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AbstractA subset A of the set [n] = f1; 2; : : : ; ng, jAj = k, is said to form a Sidon (or Bh)sequence, h � 2, if each of the sums a1 + a2 + : : : + ah; a1 � a2 � : : : � ah; ai 2 A,are distinct. We investigate threshold phenomena for the Sidon property, showing thatif An is a random subset of [n], then the probability that An is a Bh sequence tends tounity as n ! 1 if kn = jAnj � n1=2h, and that P(An is Sidon) ! 0 provided thatkn � n1=2h. The main tool employed is the Janson exponential inequality. The validityof the Sidon property at the threshold is studied as well; we prove, using the Stein{Chen method of Poisson approximation, that P(An is Sidon) ! expf��g (n ! 1) ifkn � � � n1=2h (� 2 R+), where � is a constant that depends in a well-speci�ed way on�. Multivariate generalizations are presented.
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1. IntroductionA subset A of [n] = f1; 2; : : : ; ng, jAj = k, is said to form a Sidon (or Bh) sequence,h � 2, if each of the �k+h�1h � sums a1 + a2 + : : : + ah; a1 � a2 � : : : � ah; ai 2 A (i =1; 2; : : : ; h) are distinct. For example, any two element set fa; bg is B2, since the three sumsa+b; 2a; 2b are necessarily distinct, whilst a three element set fa; b; cg is B2 i� a; b; c are notin arithmetic progression. An extensive survey of the properties of Sidon sequences may befound in Halberstam and Roth [5], where it is shown, for example, that Bh sequences areof size at most O(n1=h) [for any h � 2] , and, moreover, that there do exist Bh sequencesof order n1=h. In particular, Lindstr�om [6] showed that jAj � n1=2 + n1=4 + 1 for anyB2 sequence A. Recent papers on �nite and in�nite Sidon sequences include the ones byGraham [4] and Spencer and Tetali [8].We consider a set An obtained by selecting, without replacement, a random sampleof size kn from the �rst n integers, and investigate threshold phenomena for the Sidonproperty, showing, in Theorem 1, that the probability that An is Bh tends to unity asn ! 1 if kn � n1=2h, and that P(An is Sidon) ! 0 provided that kn � n1=2h, wherewe write '(n) � &(n) (resp. '(n) � &(n)) if '(n)=&(n) ! 1 (resp. 0) as n ! 1. (The�rst part has also been shown by Nathanson, see [7], page 37, Exercise 14.) The main toolemployed is the Janson exponential inequality (see, e.g., Alon and Spencer [1]). Theorem1 shows that the Sidon property becomes rare at a level far below that indicated by theabove-mentioned extremal results in Halberstam and Roth [5]; it is conceivable, however,that a carefully selected non-uniform measure on the kn-subsets of [n] will yield a thresholdcloser to n1=h: for example, one may be able to exploit the fact [3,4] that maximal B24



sequences are uniformly distributed. In Section 3, we investigate the behaviour of theSidon property at the threshold, proving in Theorem 2 that P(An is Bh) ! expf��g asn ! 1 if jAnj � � � n1=2h, where � 2 R+ and � = �h�2h for a constant dependingon h. (�2 = 1=12 and �3 = 11=1440; asymptotically �h � q 34�h�1=2h!�2 as h ! 1.)The Stein{Chen method of Poisson approximation [2] is the main technique used in theproof of this result. We also provide multivariate Poisson approximations for the jointdistribution of the ensemble fIa;b : a1 + : : :+ ah = b1 + : : :+ bhg, where a = (a1; : : : ; ah),b = (b1; : : : ; bh), and where the zero-one variable Ia;b equals one i� fa1; : : : ; ahg � An,fb1; : : : ; bhg � An; this result (Theorem 3) enables one to understand the structure of theset An in a global sense, keeping track, as it does, of all the episodes when an integer mis obtained by two h-sums of elements of An. The Stein{Chen method is used once againas the driving force behind the proof; of special note is the fact that the components ofthe multivariate Poisson approximant in Theorem 3 are independent, whereas the variablesIa;b are clearly not.We have chosen to employ di�erent methods in Sections 2 and 3, but it should bemade clear at the outset that we could have done di�erently. In fact, Theorem 1 isa simple corollary of Theorem 2, and thus follows by the Stein{Chen method too. (Athird possibility is to use Chebyshev's inequality together with estimates derived below.)Conversely, Theorem 2 may be derived using the Janson inequality.Similar questions can be asked regarding sum-free subsets of the integers, and will bereported on elsewhere, as will be results on Bh sequences where h!1 along with n, andon subsets with distinct sums (see [1] for the relevant de�nitions).5



We write u = O(v) or (equivalently) u � v if u � Av for some constant A that maydepend on h but not on n or any other variable.2. Threshold functions for the Sidon propertyThe following is the main result of this section:Theorem 1. Consider a subset An of size kn chosen at random from the � nkn� such subsetsof [n] = f1; 2; : : : ; ng. Then for any h � 2,kn = o(n1=2h)) P(An is Bh)! 1 (n!1)and n1=2h = o(kn)) P(An is Bh)! 0 (n!1):
Proof. We begin with the easy �rst half, the proof of which employs nothing more thanthe Markov inequality. We introduce some notation to be used throughout the paper.Let A = An;h be the set of all sequences a = (a1; : : : ; ah) with 1 � a1 � a2 � : : : �ah � n, and letB = Bn;h = f(a;b) 2 A�A : a1 + : : :+ ah = b1 + : : :+ bh and a < bgwhere < denotes the lexicographic order.An element a of A is thus an (ordered) sequence (a1; : : : ; ah), but we will also, whenconvenient, use a to denote the corresponding set fa1; : : : ; ahg; for example, jaj denotesthe number of elements of this set, i.e., the number of distinct numbers ai.6



Using this notation, a set An � [n] is Sidon if and only if An does not contain a [ bfor any (a;b) 2 B.Let, as above, Ia;b, (a;b) 2 B, be the (random) indicator variables de�ned by Ia;b = 1if a [ b � An (with Ia;b = 0 otherwise), and de�neX = X(a;b)2B Ia;b:Thus An is Sidon if and only if Ia;b = 0 for every pair (a;b) 2 B, i.e., when X = 0.We de�ne B(l) = f(a;b) 2 B : ja [ bj = lg ; l = 1; : : : ; 2h;and note that B(2h) is the set of pairs (a;b) with 2h distinct numbers a1; : : : ; bh. Clearly,for any (a;b) 2 B(l), P(Ia;b = 1) = �n� lk � l� . �nk� � �kn�l;and thus, by Markov's inequality,P(An is not Bh) = P(X � 1)� E(X) = 2hXl=1 jB(l)j�n� lk � l� . �nk� � 2hXl=1 jB(l)j�kn�l: (1)We estimate jB(l)j as a lemma.Lemma 1. jB(l)j, the number of pairs (a;b) 2 B containing exactly l di�erent numbers,is O(nl�1) for every l � 2h.Proof. A pair (a;b) 2 B(l) satis�es a pattern of 2h � l (non-redundant) coincidencesamong fa1; : : : ; bhg, for example a1 = a2 = b1, a5 = b3, : : : . Fix one such pattern. This7



pattern de�nes 2h � l of the variables a1; : : : ; bh in terms of the remaining l `free' ones.Moreover, the relation a1+ : : :+ah = b1+ : : :+ bh yields a linear relation between the freevariables, and this relation degenerates only when each free variable occurs equally manytimes in a and in b, which means that the pattern implies a = b and hence (a;b) =2 B.For all other patterns, the pair (a;b) 2 B is thus speci�ed by l� 1 variables 2 [n], and thenumber of pairs (a;b) 2 B with a given pattern is thus � nl�1. This completes the proof,since the number of possible patterns is �nite (and bounded independently of n).Consequently, if k = o(n1=2h), thenP(An is not Bh) � 2hXl=1 nl�1kln�l � k2hn�1 ! 0;as n!1, which proves the �rst part of the theorem.Turning to the second half, we note that the main contribution to E(X) is throughh-tuples a and b whose 2h coordinates are all distinct. Thus we de�neY = X(a;b)2B(2h) Ia;band see that P(A is Bh) = P(X = 0) � P(Y = 0):We thus focus on computing P(Y = 0), and start by changing the underlying modelsomewhat; we will revert to the original model later in the proof: Let us choose each elementof [n] independently with probability p = k=n. This yields a set whose expected (as opposedto actual) cardinality is k. Such a strategy is necessary due the baseline assumption ofindependence that is required for the successful application of the Janson inequality, which8



yields (see e.g. Alon and Spencer [1], Theorem 1.1 in Chapter 8 with " = 1=2; the versiongiven there has the (not really necessary) assumption Pu(Ia;b = 1) = p2h � 12 for all(a;b) 2 B(2h), which we may assume without loss)Pu(Y = 0) � 0@ Y(a;b)2B(2h)Pu(Ia;b = 0)1A exp(�); (2)where Pu is the probability measure corresponding to the modi�ed model described aboveand � is given by � = X(a;b)�(c;d)Pu(Ia;bIc;d = 1)with the relation � on B(2h) being de�ned as follows: We say that (a;b) � (c;d) if(a;b); (c;d) 2 B(2h), (a;b) 6= (c;d) and (a [ b) \ (c [ d) 6= ;. By (2), our result willfollow, under the modi�ed model, if we can show that the right hand side of (2) tends tozero for suitable p. Let, for 2h � l � 4h,D(l) = ��(a;b); (c;d)� 2 B(2h)� B(2h) : (a;b) 6= (c;d) and ja [ b [ c [ dj = l	 :Then D := S4h�1l=2h D(l) is the set of pairs of pairs �(a;b); (c;d)� with (a;b) � (c;d). Wehave, � = X(a;b)�(c;d)Pu(Ia;bIc;d = 1) = 4h�1Xl=2h X((a;b);(c;d))2D(l)Pu(Ia;bIc;d = 1)= 4h�1Xl=2h jD(l)jpl: (3)Lemma 2. For each l � 2h, jD(l)j � nl�2.Proof. We argue as in the proof of Lemma 1. This time each �(a;b); (c;d)� 2 D(l)satis�es a pattern of 4h� l coincidences of the types ai = cj , ai = dj , bi = cj and bi = dj ,9



where no variable occurs more than once. (Recall that by assumption, (a;b) and (c;d)each contain 2h distinct numbers.)We �x one such pattern. Suppose �rst that l > 2h. Then there are n2h�1 choices ofa1; : : : ; bh�1, which together determine bh (possible outside [n] and thus illegal) becausea1+ : : :+ah = b1+ : : :+bh. The pattern of coincidences then determine 4h�l of c1; : : : ; dh,and of the remaining 2h� (4h� l) = l� 2h > 0 variables one is determined by the othersbecause of the relation c1 + : : :+ ch = d1 + : : :+ dh; hence there are � nl�2h�1 choices ofc1; : : : ; dh. Together this gives � n2h�1+l�2h�1 = nl�2 choices for each pattern, and theresult for the case l > 2h follows.In the case l = 2h, the pattern determines each cj and dj as one of a1; : : : ; bh. If eachcj coincides with an ai, then necessarily c = a (recall that the sequences are ordered) andd = b, which violates (a;b) 6= (c;d), and there are no pairs of pairs in D(2h) satisfyingthe pattern. Similarly, if each cj coincides with an bi, then c = b and d = a, whichviolates a < b and c < d. Hence we only have to consider patterns where all four types ofcoincidences ai = cj , ai = dj , bi = cj and bi = dj occur (with di�erent indices, in general),but in this case the relations a1+ : : :+ ah = b1+ : : :+ bh and c1+ : : :+ ch = d1+ : : :+ dhgive two linearly independent relations between a1; : : : ; bh, and thus these numbers aredetermined by 2h� 2 = l� 2 of them. Consequently, the number of pairs of pairs for eachpattern is � nl�2 in this case too, and the result follows.We thus have, using (3) and np = k � 1,� = 4h�1Xl=2h jD(l)jpl � 4h�1Xl=2h nl�2pl � n4h�3p4h�1: (4)10



Note further that jB(2h)j � n2h�1 (we will prove a more precise estimate in the nextsection). Returning to (2), we thus obtain, for some positive constants c and C,Pu(Y = 0) � 0@ Y(a;b)2B(2h)Pu(Ia;b = 0)1A expfCn4h�3p4h�1g� �1� p2h�cn2h�1 expfCn4h�3p4h�1g� expf�cn2h�1p2h + Cn4h�3p4h�1g= expf�n2h�1p2h �c� Cn2h�2p2h�1�g: (5)Now if 1n 2h�12h � p� 1n 2h�22h�1 ;(5) reveals that Pu(Y = 0) ! 0, showing, by monotonocity, that Theorem 1 holds forthe altered model if p � 1=n(2h�1)=2h, i.e., if E(jAnj) � n1=2h. We must now translatethis fact into the format of the original problem, and thus need to compute, under thetransformed model, Pu(An is Bh��jAnj = np), which, again by monotonicity, is smallerthan Pu(An is Bh��jAnj � np) and thus than Pu(An is Bh)=Pu(jAnj � np). Now thenumerator of this last quantity is asymptotically small if p � 1=n(2h�1)=2h, whilst thedenominator is certainly, at least for large n, of magnitude close to 1/2. The theoremfollows.
3. The behavior of the Sidon property at the thresholdAs mentioned above, the �rst result of this section, which �nds the asymptotic value ofP(An is Bh) when jAnj � �n1=2h could have been obtained on using the methods of Section2. We choose, however, to employ the Stein{Chen method of Poisson approximation [2]11



(which could, conversely, have been used to establish Theorem 1) to address a wider issue:If X denotes, as before, the number of episodes (a;b) (under the model Pu) for which Ancontains both the vectors a and b whose coordinates sum to the same value, then whatcan be said about the distribution of X (and not just the value of the point probabilityPu(X = 0)?) Let L(U) denote the probability distribution of the random variable U ,and Po(�) the Poisson distribution with parameter �. Finally, let dTV(L(U);L(V )) be thetotal variation distance between L(U) and L(V ), de�ned bydTV(L(U);L(V )) = supA�Z+ jP(U 2 A)�P(V 2 A)j:Now for any three random variables U; V and W ,dTV(L(U);L(V )) � dTV(L(U);L(W )) +P(V 6= W );so that in our context,dTV(L(X);Po(Eu(Y ))) � dTV(L(Y );Po(Eu(Y ))) +Pu(X 6= Y );where X and Y are as de�ned in Section 2. Since, as in the argument leading to (1), andusing Lemma 1,Pu(X 6= Y ) � Eu(X � Y ) = 2h�1Xl=1 jB(l)jpl � n2h�2p2h�1 ! 0 (6)if p = o(1=n(2h�2)=(2h�1)), we focus on bounding dTV(L(Y );Po(Eu(Y )).Our �rst task will be to obtain a tight estimate on � = Eu(Y ). Now� = X(a;b)2B(2h)P(Ia;b = 1) = p2hjB(2h)j: (7)12



Loosely, we know that jB(2h)j � n2h�1 so that � � p2hn2h�1 = �2h if p = �n�(2h�1)=2h,but we must be more exact.We de�ne the functions fj = ��j(0;1], j = 1; 2; : : :, to be the convolution powers of thecharacteristic function of (0; 1], i.e., f1(x) = 1 when 0 < x � 1 and 0 otherwise, andfj+1(x) = Z xx�1 fj(t) dt; j � 1:(Note that fj(x) equals the density function for the distribution of the sum of j independentrandom variables, each uniformly distributed on (0; 1].)Lemma 3. Let h � 1 and let Nm;n be the number of h-subsets of f1; : : : ; ng with summ. Then Nm;n = 1h!fh(m=n)nh�1 + O(nh�2):(Recall our convention that the constant implicit in the O term does not depend onm or n.)Proof. Let N�m;n;h be the number of sequences a = (a1; : : : ; ah) with 1 � ai � n forall i and a1 + : : : + ah = m. Since the number of such sequences with distinct elementsequals h!Nm;n, and the number of such sequences with two or more elements coinciding isO(nh�2), it su�ces to show thatN�m;n;h = fh(m=n)nh�1 +O(nh�2): (8)This is trivially true for h = 1. Moreover, collecting sequences according to their lastelement ah, it is seen that N�m;n;h = nXj=1N�m�j;n;h�113



and (8) follows easily by induction, and approximating the appropriate integral by itsRiemann sum.Lemma 4. For every h � 2,jB(2h)j = �hn2h�1 + O(n2h�2);where �h = 12(h!)2 Z h0 f2h(x) dx > 0:Proof. 2jB(2h)j equals the number of pairs (a;b) 2 A�A with a1+ : : :+ah = b1+ : : :+bhand ja [ bj = 2h. Each such pair thus consists of two h-subsets a and b with the samesum m for some m � hn; conversely, all pairs of two disjoint h-subsets with the same sumarise in this way. Hence 2jB(2h)j � hnXm=1N2m;n � 2jB(2h)j+N 0; (9)where N 0 is the number of pairs (a;b) with a;b 2 A and a\b 6= ;, and thus ja[bj < 2h.Considering the three cases a < b, a = b and a > b, we obtain, using Lemma 1,N 0 � 2 2h�1Xl=1 jB(l)j+ jAj � n2h�2 + nh � n2h�2: (10)Next we use Lemma 3 and conclude thathnXm=1N2m;n = 1h!2 hnXm=1 �f2h(m=n)n2h�2 +O(n2h�3)�= n2h�2h!2 hnXm=1 f2h(m=n) + O(n2h�2): (11)14



Finally we have, using the fact that f 0h(x) = fh�1(x) � fh�1(x � 1) is bounded for everyh � 2,hnXm=1 f2h(m=n) = hnXm=1n Z m=n(m�1)=n �f2h(x) + O(n�1)� dx = n Z h0 f2h(x) dx+ O(1): (12)The lemma follows by combining (9), (10), (11) and (12).The function fh vanishes outside [0; h], and on each interval [i� 1; i], i = 1; : : : ; h, itequals a polynomial; hence R h0 f2h can in principle be computed directly for each h. Thisis easily done for small h, but quickly becomes rather tedious and does not seem to yielda general formula. We thus calculate the integral using Fourier methods.Lemma 5. If h � 1, thenZ h0 f2h(x) dx = 1(2h� 1)! h�1Xj=0(�1)j�2hj �(h� j)2h�1:Proof. The Fourier transform of �(0;1] is�̂(0;1](t) = Z 10 eitx dx = 1it (eit � 1):Since f̂h = (�̂(0;1])h, Plancherel's formula yieldsZ h0 f2h(x) dx = Z 1�1 f2h(x) dx = 12� Z 1�1 jf̂2h(t)j dt = 12� Z 1�1 jeit � 1j2ht2h dt: (13)Denote the numerator jeit � 1j2h = (eit � 1)h(e�it � 1)h by P (t). We integrate by parts2h� 2 times, obtainingZ h0 f2h(x) dx = 1� Z 10 P (t)t2h dt = 1�(2h� 1) Z 10 P 0(t)t2h�1 dt = : : := 1�(2h� 1)! Z 10 P (2h�2)(t)t2 dt: (14)15



(The integrals converge and the integrated parts vanish because P has a zero of order 2hat t = 0 and P and all its derivatives are bounded.)A binomial expansion yieldsP (t) = (eit � 1)h(e�it � 1)h = (�1)he�ith(eit � 1)2h = 2hXj=0�2hj �(�1)h+jeit(h�j)and thus (except for an extra constant term in the case h = 1)P (2h�2)(t) = 2hXj=0�2hj �(�1)j+1(h� j)2h�2eit(h�j)= h�1Xj=0 �2hj �(�1)j+1(h� j)2h�22 cos(h� j)t:Hence, using also P (2h�2)(0) = 0, (14) yieldsZ h0 f2h(x) dx = 1(2h� 1)!� Z 10 P (2h�2)(t)� P (2h�2)(0)t2 dt= 1(2h� 1)!� h�1Xj=0 �2hj �(�1)j+1(h� j)2h�2 Z 10 2 cos(h� j)t� 2t2 dt:Finally, for any k > 0,Z 10 1� cos ktt2 dt = k Z 10 1� cosuu2 du = k�2 ;and the result follows. (The integral R10 1�cosuu2 du = �2 is well-known; alternatively, thisfollows by checking the case h = 1 of the lemma.)We summarize the result.Lemma 6. EuX = �hn2h�1p2h + O(n2h�2p2h�1) (15)16



and EuY = �hn2h�1p2h +O(n2h�2p2h) (16)with �h = 12(h!)2(2h� 1)! h�1Xj=0(�1)j�2hj �(h� j)2h�1: (17)Proof. (16) follows by combining (7) with Lemmas 4 and 5, and (15) by further using theestimate in (6).In particular, if p = (� + o(1))n(1=2h)�1, then both EuX and EuY tend to �h�2h asn!1.The sum in (17) involves massive cancellation and does not easily yield asymptoticexpressions. We therefore study the asymptotics of �h as h!1 by other means.Lemma 7. As h!1, R h0 f2h(x) dx �q 3�h and thus �h �q 34�h(h!)�2.Proof. Since jeit � 1j = 2j sin(t=2)j, (13) yieldsZ h0 f2h(x) dx = 12� Z 1�1 � sin(t=2)t=2 �2h dt = 1� Z 1�1 � sin tt �2h dt:We divide this integral into two parts. First,Zjtj�1� sin tt �2h dt � 2 Z 11 dtt2h = 22h� 1 = o(h�1=2)as h!1.For jtj � 1 we make the substitution t = x=ph. The Taylor series for sin t shows thatsin tt = 1� t26 + O(t4), and thus for each �xed x sin(x=ph)x=ph !2h = �1� x26h +O(h�2)�2h ! e�x2=3;17



moreover it follows that, when jtj � 1, �� sin tt �� � 1� t2=7 and thus sin(x=ph)x=ph !2h � �1� x27h�2h � e�2x2=7; jxj � ph:Consequently, by dominated convergence,ph Z 1�1 � sin tt �2h dt = Z ph�ph sin(x=ph)x=ph !2h dx! Z 1�1 e�x2=3 dx = p3�;and the result follows.The basic Stein{Chen approximation theorem we employ is as follows:Poisson approximation theorem for positively related variables (Corollary 2.E.1in [2]): Consider a sum W =Pj2J Ij of indicator random variables, and set � = E(W ).Suppose that the variables Ij are increasing functions of some underlying independentrandom variables. ThendTV(L(W );Po(�)) � 1� e��� 0@Var(W )� �+ 2Xj P2(Ij = 1)1A :
Armed with the above result (or alternatively Corollary 2.C.4 in [2] together with asimple explicit coupling), we are ready to proveTheorem 2. Consider a subset An formed by randomly and independently choosing eachelement of [n] with probability pn. Let X and Y be as de�ned above and set � = Eu(Y ).Then dTV(L(X);Po(�))! 0 (n!1)18



provided that pn = o(1=n(2h�2)=(2h�1)). In particular, if Eu(jAnj) = (� + o(1))n1=2h, thenPu(X = 0)! expf��h�2hg (n!1), where �h is given by (17).Proof. We clearly need to just compute a bound on dTV(L(Y );Po(�)). The result quotedabove yields immediately (the underlying independent variables are the indicators for theindividual numbers in [n])dTV(L(Y );Po(�)) � 1� 0@Varu(Y )� �+ 2 X(a;b)2B(2h)P2u(Ia;b = 1)1A= Varu(Y )� � 1 + 2p2h= 1� X(a;b)�(c;d)�Eu(Ia;bIc;d)� p4h	+ 1� X(a;b)2B(2h)�Eu(I2a;b)� p4h	� 1 + 2p2h� �� + 2p2h � n2h�2p2h�1; (18)where the last estimate in (18) follows by (4) and (16). This establishes Theorem 2.Even though Theorem 2 is a result about sets of random size, it can readily be trans-lated into a statement about random subsets of a �xed size:Corollary. Consider a subset An of size kn chosen at random from the � nkn� such subsetsof [n] = f1; 2; : : : ; ng. Then for any h � 2,kn = (� + o(1))n1=2h ) P(An is Bh)! e��h�2h (n!1)where �h is given by (17).Proof. Let p+n = knn + n1=4h lognnand p�n = knn � n1=4h lognn ;19



these choices are made for convenience only, and are certainly not unique. Then both p+nand p�n are of the form (�+ o(1))n�(2h�1)=2h; let us use them to generate random sets A+nand A�n as in Theorem 2. Note thatEu(jA+n j) = kn + n1=4h lognand Varu(jA+n j) < Eu(jA+n j) = O(n1=2h):Furthermore, by Chebychev's inequality,Pu(jA+n j < kn) � 1log2 n ! 0;and thus for a set A+n of cardinality kn,P(A+n is not a Bh set) = Pu(A+n is not a Bh set��jA+n j = kn)� Pu(A+n is not a Bh set��jA+n j � kn)� Pu(A+n is not a Bh set)Pu(jA+n j � kn) ! 1� e��(� = �h�2h), so that for a randomly chosen An with jAnj = kn,lim supn!1 P(An is not a Bh set) � 1� e��:The opposite inequality, which shows thatlim infn!1 P(An is not a Bh set) � 1� e��follows on using a similar argument with the set A�n . This proves the corollary.20



Theorem 3. Consider, under the model Pu, the ensemble fIa;b : a1 + : : : + ah = b1 +: : :+ bh; a < bg of dependent indicator random variables. ThendTV �LfIa;bg;YPo(�a;b)�! 0as n !1 provided that p = o(1=n(4h�3)=(4h�1)), where �a;b = Eu(Ia;b) = p2h if a;b aretwo disjoint h-tuples of distinct elements, and �a;b = 0 otherwise.Proof. Let Ka;b = Ia;b if (a;b) 2 B(2h), with Ka;b � 0 otherwise. SincedTV �LfIa;bg;YPo(�a;b)�� dTV �LfKa;bg;YPo(�a;b)�+ dTV�LfIa;bg;LfKa;bg�� dTV �LfKa;bg;YPo(�a;b)�+ Eu(X � Y )and p = o(1=n(2h�2)=(2h�1)) which implies Eu(X � Y ) ! 0, we see that the result willfollow if we can establish that dTV(LfKa;bg;QPo(�a;b)) ! 0. Now we invoke Corollary10.J.1 and Theorem 2.E in [2] which yield,dTV �LfKa;bg;YPo(�a;b)� � 0@Varu(Y )� �+ 2 X(a;b)2B(2h)P2u(Ia;b = 1)1A ; (19)where � = Eu(Y ). Now it is easy to check that the bound in (19) reduces, as in theargument leading to (18), to a term of order n4h�3p4h�1; the di�erent rate results due tothe absence of the \magic factor" of (1 � e��)=� that is present in the univariate case.This establishes the result; note that1n(2h�1)=2h � 1n(4h�3)=(4h�1) � 1n(2h�2)=(2h�1) :Remarks. Theorem 3 can easily be restated in terms of the measure P; we skip thedetails. In any event, this result provides a nice global view of the presence/absence of21
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