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Abstract

A subset A of the set [n] = {1,2,...,n}, |A| = k, is said to form a Sidon (or Bj)
sequence, h > 2, if each of the sums ay +as + ... + ap,a1 < as < ... < ap;a; € A,
are distinct. We investigate threshold phenomena for the Sidon property, showing that
if A,, is a random subset of [n], then the probability that A, is a B sequence tends to
unity as n — oo if k, = |A,| < n'/?" and that P(A, is Sidon) — 0 provided that
kn > n'/2h. The main tool employed is the Janson exponential inequality. The validity
of the Sidon property at the threshold is studied as well; we prove, using the Stein—
Chen method of Poisson approximation, that P(A,, is Sidon) — exp{—A} (n — oo) if
knp ~ A-n'/?h (A € RY), where A is a constant that depends in a well-specified way on

A. Multivariate generalizations are presented.



1. Introduction

A subset A of [n] = {1,2,...,n}, |A| =k, is said to form a Sidon (or B}) sequence,
h > 2, if each of the (k"'Z_l) sums a1 +as + ... +ap,a1 < ax < ... <ap,a; € A (i =
1,2,...,h) are distinct. For example, any two element set {a, b} is Bs, since the three sums
a+b,2a, 2b are necessarily distinct, whilst a three element set {a, b, ¢} is By iff a, b, ¢ are not
in arithmetic progression. An extensive survey of the properties of Sidon sequences may be
found in Halberstam and Roth [5], where it is shown, for example, that B}, sequences are
of size at most O(n'/") [for any h > 2] , and, moreover, that there do exist Bj, sequences
of order n'/?. Tn particular, Lindstrém [6] showed that |A] < n'/2 + n'/* + 1 for any

B> sequence A. Recent papers on finite and infinite Sidon sequences include the ones by

Graham [4] and Spencer and Tetali [8].

We consider a set A,, obtained by selecting, without replacement, a random sample
of size k, from the first n integers, and investigate threshold phenomena for the Sidon
property, showing, in Theorem 1, that the probability that A, is Bj tends to unity as
n — oo if k, < n'/?" and that P(A, is Sidon) — 0 provided that k, > n'/?" where
we write ¢(n) > ¢(n) (resp. p(n) < ¢(n)) if p(n)/s(n) — oo (resp. 0) as n — oo. (The
first part has also been shown by Nathanson, see [7], page 37, Exercise 14.) The main tool
employed is the Janson exponential inequality (see, e.g., Alon and Spencer [1]). Theorem
1 shows that the Sidon property becomes rare at a level far below that indicated by the
above-mentioned extremal results in Halberstam and Roth [5]; it is conceivable, however,
that a carefully selected non-uniform measure on the k,,-subsets of [n] will yield a threshold
closer to n'/": for example, one may be able to exploit the fact [3,4] that maximal Bs
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sequences are uniformly distributed. In Section 3, we investigate the behaviour of the
Sidon property at the threshold, proving in Theorem 2 that P(A,, is Bp) — exp{—A} as
n — oo if [A,| ~ A-n'/?" where A € Rt and A = k,A?" for a constant depending
on h. (ke = 1/12 and k3 = 11/1440; asymptotically rp ~ \/gh_l/zh!_2 as h — oo.)
The Stein—Chen method of Poisson approximation [2] is the main technique used in the
proof of this result. We also provide multivariate Poisson approximations for the joint
distribution of the ensemble {Iop : a1+ ...+ ap =b1 + ...+ by}, where a = (a1,...,as),
b = (b1,...,bs), and where the zero-one variable I, 1 equals one iff {aq,...,ar} C Ay,
{b1,...,bn} C A,; this result (Theorem 3) enables one to understand the structure of the
set A, in a global sense, keeping track, as it does, of all the episodes when an integer m
is obtained by two h-sums of elements of A,,. The Stein—Chen method is used once again
as the driving force behind the proof; of special note is the fact that the components of
the multivariate Poisson approximant in Theorem 3 are independent, whereas the variables

I, 1, are clearly not.

We have chosen to employ different methods in Sections 2 and 3, but it should be
made clear at the outset that we could have done differently. In fact, Theorem 1 is
a simple corollary of Theorem 2, and thus follows by the Stein—Chen method too. (A
third possibility is to use Chebyshev’s inequality together with estimates derived below.)

Conversely, Theorem 2 may be derived using the Janson inequality.

Similar questions can be asked regarding sum-free subsets of the integers, and will be
reported on elsewhere, as will be results on Bj, sequences where h — oo along with n, and
on subsets with distinct sums (see [1] for the relevant definitions).
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We write u = O(v) or (equivalently) u < v if u < Av for some constant A that may

depend on h but not on n or any other variable.

2. Threshold functions for the Sidon property
The following is the main result of this section:

Theorem 1. Consider a subset A,, of size k,, chosen at random from the (k’;‘l) such subsets

of [n] ={1,2,...,n}. Then for any h > 2,
kn = o(n'/?") = P(A, is By) =1 (n — o0)

and

™ = o(k,) = P(A, is By) = 0 (n — o).

Proof. We begin with the easy first half, the proof of which employs nothing more than
the Markov inequality. We introduce some notation to be used throughout the paper.
Let A = A, j, be the set of all sequences a = (a1,...,a;) with 1 <a; <ap <... <

ap < n, and let
B=B,n={(a,b)ec AxA:a1+...+a,=0b1+...+ b, and a < b}

where < denotes the lexicographic order.

An element a of A is thus an (ordered) sequence (aq,...,an), but we will also, when
convenient, use a to denote the corresponding set {ai,...,an}; for example, |a| denotes
the number of elements of this set, i.e., the number of distinct numbers a;.
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Using this notation, a set A, C [n] is Sidon if and only if A,, does not contain aUb
for any (a,b) € B.

Let, as above, I, p, (a,b) € B, be the (random) indicator variables defined by Iy p =1
ifaub C A, (with I, = 0 otherwise), and define

X= Y Tl
(a,b)eB

Thus A,, is Sidon if and only if I, 1, = 0 for every pair (a,b) € B, i.e., when X = 0.

We define

B(l)={(a,b) e B:|laUub| =1}, 1=1,...,2h,

and note that B(2h) is the set of pairs (a, b) with 2h distinct numbers aq, ..., by. Clearly,

for any (a,b) € B(l),

n—1 n IA
— — < —
Plap =1) <k—l> / <k> = (n) ’
and thus, by Markov’s inequality,

P(A, is not B) =P(X > 1)
<B(X) = Z soi(; =) /(1) < g BoI(Y).
We estimate |B(l)| as a lemma.

Lemma 1. |B(l)|, the number of pairs (a,b) € B containing exactly | different numbers,

is O(n'=1) for every I < 2h.

Proof. A pair (a,b) € B(l) satisfies a pattern of 2h — [ (non-redundant) coincidences
among {ai,...,by}, for example a; = as = by, a5 = b3, .... Fix one such pattern. This
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pattern defines 2h — [ of the variables aq,...,b;, in terms of the remaining [ ‘free’ ones.
Moreover, the relation a1+ ...+ ap = by + ...+ by, yields a linear relation between the free
variables, and this relation degenerates only when each free variable occurs equally many
times in a and in b, which means that the pattern implies a = b and hence (a,b) ¢ B.
For all other patterns, the pair (a,b) € B is thus specified by [ — 1 variables € [n], and the
number of pairs (a,b) € B with a given pattern is thus < n!~!. This completes the proof,

since the number of possible patterns is finite (and bounded independently of n).

Consequently, if k = o(n'/?"), then
2h
P(Ay isnot By) = Y n' 'Kt < kM0t 0,
1=1
as n — 0o, which proves the first part of the theorem.

Turning to the second half, we note that the main contribution to E(X) is through

h-tuples a and b whose 2h coordinates are all distinct. Thus we define

(a,b)EB(2h)
and see that

P(Ais By) =P(X =0) < P(Y =0).

We thus focus on computing P(Y = 0), and start by changing the underlying model
somewhat; we will revert to the original model later in the proof: Let us choose each element
of [n] independently with probability p = k/n. This yields a set whose expected (as opposed
to actual) cardinality is k. Such a strategy is necessary due the baseline assumption of
independence that is required for the successful application of the Janson inequality, which
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yields (see e.g. Alon and Spencer [1], Theorem 1.1 in Chapter 8 with ¢ = 1/2; the version
given there has the (not really necessary) assumption P, (Iop = 1) = p?h < % for all
(a,b) € B(2h), which we may assume without loss)
P,(Y =0) < [ Pullap=0)]exp(d), (2)
(a,b)eB(2h)
where P, is the probability measure corresponding to the modified model described above

and A is given by

A= Y P,(Taplea=1)
(a,b)~(c,d)

with the relation ~ on B(2h) being defined as follows: We say that (a,b) ~ (c,d) if
(a,b), (c,d) € B(2h), (a,b) # (¢,d) and (aUb) N (cUd) # 0. By (2), our result will
follow, under the modified model, if we can show that the right hand side of (2) tends to

zero for suitable p. Let, for 2h <1 < 4h,
D(1) = {((a,b), (c,d)) € B(2h) x B(2h) : (a,b) # (c,d) and ]aubuUcUd| =1}

Then D := ?Zz_hl D(1) is the set of pairs of pairs ((a,b), (c,d)) with (a,b) ~ (c,d). We

have,
4h—1
A= Z Pu([a,b[c,d - 1) - Z Z Pu([a,b[c,d - 1)
(a,b)~(c,d) I=2h ((a,b),(c,d))eD(l)
4h—1
= > DO (3)
I=2h

Lemma 2. For eachl > 2h, |D(1)| < n!=2.

Proof. We argue as in the proof of Lemma 1. This time each ((a,b),(c,d)) € D(I)
satisfies a pattern of 4h — [ coincidences of the types a; = ¢;, a; = d;, b; = ¢; and b; = d;,
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where no variable occurs more than once. (Recall that by assumption, (a,b) and (c,d)
each contain 2h distinct numbers.)

2h—=1 hoices of

We fix one such pattern. Suppose first that [ > 2h. Then there are n
ai,...,bnp—1, which together determine b, (possible outside [n] and thus illegal) because
a1+...+ap = bi1+...+bp. The pattern of coincidences then determine 4h—1[ of cq, ..., dy,
and of the remaining 2h — (4h — ) =1 — 2h > 0 variables one is determined by the others

I—2h—1

because of the relation ¢; + ...+ ¢, = diy + ...+ dp; hence there are < n choices of

2h—1+41-2h—1 _

c1,...,dp. Together this gives < n n'=2 choices for each pattern, and the

result for the case [ > 2h follows.

In the case | = 2h, the pattern determines each c¢; and d; as one of aq,...,by. If each
¢; coincides with an a;, then necessarily ¢ = a (recall that the sequences are ordered) and
d = b, which violates (a,b) # (c,d), and there are no pairs of pairs in D(2h) satisfying
the pattern. Similarly, if each c¢; coincides with an b;, then ¢ = b and d = a, which
violates a < b and ¢ < d. Hence we only have to consider patterns where all four types of
coincidences a; = ¢;, a; = d;, b; = ¢; and b; = d; occur (with different indices, in general),
but in this case the relations ay +...+ap, =b1+...+bp, andei+...+cp, =di1+...+dp,
give two linearly independent relations between aq,...,b,, and thus these numbers are
determined by 2h — 2 = [ — 2 of them. Consequently, the number of pairs of pairs for each

pattern is < n'~2 in this case too, and the result follows.

We thus have, using (3) and np =k > 1,

4h—1 4h—1
s < s <y ’
I=2h I=2h
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Note further that |[B(2h)| = n2"~1 (we will prove a more precise estimate in the next

section). Returning to (2), we thus obtain, for some positive constants ¢ and C,

P,(Y =0) < [ Pullan=0)]exp{Cn®3p*h=1}
(a,b)EB(2h)

2h—1

< (1 _ th)c” exp{C’n4h_3p4h_1}

< exp{—cn%_lp% + Cn4h_3p4h_1}

— eXp{_th—1p2h (C _ Cth—2p2h—1)}_ (5)

Now if

1 1
o KPP <K
n- 2h n2h—1

(5) reveals that P, (Y = 0) — 0, showing, by monotonocity, that Theorem 1 holds for
the altered model if p > 1/n(h=D/2h je  if B(|A,|) > n'/?". We must now translate
this fact into the format of the original problem, and thus need to compute, under the
transformed model, P, (A4, is Bh‘|An| = np), which, again by monotonicity, is smaller
than Py, (A, is By||A4,| < np) and thus than P, (A, is By)/Py(|An| < np). Now the
numerator of this last quantity is asymptotically small if p > 1/n(?P=1/2h whilst the
denominator is certainly, at least for large n, of magnitude close to 1/2. The theorem

follows.

3. The behavior of the Sidon property at the threshold

As mentioned above, the first result of this section, which finds the asymptotic value of
P (A, is By) when |A,,| ~ An'/?" could have been obtained on using the methods of Section
2. We choose, however, to employ the Stein-Chen method of Poisson approximation [2]
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(which could, conversely, have been used to establish Theorem 1) to address a wider issue:
If X denotes, as before, the number of episodes (a, b) (under the model P,) for which A,
contains both the vectors a and b whose coordinates sum to the same value, then what
can be said about the distribution of X (and not just the value of the point probability
P,(X = 0)?) Let L£(U) denote the probability distribution of the random variable U,
and Po(A) the Poisson distribution with parameter . Finally, let dpyv (L(U), £L(V)) be the

total variation distance between L£(U) and L(V'), defined by

drv(L(U), £(V)) = sup [P(U € 4) = P(V € A)|.

Now for any three random variables U,V and W,
drv(LU), L(V)) < dev(LU), LW)) + P(V # W),
so that in our context,
drv (L£(X),Po(Ey,(Y))) < drv(L(Y), Po(Ey(Y))) + Py (X #Y),

where X and Y are as defined in Section 2. Since, as in the argument leading to (1), and
using Lemma 1,
2h—1
P,(X#Y)<E/ (X -Y)= ) B <n2p" 50 (6)
=1
if p=o0(1/n(h=2/r=1)) we focus on bounding drv(L(Y), Po(E,(Y)).
Our first task will be to obtain a tight estimate on A = E,(Y). Now
A=Y, Pllap=1=p"B2h)|. (7)
(a,b)€B(2h)
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Loosely, we know that |B(2h)| < n?"~! so that A < p?'n2h=1 = A" if p = Ap—(h—1)/2h
but we must be more exact.
We define the functions f; = X?g 1 j=1,2,..., to be the convolution powers of the

characteristic function of (0, 1], i.e., f1(2) =1 when 0 < 2z < 1 and 0 otherwise, and

fim(a /fg iz

(Note that f;(z) equals the density function for the distribution of the sum of j independent

random variables, each uniformly distributed on (0, 1].)

Lemma 3. Let h > 1 and let Ny, ,, be the number of h-subsets of {1,...,n} with sum
m. Then

Nopp = % Fu(m/n)n=1 + O(nh=2).

(Recall our convention that the constant implicit in the O term does not depend on

m or n.)

Proof. Let N*

m.n.n D€ the number of sequences a = (a1,...,ap) with 1 < a; < n for

all 7 and a1 + ...+ ap = m. Since the number of such sequences with distinct elements
equals h! Ny, ,,, and the number of such sequences with two or more elements coinciding is

O(n"=2), it suffices to show that

o = fu(m/n)n" =1+ 0(n"7?). (8)

This is trivially true for h = 1. Moreover, collecting sequences according to their last

element ay, it is seen that

mnh E: —j,n,h—1
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and (8) follows easily by induction, and approximating the appropriate integral by its

Riemann sum.

Lemma 4. For every h > 2,

B(2R)| = san® !+ 022,

where

Proof. 2|B(2h)| equals the number of pairs (a,b) € Ax A witha;+...+ap =b1+...+bp
and |aUb| = 2h. Each such pair thus consists of two h-subsets a and b with the same
sum m for some m < hn; conversely, all pairs of two disjoint h-subsets with the same sum

arise in this way. Hence
2|B(2h)| < Z . < 2|B(2h)| + N, (9)

where N’ is the number of pairs (a,b) with a,b € A and anb # @, and thus [aUb| < 2h.

Considering the three cases a < b, a=Db and a > b, we obtain, using Lemma 1,
2h—1
N' <2 ) [B(O)|+ Al 2072 40P 0?2, (10)

=1

Next we use Lemma 3 and conclude that

hn hn
> N = g 3 (Rm/mn®'=? + O™ )
m=1 ’

n2h—2 hn

th (m/n) + O (n*"~?). (11)
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Finally we have, using the fact that f;(z) = fn—1(x) — fa—1(z — 1) is bounded for every
h > 2,
hn m/n

RS

The lemma follows by combining (9), (10), (11) and (12).

(f2(x) + O(n™Y)) x—n/ J2(e)de+ O(1).  (12)
—1)/n

The function fj, vanishes outside [0, h], and on each interval [i — 1,4], i = 1,...,h, it
equals a polynomial; hence foh f,f can in principle be computed directly for each h. This
is easily done for small h, but quickly becomes rather tedious and does not seem to yield

a general formula. We thus calculate the integral using Fourier methods.

Lemma 5. Ifh > 1, then

[} reie= ity g(ﬂ)j R

Proof. The Fourier transform of x g, 17 is

it

1
ton®) = [ o= S~ 1),
0

Since f), = ()2(071])", Plancherel’s formula yields

h 00 1 e 1 [ |eit — 12k
IR L B e L B

Denote the numerator |e® — 1|2 = (e* — 1)"(e~® — 1) by P(t). We integrate by parts

2h — 2 times, obtaining

h C1eeey 1 Pt
/0 fl%(x)dx_ ;/0 +2h dt = 7T(2h—1)/0 $2h—1 dt =

1 00 P(2h—2)(t)
= dt. 14
m(2h — 1)! /0 2 (14)
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(The integrals converge and the integrated parts vanish because P has a zero of order 2h
at t = 0 and P and all its derivatives are bounded.)

A binomial expansion yields
. . o 2% S
P(t) — (ezt . 1)h(e—zt _ l)h — (_1)h6—zth(ezt _ 1)2h — Z ( . )(_1)h+361t(h—J)
and thus (except for an extra constant term in the case h = 1)

2h o,
P(Zh—Z)(t) — Z < ‘ )(—1)j+1(h _ j)2h—26it(h—j)

= J

- Z (%) 1Y = )22 cos(h = ).

Hence, using also P(2"=2)(0) = 0, (14) yields

1 P(Qh—Z) _ P(2h,—2)
[ sz / 0 o,
(2h — 1) t2

“ @ - e Z (2”) (1) (- )2 /0 T enh N2y,

J

Finally, for any k£ > 0,

1 — cos ki -
/ it = k/ —— % = kI,
0 t 0 u 2

and the result follows. (The integral fooo 1_;3” du = 5 is well-known; alternatively, this

follows by checking the case h = 1 of the lemma.)
We summarize the result.

Lemma 6.
EUX:% n2h 1 2h+0( 2h—2p2h—1) (15)
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and

EUY — thth—lp2h + O(th—2p2h) (16)

with

1 = (2h ~\2h—1
Kkn = 2(h)2(2h — 1)! ;(_1)J<]~>(h_]) . (17)

Proof. (16) follows by combining (7) with Lemmas 4 and 5, and (15) by further using the

estimate in (6).

In particular, if p = (A + o(1))n(1/2")=1 then both E, X and E,Y tend to x,A%" as
n — oo.
The sum in (17) involves massive cancellation and does not easily yield asymptotic

expressions. We therefore study the asymptotics of kK, as h — oo by other means.
Lemma 7. Ash — oo, foh fi(x)dx ~ /2 and thus kp, ~ |/ 72 (h) 72

Proof. Since |e** — 1| = 2|sin(t/2)|, (13) yields

h 1 [ [sin(t/2)\*" 1 [ [sint\"
[ awar=g [ (F52) a=2[ ()

We divide this integral into two parts. First,

.\ 2h
t o dt 2
/ (ﬂ) dt < 2/ or = — o(h~Y?)

as h — oo.
For |t| < 1 we make the substitution ¢ = 2/v/h. The Taylor series for sin ¢ shows that

sint _ 7 _ % + O(t4), and thus for each fixed =

(Sin(fﬂ/ﬁ)> : — (1 ~ g + O(h—2)>2h — e /3
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moreover it follows that, when [t| <1, ‘Si?t‘ <1—1t2/7 and thus

(Sin(x/ﬂ)>2h < (1 - x—2>2h <1 jal < Vi

z/Vh 7h B

Consequently, by dominated convergence,

VAL ()= [ () s [ e

and the result follows.

The basic Stein-Chen approximation theorem we employ is as follows:

Poisson approximation theorem for positively related variables (Corollary 2.E.1
in [2]): Consider a sum W =3, ; I; of indicator random variables, and set A = E(W).
Suppose that the variables I; are increasing functions of some underlying independent

random variables. Then

1—e 2

dry (£(W). Po(X)) <

Var(W) —A+2) P*(I; =1)

Armed with the above result (or alternatively Corollary 2.C.4 in [2] together with a

simple explicit coupling), we are ready to prove

Theorem 2. Consider a subset A,, formed by randomly and independently choosing each
element of [n] with probability p,. Let X and Y be as defined above and set A = E,(Y).
Then

drv(L(X),Po(A) =0 (n— o0)
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provided that p, = o(1/nG"=2/Ch=1) " In particular, if By, (|A,|) = (A + o(1))n'/?", then

P,(X =0) — exp{—kp A%} (n — 00), where Ky, is given by (17).

Proof. We clearly need to just compute a bound on dpy (L(Y),Po(\)). The result quoted
above yields immediately (the underlying independent variables are the indicators for the

individual numbers in [n])

1
drv(L(Y),Po(})) < X Var, (V) — A +2 Z P2(I,p = 1)
(a,b)EB(2h)
— M _ ]_ + 2p2h
A
1 1
=5 2 (Bullaplea)=p"}+ 5 D {Bully) —p™} - 142"
(a,b)~(c,d) (a,b)EB(2h)

where the last estimate in (18) follows by (4) and (16). This establishes Theorem 2.

Even though Theorem 2 is a result about sets of random size, it can readily be trans-
lated into a statement about random subsets of a fixed size:

Corollary. Consider a subset A,, of size k,, chosen at random from the (k") such subsets

of [n] ={1,2,...,n}. Then for any h > 2,
kn = (A + 0(1))n'/2" = P(A, is By) — e " (n = 00)

where Ky, is given by (17).

Proof. Let
k ni/4h oo n
pr="n - 0BT
n n
and
_ kn  n'/*logn
bph=—7——"7_ "3



these choices are made for convenience only, and are certainly not unique. Then both p;
and p;, are of the form (A + o(1))n~(h=1/2h; let, us use them to generate random sets A;

and A, as in Theorem 2. Note that

E,(|Af]) = kn +n'/*"logn

and

Var, (|A7]) < Eu(|A%]) = O(n'/?").

Furthermore, by Chebychev’s inequality,

Py (A7 < kn) =
and thus for a set At of cardinality k,,

P(A is not a By, set) = P, (A

n

is not a By, set||A}| = ky)

< P, (A is not a By set||A}| > ky,)

— n

P, (A; is not a By, set)

< 31—
=T P (AL > k) ¢

(A = kpA%"), so that for a randomly chosen A, with |A,| = k,,

limsup P(A,, is not a By, set) <1 — e M.

n—o0

The opposite inequality, which shows that

liminf P(A,, is not a By, set) > 1 —¢e™*

n— 00

follows on using a similar argument with the set A_ . This proves the corollary.
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Theorem 3. Consider, under the model P,,, the ensemble {Iop : a1 + ...+ ap = by +

...+ bp;a < b} of dependent indicator random variables. Then

drv (£{Tan} [T Poluap)) =0

as n — 0o provided that p = o(1/n(*h=3)/(4h=1)) “yhere tap = Eu(Tap) = p*" if a,b are

two disjoint h-tuples of distinct elements, and pap, = 0 otherwise.

Proof. Let Kb = Iap if (a,b) € B(2h), with K, = 0 otherwise. Since

drv (ﬁ{[a,b}, 11 PO(ua,b))
<dtv (E{Ka,b}, HPO(Ma,b)> +drv(L{Iap}, L{Kap})

<dry <£{Ka,b}, HPO(ua,b)> +Eu (X -Y)

and p = o(1/nh=2/Ch=1)) which implies E,(X —Y) — 0, we see that the result will
follow if we can establish that dpyv(L{Kapb}, [[Po(tta,p)) — 0. Now we invoke Corollary

10.J.1 and Theorem 2.E in [2] which yield,

drv (E{Ka,b}, Hpo(ua,b)) <|Var,(Y)-xr+2 Y P Lp=1)], (19)
(a,b)EB(2h)

where A\ = E,(Y). Now it is easy to check that the bound in (19) reduces, as in the
argument leading to (18), to a term of order n**=3p*h—1: the different rate results due to
the absence of the “magic factor” of (1 —e~*)/\ that is present in the univariate case.
This establishes the result; note that

1 1 1
n(2h—1)/2h = | (4h—3)/(4h—1) = p(2h—2)/(2h—1)"

Remarks. Theorem 3 can easily be restated in terms of the measure P; we skip the
details. In any event, this result provides a nice global view of the presence/absence of
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various taboo (i.e., By-property producing) integer sums in the random set A. Also, since
the total variation distance is preserved under any functional, we may use Theorem 3 to
estimate probabilities such as P(a < ¥ < b), where ¥ equals the number of integers m

which can be represented as two or more integer sums.
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