ON COMPLEX HYPERCONTRACTIVITY

SVANTE JANSON

ABSTRACT. We give a new proof of a hypercontractivity theorem for the Mehler
transform with a complex parameter, earlier proved by Weissler [15] and Epperson
[4]. The proof uses stochastic integrals and It6 calculus. The method also yields
new proofs of some related results.

1. INTRODUCTION

Let u be the standard Gaussian measure (27) 1/2¢ 7"/2dz on R, and let ho(z),
hi(x), ... be the corresponding sequence of orthogonal polynomials (the Hermite
polynomials). The Mehler transform M,, where z is a complex number with |z| < 1,
can be defined by M, (Zgo anhn) =30 anz™hp; since {hy }3° is an orthogonal basis
in L?(du), M, is a bounded linear operator L?(du) — L?(dp) with norm 1.

Remark. As is well known, see e.g. [10] and [7], M, can also, for |z| < 1 at least, be
defined as an integral operator.

If z isreal, —1 < z < 1, it is not difficult to show that M, maps LP(du) into itself
with norm 1 for every p > 1; i.e. M, is a contraction in LP(du). (For p < 2 this, of
course, entails extending M, from L?(du) by continuity.)

Nelson [11] proved the much stronger result, known as hypercontractivity, that if
1 <p<gq<ooand z is real with 22 < (p —1)/(¢ — 1), then M, maps LP(du) into
L9(du) with norm 1; conversely, if 22 > (p—1)/(¢—1), then M, is not even bounded
LP(dp) — L7(dp). Many different proofs of this important result are known, see
the survey by Gross [5] and the many references given there. We will in this paper
study the extension of Nelson’s result to complex z.

The case of an imaginary z was studied by Beckner [1], who showed that hy-
percontractivity holds for 2 = 44/p — 1 when 1 < p < 2 and ¢ = p’, the conjugate
exponent. (As shown by Beckner, this is by a change of variable equivalent to the
sharp form of the Hausdorff-Young inequality.)

General complex values of z were studied by Weissler [15] and Epperson [4], who
characterized the set of z for which M, is a contraction LP(du) — L%(du), and
showed that it equals the set where M, is bounded. (The special case ¢ = p’ was
also treated by Coifman, Cwikel, Rochberg, Sagher and Weiss [3].) Weissler’s proof
excludes the cases 3/2 < p < ¢ < 2 and 2 < p < ¢ < 3 while Epperson’s covers the
whole range 1 < p < g < oo. (Weissler [15] also gave some results for p > ¢; this
case will not be considered here.) An alternative approach to this result was given
by Lieb [9], who proved a very general theorem on integral operators with Gaussian
kernels.

The main purpose of the present paper is to present a new proof of the result by
Weissler and Epperson, which can be stated as follows.
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Theorem 1. Let 1 < p < q < oo. Then M, is a contraction LP(du) — L(dp) if
and only if

(¢ —1)|Re zw)? + |Im zw|*> < (p — 1)|Rew|* + | Imw|?, for allw € C. (1)
Moreover, if (1) fails (for some w), then M, is not even bounded LP(du) — L(dpu).

Remark. By expressing the difference between the two sides in (1) as a quadratic
form in Rew and Imw, it is easily seen that (1) is equivalent to the two conditions

{ 12> < p/q
(= Dlzl* = (p+q-2)Re2)’ — (pg—p—q+2)Im=2)°+ (p—1) >0

Consequently, the set of allowed z is bounded by a quartic curve in the complex
plane.

We will also, following Epperson [4], consider a generalization to the following
situation. (See e.g. [7] for further details.)

Let H and H' be two Gaussian Hilbert spaces (i.e. real Hilbert spaces consist-
ing of centred Gaussian variables), let Hc and Hg be their complexifications and
let A: Hc — Hg be a complex linear operator of norm < 1. Suppose further
that H and H' are defined on probability spaces (2, F,P) and (', F',P’). Then
T(A): L?(Q,F(H),P) — L?(Y, F(H'),P’) is the (unique) bounded linear operator
satisfying

F(A)(flgn) = :Agl"'Agn:a fla"'agn €eH (OI' H(C)a

where :---: denotes the Wick product. We then have the following generalization
of Theorem 1 [4]. (Theorem 1 is the special case when H = H' is a one-dimensional
Gaussian Hilbert space and A is multiplication by z.)

Theorem 2. Let 1 < p < q < oo. With notations as above, T'(A) is a contraction
LP(F(H)) — LY(F(H'")) if and only if

(¢ = DIRe AE|” + | Tm A¢|1* < (p — DI Re€|” + | Tm¢|*, ¢ € He.  (2)

Moreover, if (2) fails (for some & € Hc), then T'(A) is not even bounded LP(F(H)) —
LY(F(H")).

(The norms in (2) are the norms in H¢ and Hy,, i.e. the L?-norms.)

We observe that by combining (2) and the same inequality with & replaced by &,
it follows easily that ||A]|> < p/q. In particular, our assumption ||A| < 1 follows
from (2).

Remark. A simple proof of Nelson’s hypercontractivity theorem (z real) using It
calculus was given by Neveu [12]. His proof is quite different from the one given
here and does not seem to generalize to complex z.

Our method applies also to the case of two complexz Gaussian Hilbert spaces H
and H' (i.e. two complex Hilbert spaces consisting of symmetric complex Gaussian
variables) and a complex linear operator of norm < 1 A: H — H’; in this case
['(A): T(H) — T(H'), where T'(H) is a subspace of L?(Q, F(H),P). The following
(simpler) analogue of Theorem 2 holds.

Theorem 3. Let 0 < p < g < oo. If ||A]| < \/p/q, then |T'(A)X|, < || X|, for
every X € I'(H). Conversely, if |All > \/p/q, then supxcpm [IT(A) X |/ 11X, =

0.
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The special case with H = H' one-dimensional can be expressed as follows. (The
corresponding result on C" follows as well.) For earlier proofs, see Janson [6], Carlen
[2] and Zhou [16].

Theorem 4. Let dv = (27r)_1e_‘z‘2/2 dx dy be the standard Gaussian measure on
C, and let BP be the space of all entire functions belonging to LP(C,dv) (with the
subspace norm). Further, let M, f(w) = f(zw). If 0 < p < q < o0, then M, is a
contraction BP — B9 if and only if |2| < \/p/q. Moreover, if |z| > \/p/q, then M,
is not even bounded BP — BY.

2. PROOFS

We first prove Theorem 2; as explained above Theorem 1 is the special case with
H = H' one-dimensional and A¢ = z£. (The reader is urged to consider primarily
this case, where the vectors and matrices below have a single component only and
the matrix and scalar multiplications reduce to ordinary multiplication.)

The proofs of Theorems 3 and 4 follow the same path, and we indicate only the
differences at the end of the section.

Proof of Theorem 2. Although it is possible to work with (Hermite) polynomials,
we prefer to use the Wick exponentials defined by
o0
b = Z % £ = exp(¢ —E£2/2)
0

whenever £ is a random variable with a real or complex centred normal distribution.
(Again, see [7] for further details.) We then have the simple formula T'(4):ef: =
8 ¢ € He.

First assume that I'(A) is bounded from L? into L4, with ||I'(A4)]|,,, = C. Since a
simple calculation yields, for every £ € Hc,

| eS|, = ePE(ReE)?/2-ReE€?/2 _ o(p—1)| Re€l?/2+]| Im¢]|/2.
it follows that
(¢ — 1| Re A¢[?/2 + [ Tm AE|*/2 < InC + (p — 1)|| Re €]*/2 + || Tm &]|? /2.
Replacing ¢ by #¢, multiplying by 2/t? and letting ¢ — oo (with ¢ real), we obtain

(2).

Suppose now that (2) holds; we want to prove that |I'(A4)Z||, < ||Z]||, for every
Z € L*(Q,F(H),P). Since finite sums 3V aj:e": with a; € C and n; € H are
dense in LP(Q, F(H),P) and L?(Q, F(H),P), it suffices to show the inequality for
such sums, i.e.

N N
HZaj e ‘ < HZaj el ‘ . (3)
1 7 1 b
Thus, suppose that a; € Cand n; € H,1 < j < N are given. Let H; C H be the
linear span of {n;}{ and let H] C H' be the linear span of {Re An;, Im An;}; let
further {£;}7 and {£}{" be orthonormal bases in H; and H{, respectively. In these
bases, A: Hy — Hj is given by a complex m X n matrix which we also denote by A;
(2) implies that

(g —1)|Re Az|? + |Tm Az|> < (p — 1)| Re 2|*> + | Tm 2|, (4)
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for every vector z € C".

If = and =’ denote the (column) vectors (£1,...,&,) and (&7,...,£&),), there exist
vectors b; € R” C C" such that n; = b; - = and thus An; = Ab; - Z; hence (3) can
be written

N N
1S 0=y < 3 e = (5)
1 1

Let X(t) = (X1(t),...,Xn(t)) and Y (t) = (Yi(t),...,Ym(t)), t > 0, be inde-
pendent multi-dimensional Brownian motions (i.e. all components X; and Y; are
independent Brownian motions), and define the random function

Za by X (s)+Ab; Y (¢ Za i X (), oAb Y (8,

We assume that X and Y are defined on dlfferent probability spaces (Qx, Fx,Px)
and (Qy,Fy,Py); thus F is defined on Qx x Qy. Let Ex and Ey denote the
integrals over x and Qy, respectively.

Note that F(s,t) is (a.s.) continuous in s and ¢, and that the random variable
Supg<s <1 |F(8,t)| has all moments finite; this holds also if we fix X (i.e. fix wx €
Qx) and regard F(s,t) as a random function defined on (Qy-, Fy-, Py), or fix Y and
regard F'(s,t) as a random function defined on (Qx, Fx,Px). The same properties
are easily verified for the random functions introduced below, which justifies our
uses of Fubini’s theorem and dominated convergence.

Since = £ X (1) and = 4 Y (1) (these random vectors have independent stan-
dard normal components), the sought inequality (5) is equivalent to ||F(0,1)|[, <
|F(1,0)]|p, which can be written

Ex (Ey [F(0,1)]9)"% < Ex (Ey |F(1,0)]7)"/". (6)
For technical reasons we fix ¢ > 0 and define the random function
Q(s,t) = |F(s,t)[" + ¢
and the function
o(s,t) = Bx (By [Q(s,8)]2)"9,  s,t>0.

Note that ¢ is continuous by dominated convergence.

We will show that ¢ — ¢(1—¢,t) is non-increasing on [0, 1]; thus ¢(0,1) < ¢(1,0).
Letting ¢ — 0, we obtain (using dominated convergence again) (6), and the proof
will be completed.

We now begin in earnest. First, as is well-known, [t6’s formula shows that s —
1P X(5); is a martingale with d:e% X(5): = :eb"X(5): b, . dX (s) and thus, for fixed ¢
and Y, s — F(s,t) is a martingale with

dF (s,t) Za b X(3) A YO X (5) = G(s,t) - dX (s),

defining the random vector G(s,?) =3, a; el X(9): 1A Y (D) s (See e.g. [13] for
the stochastic integration theory used here.)
Similarly, for fixed s and X, t — F(s,t) is a martingale with

Z% oAb Y (t ):Abj -dY (t) = AG(s,t) -dY (t).



ON COMPLEX HYPERCONTRACTIVITY 5

(The filtrations are, here and below, the ones defined by X (s) and Y (¢), respectively.)
Consider first the case of fixed s and X. By Itd’s formula again, ¢t — Q(s,t) and
t — Q(s,t)?/? are continuous semimartingales with

dQ(s,t) = d|F(s,t)|* = F(s,t)dF(s,t) + F(s,t)dF(s,t) + d[F, F]
= F(s,t)AG(s,t) - dY (t) + F(s,t)AG(s,t) - dY (t) + |AG(s,t)|* dt
= K(s,t) - dY (t) + |AG(s,t)|? dt,
where K = FAG + FAG, and (using Q > ¢ > 0)

a2 — Loa/2-140 4+ L9(9 _ 1\ pu/2-2 k)2
aQ(s, )" = 277 dQ + 52 (1 — 1) QUK at

- ng/Q—lK dY + ng/Q—HAGF dt + qu_ 2) 0ul2-2 K2 .

In other words,
t
-2
£ Q(s, 1)/ —/ (3Q7* 4GP + ng )QQ/2’2|K|2) du
0

is a continuous local martingale with quadratic variation fé (1)2Q7 2| K |*du, which
has finite expectation; thus this local martingale is a square integrable martingale,
and hence it has the same expectation for every ¢, which yields

t —
Ey Q(s,1)"/? = By Q(s,0)%/” +/ By ($Q7*7 4G + qu ) Q72 |K?) du.
0

Let ®(s,t) = By |Q(s,)|7?; we have shown that t — ®(s,¢) is continuously
differentiable with

0 _ -2 _
E@(s,t) — gEy(Qq/Z 1|AG|2) + Q(qg ) Ey(Qq/2 2|K|2).

(The right hand side is continuous by dominated convergence.) By ordinary calculus,
this implies

0 p 0
— pla _ £ p/q—1 2
t'i)(s,t) D(s,t) t@(s,t)

-2
= g@(s,t)p/q* EY(QQ/2*1|AG|2) + %@(s,t)p/ql Ey (Qq/272|K|2)_

Applying Ex, wee see, using dominated convergence, that ¢ — ¢(s,t) = Ex ®(s, t)P/q
is continuously differentiable, with

0
(s, t) = 2 Ex (@(s,6)7/77 By (Q7/*'14G1) )

+ p(q8_ 2) Eyx ('1)(3, t)P/‘I*I Ey (Qq/272|K|2))

= Dy (@(s, 0710 By (@7 2(QUAGE + LK) ()

Next, we keep t and Y fixed and obtain similarly that s — Q(s,#)?/? is a contin-
uous semimartingale with

dQ(s,t)"? = 2QU* 7 H - dX + 2Q* |G| ds + qu_ 2) Qo2 P as,
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where H = FG + FG. We can here apply Ey. (This is easily justified by rewriting
the equation as a stochastic integral equation and using Fubini.) Thus s — ®(s, )
is a continuous semimartingale with

A (s, 1) = gEy(Qq/HH) LdX + gEy(QQ/2’1|G|2) ds

(g —2)
8
A final application of It6’s formula yields

Ey (Q"**|H|*) ds

dq)(s,t)p/qzE@p/qfl,ﬁp_i_l]_’(p )@p/q 2( ) | By (QY/2 L H)|? ds
q 2q\q

and it follows by taking the expectation, arguing as for ¢ — Q(s,t)q/ 2 above, that
s+ (s, t) = Ex ®(s,t)?/9 is continuously differentiable, with

%(p(s,t) = P Bx (@ By (Q7|G))
$ P2 g (qolam1 By (@22 ) )
$ 22D g (@002 (U )P
=L ix(ar/e (@2 2(@lGP + L H)))

_l’_

p(qS_ p) Ey ((I)P/Q—Q (CI) Ey(Qq/2_2|H|2) - |Ey(Qq/2_1H)|2>). (8)

By Holder’s inequality and the definition ® = Ey Q%/2, the final term is > 0. (This
is where we use p < ¢.) Thus, (8) yields

0
T o(s,0) > LRy (9707 By (@ QUG + 22 HP))). (9)
Combining (9) and (7), we obtain
0 0
—p(s,) = 50(s,1)
> Py (@20 Ry (@2 QU612+ 2 1HP — QlacP - L2 1kP))). (o)

Now, H = FG + FG = 2Re(FG) and sumlarly K =2 Re(FAG) = 2Re(AFQG).
Thus, recalling Q= |F)? + €% and using (4) (with z = FG) and ||A]| <1,

QioP + L2 Hp - Qlacp - 1 K
— (|F|2 +e)(GP - |AG| )+ (p — 2)| Re(FG)P” — (q — 2)| Re(AFG)P
— 2(GP - |AGP)

+ [FGP? + (p— 2)|Re(FQ)|? — |AFG|? — (¢ — 2)| Re(AFG)|?
> 0.

Consequently, (10) yields %cp(s,t) — %tp(s,t) > 0 for all s, > 0. Since, as
shown above, ¢ is continuously differentiable, this implies %(p(l —t,t) < 0. Hence
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s — (1 —¢,t) is nonincreasing on [0, 1], and ¢(0,1) < ¢(1,0), which completes the
proof. O

Remark. Our proof is inspired by the one in Epperson [4], and can be regarded as
a continuous version of the latter. In fact, the argument in [4] shows that, with

d’(t) = ‘:0(1 - tvt)a
Pp(k/N) < (14+0o(N""))p((k—1)/N)+o(N "), 1<k<N, (11

which easily yields (1) < (0), by induction on k£ and letting N — oo. Our
proof replaces the finite differences by (It6) differentials, thus eliminating all higher
order terms. (The proof in [4] is not quite complete, since the sets of ‘regular
configurations’ defined there do not have the asserted symmetry properties. A simple
remedy, which yields (11), is to use a different set of ‘regular configurations’ for each
step in the induction.)

Proof of Theorem 3. The necessity of || A|| < \/p/q follows as above, using || :e¢: ||, =
ePllEI/4 when ¢ is symmetric complex Gaussian.

For sufficiency, we argue as above, now letting X (¢) and Y (¢) be multi-dimensional
complex Brownian motions (i.e., the real and complex parts are independent Brow-
nian motions). This introduces minor differences each time we apply It6’s formula;
we now obtain, for fixed s and X,

dQ(s,t) = d|F(s,t)|> = FAG - dY (t) + FAG - dY (t) + 2|AG|? dt.
and eventually (leaving the details to the reader), instead of (7),

0 _ 7 -2
ols1) = pBx (0(s,1)7/7 By QU2 2(QIAGP + L=|F AGP)))
= pEx (®(s,0)7/7 1By QU2 2(e? + J|F1?)|AGI) ).
Similarly,
0 _ _
5. #(5:t) =pEx (a/7 1By (@2 1|GP2) )
—2
+p(q2 ) Ex<<1)p/q_1 Ey(Qq/2_2|FG|2)>
+ p(p2_ q) Ey (q)p/q72| Ey(Qq/ZflfG)P)
> pEx (8707 By QU2 (=2 + L|FP)|GP)).
These equations imply a%cp(s, t) — %(p(s, t) > 0, and the result follows. O

Proof of Theorem 4. Let H = H' be the one-dimensional complex Gaussian Hilbert
space consisting of the linear functions on (C, B,v), and let Aw = zw. Then I'(H) =
B? and T'(A) = M,, and the result follows from Theorem 3 and the fact that linear
combinations of exponential functions are dense in B? (see e.g. [8, Theorem 8.2] and
[14, Theorem 3.1]). O
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