
ON COMPLEX HYPERCONTRACTIVITYSVANTE JANSONAbstract. We give a new proof of a hypercontractivity theorem for the Mehlertransform with a complex parameter, earlier proved byWeissler [15] and Epperson[4]. The proof uses stochastic integrals and Itô calculus. The method also yieldsnew proofs of some related results.
1. IntroductionLet � be the standard Gaussian measure (2�)�1=2e�x2=2 dx on R, and let h0(x),h1(x), : : : be the corresponding sequence of orthogonal polynomials (the Hermitepolynomials). The Mehler transformMz, where z is a complex number with jzj � 1,can be de�ned byMz�P10 anhn� =P10 anznhn; since fhng10 is an orthogonal basisin L2(d�), Mz is a bounded linear operator L2(d�)! L2(d�) with norm 1.Remark. As is well known, see e.g. [10] and [7], Mz can also, for jzj < 1 at least, bede�ned as an integral operator.If z is real, �1 � z � 1, it is not di�cult to show that Mz maps Lp(d�) into itselfwith norm 1 for every p � 1; i.e. Mz is a contraction in Lp(d�). (For p < 2 this, ofcourse, entails extending Mz from L2(d�) by continuity.)Nelson [11] proved the much stronger result, known as hypercontractivity, that if1 � p � q < 1 and z is real with z2 � (p� 1)=(q � 1), then Mz maps Lp(d�) intoLq(d�) with norm 1; conversely, if z2 > (p�1)=(q�1), thenMz is not even boundedLp(d�) ! Lq(d�). Many di�erent proofs of this important result are known, seethe survey by Gross [5] and the many references given there. We will in this paperstudy the extension of Nelson's result to complex z.The case of an imaginary z was studied by Beckner [1], who showed that hy-percontractivity holds for z = ipp� 1 when 1 � p � 2 and q = p0, the conjugateexponent. (As shown by Beckner, this is by a change of variable equivalent to thesharp form of the Hausdor�{Young inequality.)General complex values of z were studied by Weissler [15] and Epperson [4], whocharacterized the set of z for which Mz is a contraction Lp(d�) ! Lq(d�), andshowed that it equals the set where Mz is bounded. (The special case q = p0 wasalso treated by Coifman, Cwikel, Rochberg, Sagher and Weiss [3].) Weissler's proofexcludes the cases 3=2 < p � q < 2 and 2 < p � q < 3 while Epperson's covers thewhole range 1 � p � q < 1. (Weissler [15] also gave some results for p > q; thiscase will not be considered here.) An alternative approach to this result was givenby Lieb [9], who proved a very general theorem on integral operators with Gaussiankernels.The main purpose of the present paper is to present a new proof of the result byWeissler and Epperson, which can be stated as follows.1



2 SVANTE JANSONTheorem 1. Let 1 � p � q < 1. Then Mz is a contraction Lp(d�) ! Lq(d�) ifand only if(q � 1)jRe zwj2 + j Im zwj2 � (p� 1)jRewj2 + j Imwj2; for all w 2 C : (1)Moreover, if (1) fails (for some w), then Mz is not even bounded Lp(d�)! Lq(d�).Remark. By expressing the di�erence between the two sides in (1) as a quadraticform in Rew and Imw, it is easily seen that (1) is equivalent to the two conditions( jzj2 � p=q(q � 1)jzj4 � (p+ q � 2)(Re z)2 � (pq � p� q + 2)(Im z)2 + (p� 1) � 0Consequently, the set of allowed z is bounded by a quartic curve in the complexplane.We will also, following Epperson [4], consider a generalization to the followingsituation. (See e.g. [7] for further details.)Let H and H 0 be two Gaussian Hilbert spaces (i.e. real Hilbert spaces consist-ing of centred Gaussian variables), let HC and H 0C be their complexi�cations andlet A : HC ! H 0C be a complex linear operator of norm � 1. Suppose furtherthat H and H 0 are de�ned on probability spaces (
;F ;P) and (
0;F 0;P0). Then�(A) : L2(
;F(H);P) ! L2(
0;F(H 0);P0) is the (unique) bounded linear operatorsatisfying �(A)( :�1 � � � �n: ) = :A�1 � � �A�n: ; �1; : : : ; �n 2 H (or HC );where : � � � : denotes the Wick product. We then have the following generalizationof Theorem 1 [4]. (Theorem 1 is the special case when H = H 0 is a one-dimensionalGaussian Hilbert space and A is multiplication by z.)Theorem 2. Let 1 � p � q < 1. With notations as above, �(A) is a contractionLp(F(H))! Lq(F(H 0)) if and only if(q � 1)kReA�k2 + k ImA�k2 � (p� 1)kRe �k2 + k Im �k2; � 2 HC : (2)Moreover, if (2) fails (for some � 2 HC ), then �(A) is not even bounded Lp(F(H))!Lq(F(H 0)).(The norms in (2) are the norms in HC and H 0C , i.e. the L2-norms.)We observe that by combining (2) and the same inequality with � replaced by i�,it follows easily that kAk2 � p=q. In particular, our assumption kAk � 1 followsfrom (2).Remark. A simple proof of Nelson's hypercontractivity theorem (z real) using Itôcalculus was given by Neveu [12]. His proof is quite di�erent from the one givenhere and does not seem to generalize to complex z.Our method applies also to the case of two complex Gaussian Hilbert spaces Hand H 0 (i.e. two complex Hilbert spaces consisting of symmetric complex Gaussianvariables) and a complex linear operator of norm � 1 A : H ! H 0; in this case�(A) : �(H) ! �(H 0), where �(H) is a subspace of L2(
;F(H);P). The following(simpler) analogue of Theorem 2 holds.Theorem 3. Let 0 < p � q < 1. If kAk � pp=q, then k�(A)Xkq � kXkp forevery X 2 �(H). Conversely, if kAk > pp=q, then supX2�(H) k�(A)Xkq=kXkp =1.



ON COMPLEX HYPERCONTRACTIVITY 3The special case with H = H 0 one-dimensional can be expressed as follows. (Thecorresponding result on C n follows as well.) For earlier proofs, see Janson [6], Carlen[2] and Zhou [16].Theorem 4. Let d� = (2�)�1e�jzj2=2 dx dy be the standard Gaussian measure onC , and let Bp be the space of all entire functions belonging to Lp(C ; d�) (with thesubspace norm). Further, let Mzf(w) = f(zw). If 0 < p � q < 1, then Mz is acontraction Bp ! Bq if and only if jzj �pp=q. Moreover, if jzj >pp=q, then Mzis not even bounded Bp ! Bq. 2. ProofsWe �rst prove Theorem 2; as explained above Theorem 1 is the special case withH = H 0 one-dimensional and A� = z�. (The reader is urged to consider primarilythis case, where the vectors and matrices below have a single component only andthe matrix and scalar multiplications reduce to ordinary multiplication.)The proofs of Theorems 3 and 4 follow the same path, and we indicate only thedi�erences at the end of the section.Proof of Theorem 2. Although it is possible to work with (Hermite) polynomials,we prefer to use the Wick exponentials de�ned by:e� : = 1X0 1n! :�n: = exp(� � E �2=2)whenever � is a random variable with a real or complex centred normal distribution.(Again, see [7] for further details.) We then have the simple formula �(A) :e� : =:eA�: , � 2 HC .First assume that �(A) is bounded from Lp into Lq, with k�(A)kp;q = C. Since asimple calculation yields, for every � 2 HC ,k :e� : kp = epE(Re �)2=2�ReE �2=2 = e(p�1)kRe �k2=2+k Im �k2=2;it follows that(q � 1)kReA�k2=2 + k ImA�k2=2 � lnC + (p� 1)kRe �k2=2 + k Im �k2=2:Replacing � by t�, multiplying by 2=t2 and letting t ! 1 (with t real), we obtain(2).Suppose now that (2) holds; we want to prove that k�(A)Zkq � kZkp for everyZ 2 L2(
;F(H);P). Since �nite sums PN1 aj :e�j : with aj 2 C and �j 2 H aredense in Lp(
;F(H);P) and L2(
;F(H);P), it su�ces to show the inequality forsuch sums, i.e. 


 NX1 aj :eA�j :


q � 


 NX1 aj :e�j :


p: (3)Thus, suppose that aj 2 C and �j 2 H, 1 � j � N are given. Let H1 � H be thelinear span of f�jgN1 and let H 01 � H 0 be the linear span of fReA�j ; ImA�jgN1 ; letfurther f�kgn1 and f�0lgm1 be orthonormal bases in H1 and H 01, respectively. In thesebases, A : H1 ! H 01 is given by a complex m�n matrix which we also denote by A;(2) implies that(q � 1)jReAzj2 + j ImAzj2 � (p� 1)jRe zj2 + j Im zj2; (4)



4 SVANTE JANSONfor every vector z 2 C n .If � and �0 denote the (column) vectors (�1; : : : ; �n) and (�01; : : : ; �0m), there existvectors bj 2 Rn � C n such that �j = bj � � and thus A�j = Abj � �0; hence (3) canbe written k NX1 aj :eAbj ��0 : kq � k NX1 aj :ebj ��: kp: (5)Let X(t) = �X1(t); : : : ;Xn(t)� and Y (t) = �Y1(t); : : : ; Ym(t)�, t � 0, be inde-pendent multi-dimensional Brownian motions (i.e. all components Xk and Yl areindependent Brownian motions), and de�ne the random functionF (s; t) =Xj aj :ebj �X(s)+Abj �Y (t): =Xj aj :ebj �X(s): :eAbj �Y (t): :We assume that X and Y are de�ned on di�erent probability spaces (
X ;FX ;PX)and (
Y ;FY ;PY ); thus F is de�ned on 
X � 
Y . Let EX and EY denote theintegrals over 
X and 
Y , respectively.Note that F (s; t) is (a.s.) continuous in s and t, and that the random variablesup0�s;t�1 jF (s; t)j has all moments �nite; this holds also if we �x X (i.e. �x !X 2
X) and regard F (s; t) as a random function de�ned on (
Y ;FY ;PY ), or �x Y andregard F (s; t) as a random function de�ned on (
X ;FX ;PX). The same propertiesare easily veri�ed for the random functions introduced below, which justi�es ouruses of Fubini's theorem and dominated convergence.Since � d= X(1) and �0 d= Y (1) (these random vectors have independent stan-dard normal components), the sought inequality (5) is equivalent to kF (0; 1)kq �kF (1; 0)kp, which can be writtenEX�EY jF (0; 1)jq�p=q � EX�EY jF (1; 0)jq�p=q: (6)For technical reasons we �x " > 0 and de�ne the random functionQ(s; t) = jF (s; t)j2 + "2and the function '(s; t) = EX�EY jQ(s; t)jq=2�p=q; s; t � 0:Note that ' is continuous by dominated convergence.We will show that t 7! '(1� t; t) is non-increasing on [0; 1]; thus '(0; 1) � '(1; 0).Letting " ! 0, we obtain (using dominated convergence again) (6), and the proofwill be completed.We now begin in earnest. First, as is well-known, Itô's formula shows that s 7!:ebj �X(s): is a martingale with d :ebj �X(s): = :ebj �X(s): bj � dX(s) and thus, for �xed tand Y , s 7! F (s; t) is a martingale withdF (s; t) =Xj aj :ebj �X(s): :eAbj �Y (t): bj � dX(s) = G(s; t) � dX(s);de�ning the random vector G(s; t) =Pj aj :ebj �X(s): :eAbj �Y (t): bj . (See e.g. [13] forthe stochastic integration theory used here.)Similarly, for �xed s and X, t 7! F (s; t) is a martingale withdF (s; t) =Xj aj :ebj �X(s): :eAbj �Y (t):Abj � dY (t) = AG(s; t) � dY (t):



ON COMPLEX HYPERCONTRACTIVITY 5(The �ltrations are, here and below, the ones de�ned byX(s) and Y (t), respectively.)Consider �rst the case of �xed s and X. By Itô's formula again, t 7! Q(s; t) andt 7! Q(s; t)q=2 are continuous semimartingales withdQ(s; t) = djF (s; t)j2 = F (s; t)dF (s; t) + F (s; t)dF (s; t) + d[F ; F ]= F (s; t)AG(s; t) � dY (t) + F (s; t)AG(s; t) � dY (t) + jAG(s; t)j2 dt= K(s; t) � dY (t) + jAG(s; t)j2 dt;where K = FAG+ FAG, and (using Q � "2 � 0)dQ(s; t)q=2 = q2Qq=2�1dQ+ 12 q2�q2 � 1�Qq=2�2jKj2 dt= q2Qq=2�1K � dY + q2Qq=2�1jAGj2 dt+ q(q � 2)8 Qq=2�2jKj2 dt:In other words,t 7! Q(s; t)q=2 � Z t0 �q2Qq=2�1jAGj2 + q(q � 2)8 Qq=2�2jKj2� duis a continuous local martingale with quadratic variation R t0 ( q2 )2Qq�2jKj2du, whichhas �nite expectation; thus this local martingale is a square integrable martingale,and hence it has the same expectation for every t, which yieldsEY Q(s; t)q=2 = EY Q(s; 0)q=2 + Z t0 EY �q2Qq=2�1jAGj2 + q(q � 2)8 Qq=2�2jKj2�du:Let �(s; t) = EY jQ(s; t)jq=2; we have shown that t 7! �(s; t) is continuouslydi�erentiable with@@t�(s; t) = q2 EY �Qq=2�1jAGj2�+ q(q � 2)8 EY �Qq=2�2jKj2�:(The right hand side is continuous by dominated convergence.) By ordinary calculus,this implies@@t�(s; t)p=q = pq�(s; t)p=q�1 @@t�(s; t)= p2�(s; t)p=q�1 EY �Qq=2�1jAGj2�+ p(q � 2)8 �(s; t)p=q�1 EY �Qq=2�2jKj2�:Applying EX , wee see, using dominated convergence, that t 7! '(s; t) = EX �(s; t)p=qis continuously di�erentiable, with@@t'(s; t) = p2 EX��(s; t)p=q�1 EY �Qq=2�1jAGj2��+ p(q � 2)8 EX��(s; t)p=q�1 EY �Qq=2�2jKj2��= p2 EX��(s; t)p=q�1 EY �Qq=2�2(QjAGj2 + q � 24 jKj2)��: (7)Next, we keep t and Y �xed and obtain similarly that s 7! Q(s; t)q=2 is a contin-uous semimartingale withdQ(s; t)q=2 = q2Qq=2�1H � dX + q2Qq=2�1jGj2 ds+ q(q � 2)8 Qq=2�2jHj2 ds;



6 SVANTE JANSONwhere H = FG+ FG. We can here apply EY . (This is easily justi�ed by rewritingthe equation as a stochastic integral equation and using Fubini.) Thus s 7! �(s; t)is a continuous semimartingale withd�(s; t) = q2 EY (Qq=2�1H) � dX + q2 EY (Qq=2�1jGj2) ds+ q(q � 2)8 EY (Qq=2�2jHj2) ds:A �nal application of Itô's formula yieldsd�(s; t)p=q = pq�p=q�1d�+ 12 pq�pq � 1��p=q�2�q2�2jEY (Qq=2�1H)j2 dsand it follows by taking the expectation, arguing as for t 7! Q(s; t)q=2 above, thats 7! '(s; t) = EX �(s; t)p=q is continuously di�erentiable, with@@s'(s; t) = p2 EX��p=q�1 EY �Qq=2�1jGj2��+ p(q � 2)8 EX��p=q�1 EY �Qq=2�2jHj2��+ p(p� q)8 EX��p=q�2jEY (Qq=2�1H)j2�= p2 EX��p=q�1EY �Qq=2�2�QjGj2 + p� 24 jHj2���+ p(q � p)8 EX��p=q�2��EY (Qq=2�2jHj2)� jEY (Qq=2�1H)j2��: (8)By H�older's inequality and the de�nition � = EY Qq=2, the �nal term is � 0. (Thisis where we use p � q.) Thus, (8) yields@@s'(s; t) � p2 EX��p=q�1 EY �Qq=2�2�QjGj2 + p� 24 jHj2���: (9)Combining (9) and (7), we obtain@@s'(s; t) � @@t'(s; t)� p2 EX��p=q�1 EY �Qq=2�2�QjGj2 + p� 24 jHj2 �QjAGj2 � q � 24 jKj2���: (10)Now, H = FG + FG = 2Re(FG) and similarly K = 2Re(FAG) = 2Re(AFG).Thus, recalling Q = jF j2 + "2 and using (4) (with z = FG) and kAk � 1,QjGj2 + p� 24 jHj2 �QjAGj2 � q � 24 jKj2= (jF j2 + "2)(jGj2 � jAGj2) + (p� 2)jRe(FG)j2 � (q � 2)jRe(AFG)j2= "2(jGj2 � jAGj2)+ jFGj2 + (p� 2)jRe(FG)j2 � jAFGj2 � (q � 2)jRe(AFG)j2� 0:Consequently, (10) yields @@s'(s; t) � @@t'(s; t) � 0 for all s; t > 0. Since, asshown above, ' is continuously di�erentiable, this implies ddt'(1 � t; t) � 0. Hence



ON COMPLEX HYPERCONTRACTIVITY 7s 7! '(1� t; t) is nonincreasing on [0; 1], and '(0; 1) � '(1; 0), which completes theproof.Remark. Our proof is inspired by the one in Epperson [4], and can be regarded asa continuous version of the latter. In fact, the argument in [4] shows that, with (t) = '(1� t; t), (k=N) � �1 + o(N�1)� ((k � 1)=N) + o(N�1); 1 � k � N; (11)which easily yields  (1) �  (0), by induction on k and letting N ! 1. Ourproof replaces the �nite di�erences by (Itô) di�erentials, thus eliminating all higherorder terms. (The proof in [4] is not quite complete, since the sets of `regularcon�gurations' de�ned there do not have the asserted symmetry properties. A simpleremedy, which yields (11), is to use a di�erent set of `regular con�gurations' for eachstep in the induction.)Proof of Theorem 3. The necessity of kAk �pp=q follows as above, using k :e� : kp =epk�k2=4 when � is symmetric complex Gaussian.For su�ciency, we argue as above, now lettingX(t) and Y (t) be multi-dimensionalcomplex Brownian motions (i.e., the real and complex parts are independent Brow-nian motions). This introduces minor di�erences each time we apply Itô's formula;we now obtain, for �xed s and X,dQ(s; t) = djF (s; t)j2 = FAG � dY (t) + FAG � dY (t) + 2jAGj2 dt:and eventually (leaving the details to the reader), instead of (7),@@t'(s; t) = pEX��(s; t)p=q�1 EY �Qq=2�2(QjAGj2 + q � 22 jFAGj2)��= pEX��(s; t)p=q�1 EY �Qq=2�2("2 + q2 jF j2)jAGj2��:Similarly, @@s'(s; t) = pEX��p=q�1 EY �Qq=2�1jGj2��+ p(q � 2)2 EX��p=q�1EY �Qq=2�2jFGj2��+ p(p� q)2 EX��p=q�2jEY (Qq=2�1FG)j2�� pEX��p=q�1 EY �Qq=2�2�"2 + p2 jF j2�jGj2��:These equations imply @@s'(s; t)� @@t'(s; t) � 0, and the result follows.Proof of Theorem 4. Let H = H 0 be the one-dimensional complex Gaussian Hilbertspace consisting of the linear functions on (C ;B; �), and let Aw = zw. Then �(H) =B2 and �(A) =Mz, and the result follows from Theorem 3 and the fact that linearcombinations of exponential functions are dense in Bp (see e.g. [8, Theorem 8.2] and[14, Theorem 3.1]). References[1] W. Beckner, Inequalities in Fourier analysis. Ann. Math. 102 (1975), 159{182.[2] E. Carlen, Some integral identities and inequalities for entire functions and their applicationto the coherent state transform. J. Funct. Anal. 97 (1991), 231{249.
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