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ABSTRACT

At — (n,k,\) covering design (n > k > t > 2) consists of a collection of k-element
subsets (blocks) of an n-element set X’ such that each ¢-element subset of X occurs in at
least A blocks. Let A = 1 and & < 2t — 1. Consider a randomly selected collection B
of blocks; |B| = ¢(n). We use the correlation inequalities of Janson ([10], [1]) to show
that B exhibits a rather sharp threshold behaviour, in the sense that the probability that
it constitutes a t — (n, k, 1) covering design is, asymptotically, zero or one - according as
B(n) = {(3)/(5) (1o (7) —w(n)) or g(n) = {(3)/()}(1og (7) + w(n)), where w(n) - o0
is arbitrary. We then use the Stein-Chen method of Poisson approximation ([3]) to show
that the restrictive condition & < 2t — 1 in the above result can be dispensed with. More
generally, we prove that if each block is independently “selected” with a certain probability
p, the distribution of the number W of uncovered ¢ sets can be approximated by that of
a Poisson random variable provided that E|B| > {(?)/(’Z)}[(t —1)logn + loglogn + ay],

where a,, — 0o at an arbitrarily slow rate.



1. INTRODUCTION.

A t—(n,k,\) covering design (n > k >t > 2) consists of a collection of k-element subsets
(blocks) of an n-element set X such that each t-element subset of X’ occurs in (i.e., is a
subset of) at least A blocks. The covering number C)(n, k, t) is defined to be the number of
blocks in a minimal ¢ — (n, k, A) covering design. We shall, for most of this paper, restrict
ourselves to the case A = 1, and refer to Ci(n,k,t), for brevity, as C(n,k,t). Packing
desitgns are defined analogously, and will not be discussed here. There is an extensive
literature on covering and packing designs; for a survey of important results, see the recent
papers by Mills and Mullin [11] and Sidorenko [13]. In Section 2, we shall assume, in
addition, that k& < 2t — 1; this guarantees the validity of our main result by ensuring that
the same block does not cover two disjoint ¢-sets. This rather restrictive assumption will
be dispensed with in Section 3. A general upper bound for C(n,k,t) was obtained by

Erdés and Spencer [6], who proved that

" k

C(n,k,t) < %{lelog <t>} (1.1)
t

An asymptotic improvement of this result was obtained by Ro6dl [12], who used a remark-

able probabilistic method (now called the “Rédl nibble”) to prove the Erdds-Hanani [5]

conjecture, namely that for each fixed k£ and ¢,

lim C(n, k,t)@ =1 (1.2)

n—00 (

N—r

see Spencer [14] for a simpler proof of (1.2).
(1.1) has a probabilistic interpretation as follows: If one were to randomly select
{(’Z)/(’Z)}{l + log (’:)} blocks, then there is a positive probability that the selected k-sets
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form a ¢t — (n, k, 1) covering design. Furthermore, the fact that (1.1) has not been bettered,
for arbitrary values of the parameters, suggests that this probability is rather low. If
n is “large”, however, there is, by (1.2), a positive probability that {(’Z)/(’:)}(l + o(1))
randomly selected blocks would constitute a cover. Now, this probability is very likely to
be extremely small, since (1.2) states that one can get asymptotically close to a Steiner
system of any order - and the search for these systems is known to never be trivial.

In this paper, we ask (and resolve) the following question: Is there, asymptotically,
a relative paucity of t — (n, k, 1) covering designs of a certain size, followed by a sudden
plethora - as the size (i.e., the number of blocks) crosses a threshold? In other words, if one
randomly selects a collection B of blocks; |B| = ¢(n), then what can be asserted about the
asymptotic probability that B forms a t—(n, k, 1) covering design? We show that B exhibits
a rather sharp threshold behaviour in the sense that the probability that it constitutes a
cover is, asymptotically, zero or one - according as ¢(n) = {(?)/(’;)}log (M)(1 —€,) or

d(n) = {(’Z)/(’:)} log (7}) (1 + €,). Specifically, we prove the following result in Section 2:

Theorem 1. Consider a collection B, |B| = ¢(n), of blocks of size k of the n-element
set X, chosen with respect to the uniform measure on the set of ( (T’;)) possible selections.

¢(n)
Then, for k <2t —1,

lim P(B forms a t — (n,k,1) covering design) =0 [p(n) = @ log <7Z> (1—e€,)] (1.3)

noee (+)

and

nl;n;o P(B forms a t — (n,k,1) covering design) =1 [p(n) = % log <7Z> (14+€,)] (1.4)

where €, is any non-negative sequence that goes to zero slower than 1/log (’Z) In other
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words, the asymptotic probability that B forms at— (n,k,1) covering design is zero or one,

n

t)/(lz) (log (Ttl) Fw(n)), where w(n) — oo is arbitrary.

according as ¢(n) = (

Our proof of the above result will be based on Janson’s correlation inequalities ([10], [1]);
see [1] for a wide variety of applications of these inequalities to problems emanating from

combinatorics, number theory and graph theory.

The main point behind the above theorem is, in the authors’ view, as follows: The
search for Steiner systems (or t-designs with A > 2, in general) is a delicate art, with
combinatorial, algebraic and algorithmic methods being typically employed. (1.3) [and the
auxiliary inequalities that go into its proof]| provide a measure of exactly how dextrous
one has to be in order to successfully conduct such a search; recall that the size of Steiner
systems (or of the Schonheim lower bound on the size of t — (n, k, 1) covering designs) is
approximately (7)/ (’z) On the other hand, (1.4) signals the level beyond which even a
random search for covering designs is likely to be successful at the very first try. Between

them, (1.3) and (1.4) show how sharp the threshold behavior for the numbers of covering

designs with a given number of blocks is.

We next remedy the fact that Theorem 1 could only be proved for & < 2¢t—1: In Section
3, we use the Stein-Chen method of Poisson approximation [3] to prove the following result,
from which the threshold behaviour of the covering numbers (for all values of k and ¢) will
be seen to follow as an easy corollary, and from which one can deduce an extreme-value

limit when the number of blocks is at the threshold level.

Theorem 2. Consider a random collection B of k-subsets of the n-element set X'; we
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assume that B is obtained by randomly and independently choosing each k-set with prob-
ability p. Let W denote the number of t-sets that are left uncovered by B, and set A =

E(W)=(})(1 —p)(n_ ). Assume that p(3_1"1) < 1. Then

e~ AN
!

Ay (£(W), Po() = sup [P(W € 4) - >
Cz+ jEA

M) plit) Plicimd) G
S(t) Gy )

k—t—1

where dpy denotes the usual total variation distance, Po()\) the Poisson random variable
(r.v.) with mean X\, and L(Z) the probability distribution of the r.v. Z. Furthermore,

P 1) — 0, the right hand side of (1.5) tends to zero as n — o

if we assume that p(
provided that p > [(t — 1) logn + loglogn + ay]/ (- f) where a, — 0o is arbitrary, i.e., if

E|B > {(7)/(5)}(t — 1) logn + loglogn + a,].

We devote the rest of this section to a brief overview of the Stein-Chen method and
how it relates, in particular, to Janson’s correlation inequalities. Further theoretical details,
and examples of the use of one or both techniques may be found in [1], [4] and [3]. Recent
applications of the Stein-Chen method in combinatorial situations (Ramsey theory, coding
theory, and the combinatorics of tournaments) have been provided by [7], [8] and [2]
respectively.

A random variable X with support on Z* is said to have a Poisson distribution with
parameter A (abbreviated X ~ Po())) if P(X = z) = e *X*/x! Louis H. Y. Chen
showed in 1975 (see [3] for an account) that a r.v. X is distributed as Po(A) if and
only if E]\f(X + 1) — X f(X)] = 0 for each bounded function f : Z* — R, so that
E\f(W+1)—W f(W)] may reasonably be expected to be small for asum W = 3. - I; of
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indicator (zero-one) r.v.’s that has a distribution close to Po(\). Now, a judicious choice of
function f = fy 4 actually leads to EINf(W +1) =W f(W)] =P(W € A)=>_,;. 4 e~ /4!
(see [3] for details), so that the total variation distance defined in (1.5) may be estimated
if one can bound sup 4 E[Afx a(W + 1) — W £\ a(W)] in an effective manner. This is the
essence of the Stein-Chen method. Now, various general theorems may be invoked towards
achieving this goal; for example, the coupling approach adopted by Barbour, Holst and

Janson leads to the following result (Corollary 2.C.4 in [3]):

Stein-Chen Approximation Theorem: Consider a sum W = Zjej I; of indicator r.v.’s,
and set X = E(W). Suppose that for each j, there exist indicator r.v.’s {J; }ieg = {Jijtieg
such that

L(Jij3i€TJ)=L(I;i€ T =1). (1.6)
Assume furthermore that for each i # j, Jij > I;, i.e., that the indicators are positively

related. Then

1—e
A

dov (L(W),Po(N)) < (Var(W) — A +2> P*(I; =1)). (1.7)

J

Notice that the bound in (1.7) does not depend on the exact nature of the coupled variables
J;;, but only on their existence, and on the monotonicity of the coupling (i.e., the positive
relatedness of the indicators).

The correlation inequalities of Janson enable one to obtain precise estimates for the
point probabilities P(W = 0) [and often for the upper and lower tail probabilities P(W <
w) and P(W > w)] under the following general conditions: It is necessary that {W = 0}
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be expressible as N;c; B;, where the event B;[= {A; C B}] occurs if and only if a set A; is
a subset of the complement of a “choice set” B, obtained by independently selecting each
point w in a universal set  with probability p,, [in our case, Q consists of all k-subsets of
{1,2,...,n}, p, = p Vw, B is the collection of unselected k-sets, B; is the event that the ith
t-set is not covered by the selected k-sets, and A; consists of the ensemble of k-supersets

of the ith ¢-set]. Under this set-up, the inequalities in [1] assert that

[TP(E) < P B) < exply;—) [T P (18)

where P(B;) < ¢ for each i and A =37, P(B;NBy), with i ~ jif i # j and A;NA; # 0.
(1.8) [which is stated somewhat differently in [10]] often leads to a threshold phenomenon
for the random quantity in question, and wusually yields sharper results than those obtained
by estimating the discrepancy |[P(W = 0) —e~?|[< dpv(L(W), Po(A))] on using the Stein-
Chen method. It is indeed significant, therefore, that we are able to improve on Theorem
1 by using the Stein-Chen method; such examples are not easy to come by. In any case,
we feel that many more combinatorial questions can probably be addressed (and solved)
on using one or both techniques, and hope that this article plays a role in widening the

popularity of these methods.
2. PROOF OF THEOREM 1.

We start by proving (1.4). Let us denote the potential blocks by by, bs, . . ., b(rf) and create a

k

random collection B of blocks by selecting each k-set b; independently, and with probability

p € (0,1); p will be selected later. Notice that |B| is unspecified, but that E(|B|) =p- (}).
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Now, the jth t-set will be uncovered by the random collection iff each of its (Z::) supersets
of size k are unselected; the probability of this occurrence is (1 — p)(z::). We seek to
estimate the probability that the selected blocks form a cover of the t-sets; this probability
can be denoted as P(ﬂj(?:)1 Bj), where, by the above discussion, P(B;) = 1 — P(B;) =

1-(1- p)(zj). It is clear that for each j, B; = {A; C B}, where A; denotes the set of

all blocks that are supersets of jth t-set, so that by (1.8),
(1) o
P(ﬂ Bj)>(1-(1 —p)(k—t))(t)
j=1
>(1 — e~P(=))(¥)

>1— <Tt’> e P(izd), (2.1)

and thus, at least when (k)p(l — p) is large,

P(B does not form a t — (n, k, 1) covering design| |B| = (Z)p)

<P(B does not form a t — (n, k, 1) covering design| |B| < <Z>p)

<3 (?) eP(izi); (2.2)
the first inequality above is obvious, while the second follows by (2.1), the observation
that P(C|D) < P(C)/P(D) and the central limit theorem or the fact that the median of
a binomial distribution is approximately (and asymptotically) equal to its mean. We now
choose p to be {log (7)/(}_Y)}(1 + €n), where €, is a sequence of non-negative numbers

that satisfies €, > 1/log (7}) to conclude, from (2.2), that
P (B does not form a t — (n, k, 1) covering design| |B| = ¢(n)) = 0, (n— 00), (2.3)

where ¢(n) = {(?)/(’;)}log (")(1 + €,); (2.3) can easily be seen to be equivalent to (1.4).
Note that the assumption k < 2t — 1 was not used. Actually, (1.4) can be proved in a far
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more elementary way, but we have chosen to present the above proof based on (1.8) due
to the fact that this method nicely complements the proof of (1.3), which we turn to next:

The upper half of (1.8), together with the fact that 1 —z > exp{—=z/(1 — z)}, yields

()
P([) By) <(1 — (1 —p)i=) (i) . exim
7j=1
- t n A
<(1- exp{—p(Z B t> /(1 — p)})(t) .e20-9
<exp{—]| ) o—p(R2t)/(1-p) _ L]} (2.4)
- t 2(1—¢)
where € is any number for which P(B;) <e¢,j > 1, and
A=Y "P(B;nBy), (2.5)
i~
where i ~ j if i # j and A; N A; # . We may assume that
P(B)) = (1-p)i=) <e?(5) <1/e (2.6)

i.e., that p > 1/(2::), while it is not too hard to see, since k < 2t — 1, that

i @ (?:;) (1 —p)2 G- (G7)

<(; _ () (= -ttt

< _em2("E), (2.7)



We next show that A is bounded: If we choose p = {log (7)/(321)}(1 — 4,), where 4, is

any function that goes to zero with n, then, by (2.7),

2t—1
A <y U

<
(-1
<CynH=1t /=) (2.8)

for explicitly computible constants C} and n,,, where C}; depends only on ¢ and n,, — 0 as
n — oo. Since tn, < 1 for large n, it follows from (2.8) that A — 0 as n — oo, and thus,

by (2.4), that for sufficiently large n

P([) ) < 2exp (] )e D700, (2.9

If we refine our choice of p to {log (?)/(}-1)}(1 — €,), where ¢, is a sequence that goes

to zero slower than 1/log () ~ 1/logn, then (2.9) reveals that the probability of our

procedure producing a cover of the t-sets is given by

(%) cn=p

1-p

P( Bj)s2exp{—(Z)e“°g(7)<1‘6n)/<1—p>}:2exp{—<’z> }, (2.10)

which may easily be checked to go to zero if p and ¢,, are as specified. We have thus proved

that for p = {log (Ttl)/(z:;)}(l — €,), and n large enough, using again the central limit

theorem,

P (B forms a t — (n, k,1) covering design| |B| = <Z>p)

<P(B forms a t — (n, k, 1) covering design| |B| > <Z>p)

€En—D

<6 exp{— <7t7’> T 50 (1o oo); (2.11)
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This proves (1.3). O

3. PROOF OF THEOREM 2.

The r.v. W can clearly be expressed as 23(2 I;, where I; = 1 if the jth t-set is uncovered
by the selected blocks (and I; = 0 otherwise). Since a t-set is uncovered if and only if none
of its (R_F) supersets are selected, it follows that A = E(W) = (7)(1 — p) (i), We need
next to define the coupled variables {.J;;} so that they satisfy (1.6), and proceed as follows:
If I; =1, i.e., if the jth t-set is uncovered, we “do nothing”, letting .J;; = I; for each 7. If
I; =0, i.e., if the jth f-set is contained in at least one of the selected blocks, we pretend
that the latter had never been chosen, by reversing the coin flips that led to their selection.
Finally, we let J;; = 1 if, as a result of this change, the ith set is no longer covered [.J;; = 0
otherwise]. It is clear that (1.6) holds, i.e., that this process leads to the accurate modeling
of the global behaviour of the indicator variables, conditional on the fact that the jth t-set
is uncovered. Moreover, this process can only lead to a previously covered set now being
uncontained in any block, so that the coupling is monotone. It remains to compute the

total variation discrepancy given by (1.7): Similar to the development leading to (2.7), we

have

dov (L(W),Po(N)) < ! _;_A (Var(W) — A+2) P*(I; = 1))
Svar)(\w) 14201 —p) (2D
DY er(fj) Py [E(Mj); L)) B
L [BUL) —BUIEL)] oy

- A
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)
<((3) t
< (t) (1= )DL — )G 1) 4 2emp(i)
<(1)er 002y e @+

The second term on the right hand side of (3.1) tends to zero as n — oo if (}_!)p — oo

as n — 00. Let us assume that this condition holds and, furthermore, that p(z:::i) — 0.

Then the first term on the right side of (3.1) tends to zero with n provided that ¢(n, k,t) =

(?) e_p(z::)p(z::j) does. Let p = ¢(n)/(z:§) where ¢(n) — o0o; we then have

~ntlem V(Mg (n) (3.2)

which goes to zero as n — oo (for fixed k and t) provided that ¢ (n) = (¢t — 1)logn +
loglogn + a,, where a,, — oo is arbitrary. This proves the theorem. ]
Although Theorem 2 concerns collections with a random size, it is easy to derive

results also for random collections of a fixed size:

Corollary. The conclusion of Theorem 1 holds for each k and t. Furthermore, P(B forms

at—(n,k,1) covering design) — exp{—e=°} if |B| = ¢(n) = (?)/(’Z) {log () + c+o(1)}.
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Proof. Consider first a collection B of random size as in Theorem 2. Theorem 2 implies

that, with A = (7)(1 — p)(i=1),

e =6, <PW=0)<e*+6, (3.3)

where the error 9,, in Stein-Chen approximation tends to zero as n — oo provided that
p=[(t—1)logn+loglogn+a,]/(}_}), ie., if E|B| = {(?)/(’Z)}[(t—l) logn+loglogn+ay],
where a,, — oo is arbitrary. Note that the range of p’s for which (3.3) provides a good

approximation contains the value of p at which we are trying to establish a threshold,

n—t

k_t). In other words, 6, — 0 as n — oo for all p’s in a neighbourhood of

viz., tlogn/(
tlogn/ (Z:z) It is an easy matter, on the other hand, to verify that e=* goes to zero or one
according as E|B| = {(’Z)/(’:)}log () (1 — €,) or E|B| = {(’Z)/(’:)}log () (1 + €), where
€, 18 as in the statement of Theorem 1.

Similarly, if

(log (;‘) +c+o(1)) (3.4)

)

and A = (?)(1 - p)(sz), then A — e~ ¢ as n — o0, and thus it follows, by (3.3), that

lim P(W = 0) = exp{—e™“}. (3.5)

n—o0

In order to treat the case of a random collection with fixed size ¢(n), we define

p = (o) + 1oz () (3.5)

and
p = (60) =/ ogn)/ ). (3.7
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For simplicity we consider only the second part of the corollary in detail; the first part
is proved in the same way (or by conditioning as in the proof of Theorem 1). Now, both p*
and p~ satisfy (3.4). Moreover, if we choose a random collection Bt as in Theorem 2 using
the probability pt, then E|BT| = ¢(n) + n/?logn and Var|Bt| < E|BT| = O(n'logn).

Hence, by Chebyshev’s inequality, P(|BT| < ¢(n)) — 0 as n — oo and thus, using (3.5)

for BT,
P(B* forms a t — (n, k, 1) covering design | |BT| = ¢(n))
< P(BT forms a t — (n, k, 1) covering design | |B*| > ¢(n))
< P(BT forms a t — (n, k, 1) covering design)/P(|BT| > ¢(n))
— exp(—e™°) (3.8)
Hence

limsup P(B forms a t — (n, k, 1) covering design | |B| = ¢(n)) < exp(—e™°). (3.9)

n— 00

The opposite inequality, with liminf, follows similarly using p~. This proves the

corollary.

Remarks.

(i) An analog of (1.1) for A > 2 was proved in [9], where it was shown that the covering

numbers C)(n, k,t) exhibit a linear growth rate (in \) given, roughly, by

—

Cn(n k) < A1 {1 4 log (’Z) + (A= 1)loglog <’Z>}; (3.10)

()

N—r
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notice how subsequent coverings (after the first) take substantially fewer blocks to accom-
plish.

In a similar spirit, the methods of this paper may be used to investigate threshold
phenomena and Poisson approximations for random ¢ — (n, k, A)-covering designs, A > 2,
though the analysis is likely to get far more intricate. Specifically, we may let W = >_ i 1
where I; = 1 if the jth t-set is covered at most A — 1 times. The {.J;;} sequence of the
Stein-Chen approximation theorem might not be as obvious to define explicitly, but a
coupling satisfying (1.6) certainly exists, and thus the total variation discrepancy is given
by (1.7) as before. The most serious technical challenge can be expected to be the effective
estimation of Cov(I;, I;).

(ii) Our main results can readily be adapted to the case when k and ¢ go to infinity with

n at a slow enough rate. We do not provide the details.

(iii) Finally, we compare the bounds derived from Theorems 1 and 2 for values of p around

the threshold: Consider, for example, the inequality

2 exp{— (7;) e—p(Zif)/(l—p)} <exp{— (7;) (1— p)(Zif)} + (Z’) (i 1) %
2P0, (3.11)

the left and right sides of (3.11) are upper estimates for P(W = 0) obtained from (2.9)

and (3.3), respectively. Since p and p(z:i:}) are small, and (1 —p)(zj) ~ exp{—p(z:i)},

(3.11) is roughly equivalent to
n—t n—t — — 1 n—t
o (e () )
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Now (3.12) is satisfied if

expl <7Z> () < (7;) e—p(;:_mp(z - 1) , (3.13)
or, on setting p = {log (7)/(?=)}(1 — €,), if

(om0 ) (7)) B0

n—t

It is now an easy matter to check that (3.14) holds if the €, function, which is, of course,
assumed to decay no faster than 1/logn, is further supposed to tend to zero no faster than
loglogn/[tlogn]. The above argument suggests, in other words, that we expect the esti-
mates provided by our two results to be comparable when ¢, ~ loglogn/logn, with Jan-
son’s inequalities providing a better upper bound when ¢(n) = {(?)/(’z)}(log () — w(n))
with w(n) > loglog(n), and with the Stein-Chen method performing better otherwise. It
should be pointed out, moreover, that near the threshold the left hand side of (3.11) is of
the same order as the first term on the right hand side, and it may be verified that the left
hand side never exceeds a constant (depending on k and ) times the right hand side. Hence
the Stein-Chen method never performs much better. In a similar manner, the estimate

(2.1) may be verified to do better than (3.3) for p’s of the form {log (7)/(3-1) }(1 + o(1)),

where o(1) is further restricted in a suitable fashion.
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