. We do not provide the details.(iii) Finally, we compare the bounds derived from Theorems 1 and 2 for values of p aroundthe threshold: Consider, for example, the inequality2 expf��nt�e�p(n�tk�t)=(1�p)g � expf��nt�(1� p)(n�tk�t)g+ �nt�e�p(n�tk�t) p�n�t�1k�t�1�1� p�n�t�1k�t�1�+2e�p(n�tk�t); (3:11)the left and right sides of (3.11) are upper estimates for P(W = 0) obtained from (2.9)and (3.3), respectively. Since p and p�n�t�1k�t�1� are small, and (1� p)(n�tk�t) � expf�p�n�tk�t�g,(3.11) is roughly equivalent toexpf��nt�e�p(n�tk�t)g � �nt�e�p(n�tk�t)p�n� t� 1k � t� 1�+ 2e�p(n�tk�t): (3:12)16



Now (3.12) is satis�ed ifexpf��nt�e�p(n�tk�t)g � �nt�e�p(n�tk�t)p�n� t� 1k � t� 1�; (3:13)or, on setting p = flog �nt�=�n�tk�t�g(1� �n), if(1� �n)(k � t)�nt��n log �nt�n� t � expf��nt��ng: (3:14)It is now an easy matter to check that (3.14) holds if the �n function, which is, of course,assumed to decay no faster than 1= logn, is further supposed to tend to zero no faster thanlog logn=[t logn]. The above argument suggests, in other words, that we expect the esti-mates provided by our two results to be comparable when �n � log logn= logn, with Jan-son's inequalities providing a better upper bound when �(n) = f�nt�=�kt�g(log �nt�� !(n))with !(n)� log log(n), and with the Stein-Chen method performing better otherwise. Itshould be pointed out, moreover, that near the threshold the left hand side of (3.11) is ofthe same order as the �rst term on the right hand side, and it may be veri�ed that the lefthand side never exceeds a constant (depending on k and t) times the right hand side. Hencethe Stein-Chen method never performs much better. In a similar manner, the estimate(2.1) may be veri�ed to do better than (3.3) for p's of the form flog �nt�=�n�tk�t�g(1 + o(1)),where o(1) is further restricted in a suitable fashion.ACKNOWLEDGEMENTSThe authors acknowledge the support received from NSF Grant DMS-9200409 (APG) andthe G�oran Gustafsson Foundation for Research in Natural Sciences and Medicine (SJ). Wethank Joel Spencer for useful discussions. 17
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