
NEW VERSIONS OF SUEN'S CORRELATION INEQUALITYSVANTE JANSON1. IntroductionSuen [8] found a remarkable correlation inequality, giving estimates for theprobability that a collection of dependent random indicator variables vanishsimultaneously, or in other words, for the probability that none of a collectionof dependent events occurs.The present author [4, 3] has found similar inequalities for a much morerestricted situation; when applicable, these inequalities are somewhat betterthan Suen's, although the di�erence is negligible in many cases. (See Section 8below.) Those inequalities have been used by several di�erent authors for avariety of problems; there are, however, many situations where they are notapplicable (see [8, 5] for two examples) and then Suen's inequality is a veryattractive choice.The purpose of the present note is to present some improvements and mod-i�cations of Suen's original inequality which (we hope) will be easy to applyin di�erent situations.The estimates considered here are exponential (unlike for example Cheby-shev's inequality), in the sense that they typically are similar to the estimateexp(��) for the independent case, where � is the expected number of events.They are thus aimed at the case when the studied probability is very small,and has to be shown to be very small. In many applications, constants oc-curing in the estimates, even in the exponents, are immaterial; on the otherhand, there are applications where very precise estimates are desired. For thisreason, and because di�erent versions of the inequality turn out to be usefulin di�erent situations, we will give several di�erent versions of our estimates.We give several upper bounds to the probability of simultaneous vanishingof a collection of indicator variables in Section 3; these are perhaps the mainresults of the paper. We give some corresponding lower bounds in Section 4,and in Section 5 an upper bound for the probability that only a few of thevariables are non-zero. Section 6 contains the proofs of the results, while Sec-tion 7 contains three examples related to the sharpness of the results. Finally,Section 8 contains a short discussion of the results and some open problems.Acknowledgement. This paper has bene�tted from discussions with par-ticipants of the Eighth International Conference on Random Structures andAlgorithms in Pozna�n in August 1997. In particular, I am grateful to JoelSpencer, both for his pertinent questions that inspired parts of this work, andfor him generously allowing me to include his proof of Theorem 7.Date: September 23, 1997. 1



2 SVANTE JANSON2. NotationWe will throughout the paper use the following assumptions and notation.Recall that an indicator (or Bernoulli) random variable is a random variabletaking only the values 0 and 1.� fIigi2I is a �nite family of indicator random variables (de�ned on a com-mon probability space).� � is a dependency graph for fIigi2I , i.e. a graph with vertex set I suchthat if A and B are two disjoint subsets of I, and � contains no edgebetween A and B, then the families fIigi2A and fIigi2B are independent.� S = Pi Ii. In particular S = 0 if and only if all Ii = 0. The expressionP(S = 0) in the theorems below may thus be regarded as shorthand forP(every Ii = 0).� i � j, where i; j 2 I, if there is an edge in � between i and j. (Inparticular, i 6� i.)� i � A, where i 2 I and A � I, if i � j for some j 2 A. (i 2 A is notexcluded.)� pi = P(Ii = 1) = E Ii. Thus P(Ii = 0) = 1� pi.� � = E S =Pi pi.� �i =Pj�i pj.� � = maxi2I �i.� � =Pfi;jg:i�j E (IiIj), summing over unordered pairs fi; jg, i.e. over theedges in �. As a sum over ordered pairs we have � = 12Pi2IPj�i E (IiIj).� �0 = Pfi;jg:i�j pipj = 12Pi2I pi�i. Note that �0 � � if the variablesare positively correlated, while �0 � � if the variables are negativelycorrelated.� " = maxi2I pi.Remark 1. In typical applications, there exists a natural dependency graph,but it should be observed that in general there is no unique choice, even if itis required to be minimal.Remark 2. In the Lov�asz local lemma, see e.g. [1], a weaker notion of depen-dency graph is used, where the independence condition above is required onlywhen A is a singleton fIig (but B still is an arbitrary subset). These strongand weak versions are not equivalent, but we do not know any applicationwhere the di�erence matters.We do not know whether the results below hold if � only is assumed to bea dependency graph in the weaker sense.Remark 3. In particular, two variables Ii and Ij are independent unless thereis an edge in � between i and j. Note, however, that this weaker condition(i.e. the condition above when both A and B are restricted to singletons) doesnot imply that � is a dependency graph, and that it is not su�cient for ourresults.For a simple counter example to many of the results below under this weakercondition, colour the vertices of the complete graph Kn at random (indepen-dently and with equal probabilities) with two colours, and let, for each edge



SUEN'S INEQUALITY 3ij, Iij be the indicator that i and j have di�erent colours. These �n2� indicatorvariables are pairwise independent, so we could take � to be the empty graphwith no edges, and then the upper bounds below are all less than 2�cn2, forsome c > 0; on the other hand, clearly S = 0 if and only if all vertices havethe same colour, and thus P(S = 0) = 21�n.Remark 4. In several related papers, � is instead de�ned as a sum over orderedpairs, yielding twice our value. This should be kept in mind when comparingresults. 3. Upper boundsAs explained in the introduction, we will in this section give several dif-ferent upper bounds for P(S = 0), suitable for di�erent (present or future)applications.We begin with a slight improvement of Suen's original inequality [8], essen-tially following (but sharpening) the original proof. (Suen [8] has 2(E (IiIj) +pipj) instead of E (IiIj) below; the pipj is really needed only for his lower bound,see Section 4, while the factor 2 is removed by a more careful estimate in theproof.) For convenience, all proofs are given in Section 6.Theorem 1. Let fIigi2I be a �nite family of indicator random variables hav-ing a dependency graph �. Then, with notations as above,P(S = 0) � exp� Xfi;jg:i�j E (IiIj) Yk�fi;jg(1� pk)�1�Yl2I (1� pl):Large products are often less convenient than large sums. For example, it isoften convenient to use the standard estimateQ(1�pi) � exp��P pi� = e��.In a similar spirit, the estimate in Theorem 1 can be modi�ed as follows, oftenwithout signi�cant loss.Theorem 2. With assumptions as in Theorem 1,P(S = 0) � exp��� + Xfi;jg:i�j E (IiIj) exp� Xk�fi;jg pk�� � e��+�e2� :Theorems 1 and 2 are useful, and often quite sharp, when � < � and � issmall. If � � �, Theorem 2 (and typically Theorem 1 too) is worthless, sincethe right hand side becomes greater than 1. In this case, the following versionbecomes useful.Theorem 3. With assumptions as in Theorem 1,P(S = 0) � exp��min� �28� ; �6� ; �2�� = e��2=max(8�;2�;6��):The numerical constants in the exponents can be improved, but there is(with our proof, at least) a trade o� between the di�erent constants, and theoptimal choice depends on the relations between �, � and �. The versiongiven here is a compromise trying to be both simple and reasonably sharp.In an application where constant factors in the exponent are important, it is



4 SVANTE JANSONprobably better to use the proof below, in particular (8), and choose q thereaccording to the situation at hand.Of the three quantities in the exponents in Theorem 3, the one involving� is typically the least important. If we do not care about the constants, wecan always replace it by a term involving �0, which in many applications isdominated by �. (Again, the constants given here are not optimal.)Theorem 4. With assumptions as in Theorem 1,P(S = 0) � e��2=max(32�;48�0;4�):Theorem 5. With assumptions as in Theorem 1, if furthermore the variablesfIig are positively correlated,P(S = 0) � e��2=max(48�;4�):We do not know whether the terms involving � really are needed in theestimates above, cf. Section 8. In most applications they are harmless, but inat least one [5] they a�ect the �nal result signi�cantly. For that reason, wegive two slightly stronger versions of Theorems 1 and 2, where this term isreduced as much as we have been able to achieve.De�ne '1(x) = 2 Z 10 tetx dt = 2xex � ex + 1x2 = ex e�x � 1 + xx2=2and observe that 1 � '1(x) � ex for x � 0. For small x, '1(x) = 1+ 23x+O(x2).Theorem 6. With assumptions as in Theorem 1,P(S = 0) � exp�12Xi Xj�i E (IiIj)(1� pj)�1'1� Xk�fi;jg; k 6=i;j pk=(1� pk)���Yl2I (1� pl)� exp��(1� ")�1'1�2�=(1� ")��Yl2I (1� pl)andP(S = 0) � exp��� + e"'1(2e"�)��:Joel Spencer [6] has found a di�erent proof of this type of inequalities, usingonly elementary probability calculations. This proof yields the following result,which sometimes is better than Theorem 6; when " is negligible, Theorem 7is better when 0 < � < 0:225 : : : while Theorem 6 is better for larger �. (Thisstrongly suggests that neither is the best possible, and that there is room forfuture improvements of these results.)De�ne '2(x), 0 � x � e�1, to be the smallest root of'2(x) = ex'2(x): (1)



SUEN'S INEQUALITY 5It is well known that '2 is well de�ned in [0; e�1], with the Taylor series'2(x) = 1X0 (n + 1)n�1n! xn; 0 � x � e�1;in particular, '2(x) = 1 + x +O(x2).Theorem 7 (Spencer [6]). With assumptions as in Theorem 1, if furthermore� + " � e�1, P(S = 0) � e�'2(�+")Yk2I(1� pk) � e��+�'2(�+"):Remark 5. As is seen from the proof of Theorem 7, further improvementsare possible if the dependency graph is such that the neigbourhoods of twoadjacent vertices overlap signi�cantly; cf. Theorem 6, where such an e�ect canbe seen in the �rst upper bound.4. Lower boundsSuen [8] gave also a lower bound to P(S = 0) corresponding to his upperbound. Although the lower bound seems to have less applications, we forcompleteness give an improvement of it too corresponding to Theorem 1. (Weignore further improvements corresponding to Theorem 6.)Theorem 8. With assumptions as in Theorem 1, let�� = Xfi;jg:i�j E (IiIj) Yk�fi;jg(1� pk)�1;��0 = Xfi;jg:i�j pipj Yk�fi;jg(1� pk)�1:Then P(S = 0) � �1���0 exp(��)�Yk2I(1� pk)� �1��0e2�=(1�") exp��e2�=(1�")��Yk2I(1� pk):Remark 6. The careful reader may observe from the proof that the factorexp(��) can be replaced by the somewhat smaller '3(��), where '3(x) =(ex � 1)=x. (We do not know whether this factor depending on �� really isneeded at all, or whether it is an artefact of our proof.)Moreover, since ��0 exp(��) � exp(��0+��)� exp(��) � exp(��0+��)�1,the factor 1���0 exp(��) may be replaced by the smaller 2� exp(�� +��0);Suen [8] has 2� exp(2�� + 2��0).Theorem 8 is useful only when �0 < 1 and � is small, but even then itis often surpassed by the following quantitative version of the Lov�asz locallemma, cf. [1, Chapter 5].



6 SVANTE JANSONTheorem 9. With assumptions as in Theorem 1, suppose further that �+" �e�1. Then, with '2 de�ned by (1),P(S = 0) � exp���'2(� + ")�:5. Tail estimatesIt is also possible to obtain exponential upper bounds for the lower tailsP(S � �), � < �, of the distribution of S, similar to the bounds given above forP(S = 0). (There are no similar general bounds for the upper tails P(S � �),� > �, see [3, Example 2].)Theorem 10. With assumptions as in Theorem 1, and 0 � a � 1,P(S � a�) � exp��min�(1� a)2 �28� + 2�; (1� a) �6���:Note that the special case a = 0 yields the corollaryP(S = 0) � e��2=max(8�+2�;6��);which is only slightly weaker than Theorem 3.Remark 7. The tail bounds given in [3] for a special case are of the same typeas Theorem 10 but somewhat better; there 8� is replaced by 4� and there isno term with �. 6. ProofsWe de�ne for each index i 2 I a partition I = fig [ Ni [ Ui of the indexset, with Ni = fj 2 I : j � ig (the neighbours of i in �) and thus Ui = fj 6=i : j 6� ig; hence Ii is independent of fIj : j 2 Uig.Proof of Theorem 1. De�ne, for 0 � t � 1, the random functionF (t) =Yi2I�1� pi � t(Ii � pi)�:Thus F (0) = Qi(1 � pi) and F (1) = Qi(1 � Ii), so E F (1) = P(S = 0). Wethus want to compare E F (1) and E F (0) = F (0). (Note that in the case ofindependent indicators Ii, E F (t) is independent of t.)We di�erentiate and obtain, introducing the notation FA(t) =Qi2A�1�pi�t(Ii � pi)� for A � I,F 0(t) = �Xi (Ii � pi)Yj 6=i�1� pj � t(Ij � pj)� = �Xi (Ii � pi)FInfig(t)= �Xi (Ii � pi)FNi(t)FUi(t): (2)Note that, for 0 � t � 1 and each j,0 � 1� pj � t(Ij � pj) � 1� pj + tpj � 1: (3)



SUEN'S INEQUALITY 7Hence, for any set A � I,0 �Yj2A(1� pj + tpj)� FA(t) �Xj2A tIj; (4)and thus, considering the cases Ii = 0 and Ii = 1 separately,(Ii � pi)�Yj2A(1� pj + tpj)� FA(t)� � IiXj2A tIj: (5)Choosing A = Ni, this and (2) yieldF 0(t) � �Xi FUi(t)(Ii � pi) Yj2Ni(1� pj + tpj) +Xi FUi(t)Ii Xj2Ni tIj:Since, by the de�nition of a dependency graph, Ii and FUi(t) are independent,E �FUi(t)(Ii � pi)� = 0. Moreover, using (3), FUi(t) � FUi\Uj(t), which isindependent of IiIj. Hence, for 0 � t � 1,E F 0(t) �Xi Xj�i t E (IiIjFUi(t)) �Xi Xj�i t E (IiIjFUi\Uj(t))= tXi Xj�i E (IiIj) E FUi\Uj (t): (6)Now, let yij = E (IiIj)Qk�fi;jg(1 � pk)�1 and �� = Pfi;jg:i�j yij. We claimthat E F (t) � et2��Yk2I(1� pk); 0 � t � 1: (7)In fact, we may by induction over jIj, the number of variables, assume that thecorresponding inequality holds for E FA(t) for every proper subset A of I. Sincethe corresponding values y(A)ij for a subset A (and i; j 2 A) satisfy y(A)ij � yij,it then follows from (6) that, using also that when i � j, I n (Ui \ Uj) =Ni [Nj = fk : k � fi; jgg,E F 0(t) � tXi Xj�i E (IiIj)et2�� Yk2Ui\Uj(1� pk) = tXi Xj�i yijet2��Yk2I(1� pk)= 2t��et2��Yk2I(1� pk) = ddtet2��Yk2I(1� pk):The estimate (7) now follows by integration, since it holds (with equality) fort = 0.The theorem follows by choosing t = 1 in (7).Remark 8. If all pi are equal, pi = p say, then F (t) = (1� p+ pt)jIje�uS, withu = ln�(1 � p + tp)=(1 � p)(1 � t)�; hence estimating E F (t), 0 � t � 1, isequivalent to estimating the Laplace transform E e�uS, u � 0. In general, withunequal pi, E F (t) is not equivalent to the Laplace transform; nevertheless,E e�uS may be estimated by arguments similar to the ones above, which leadsto results similar to the ones given here. It seems, however, that estimates of



8 SVANTE JANSONF (as in Suen's paper [8]) lead to slightly stronger results. For applicationsof the Laplace transform, see the proof of Theorem 10 below, and also [4, 3]where it is used advantageously in a special case.We derive Theorems 2{5 as corollaries to Theorem 1 by performing a randomthinning of the family fIig. (This idea is used by Alon and Spencer [1] for arelated inequality.) Let qi 2 [0; 1] and let Ji � Be(qi) be Bernoulli variablesthat are independent of each other and of fIig. De�ne I 0i = IiJi and S 0 =Pi2I I 0i. Clearly, S 0 � S and thus P(S = 0) � P(S 0 = 0). Moreover, � is adependency graph for fI 0ig too. Consequently, we may apply our estimates tothe family fI 0ig and obtain new estimates for P(S = 0); with suitable choicesof qi, this may improve the original estimate.Let p0i = E I 0i = piqi, thus 0 � p0i � pi.Proof of Theorem 2. If we choose qi = (1 � e�pi)=pi, and thus p0i = 1 � e�pi ,then Theorem 1 applied to fI 0ig yieldsP(S = 0) � P(S 0 = 0) � exp� Xfi;jg:i�j qiqj E (IiIj) Yk�fi;jg epk�Yl2I e�pl;which implies the �rst inequality.The �nal estimate follows because Pk�fi;jg pk � �i + �j � 2�.Proof of Theorem 3. Using a new thinning fI 0ig, this time choosing all qi = qfor some q 2 [0; 1], we obtain from Theorem 2 applied to fI 0igP(S = 0) � P(S 0 = 0) � e�q�+q2�e2q� : (8)We choose q = min(�=4�; 1=3�; 1); then q� � �=4 and e2q� � e2=3 < 2, andconsequently (8) yields P(S = 0) � e�q�+ 12 q� = e� 12 q�;which is the desired result.Proof of Theorem 4. This time we use a deterministic thinning fIigi2J , whereJ = fi 2 I : �i � 4�0=�g:We let �0, �0 and �0 denote the quantities for our subfamily fIigi2J corre-sponding to �, � and �. By our choice of J ,Xi=2J pi � �4�0 Xi2I pi�i = �4�0 2�0 = �2and thus �0 =Xi2J pi =Xi2I pi �Xi=2J pi � �� �2 = �2 :Moreover, clearly �0 � 4�0=� and �0 � �.Consequently, Theorem 3 applied to S 0 =Pi2J Ii yieldsP(S = 0) � P(S 0 = 0) � e�min� �028�0 ; �06�0 ;�02 � � e�min� �232� ; �48�0=� ;�4 �:



SUEN'S INEQUALITY 9Proof of Theorem 5. When the variables are positively correlated, E (IiIj) �pipj and thus � � �0.Proof of Theorem 6. We follow the proof of Theorem 1, improving some esti-mates. We de�ne, for A � I, �A(t) = Qi2A(1 � pi + tpi). Using (3), we canimprove (4) to Yj2A(1� pj + tpj)� FA(t) �Xj2A tIj�Anfjg(t);and then (5) to(Ii � pi)�Yj2A(1� pj + tpj)� FA(t)� � Ii(1� pi)Xj2A tIj�Anfjg(t): (9)Moreover, FUi(t) � FUi\Uj(t)�UinUj (t), which together with (9) yields as animproved version of (6), for 0 � t � 1,E F 0(t) � tXi Xj�i E (IiIj) E FUi\Uj (t)(1� pi)�Ninfjg(t)�UinUj (t): (10)We now de�ne, when i � j, Nij = (Ni n fjg) [ (Ui n Uj) = Ni [Nj n fi; jg, (t) = tXi Xj�i E (IiIj)(1� pj)�1 Yk2Nij�1 + tpk=(1� pk)�and 	(t) = Z t0  (s) ds:It then follows from (10) by induction as in the proof of Theorem 1 thatE F (t) � e	(t)Yk2I(1� pk); 0 � t � 1: (11)The �rst claim in the theorem now follows by choosing t = 1 in (11), ob-serving that (t) � tXi Xj�i E (IiIj)(1� pj)�1 exp�Xk2Nij tpk=(1� pk)�and thus	(1) = Z 10  (t) dt �Xi Xj�i E (IiIj)(1� pj)�1 12'1�Xk2Nij pk=(1� pk)�:The second inequality in the theorem is immediate.For the �nal estimate, we perform a random thinning with p0i = 1� e�pi asin the proof of Theorem 2; we leave the details to the reader.For Theorem 7 we use the following form of the Lov�asz local lemma, which iseasily proved by induction, see [1, Lemma 5.1.1 and its proof]. Let, for A � I,SA =Pi2A Ii.



10 SVANTE JANSONLemma 1. With assumptions as in Theorem 1, suppose further that xi, i 2 I,are real numbers such that 0 � xi < 1 andpi � xiYj�i(1� xj); i 2 I: (12)Then, for any two subsets A;B � I, P(SA = 0 j SB = 0) �Qi2A(1� xi).We will employ Lemma 1 with the following choice of xi.Lemma 2. With assumptions as in Theorem 1, suppose further that � + " �e�1. Let ' = '2(� + "), where '2 is de�ned by (1), and let xi = 1 � e�'pi,i 2 I. Then (12) holds and, for any two subsets A;B � I,P(SA = 0 j SB = 0) �Yi2A(1� xi) = e�'Pi2A pi:Proof of Lemma 2. By (1), e(�+")' = ', and thusxiYj�i(1� xj) = (1� e�'pi)e�'�i = (e'pi � 1)e�(�i+pi)' � 'pie�(�+")' = pi:Consequently (12) holds, and the �nal inequality follows by Lemma 1.Proof of Theorem 7 (after Spencer [6]). The main idea is to estimate the con-ditional probability P(Ii = 0 j SInfig = 0). Recall that SInfig = SNi + SUi, andthat Ii and SUi are independent; furthermore, note the elementary identityP(E1 j E2 and E3) = P(E1 and E2 j E3)=P(E2 j E3) for any three events E1,E2, E3. Consequently, we have the estimateP(Ii = 1 j SInfig = 0) = P(Ii = 1 and SNi = 0 j SUi = 0)P(SNi = 0 j SUi = 0)� P(Ii = 1 and SNi = 0 j SUi = 0)= P(Ii = 1 j SUi = 0)� P�[j�ifIi = Ij = 1g j SUi = 0�� P(Ii = 1)�Xj�i P(Ii = Ij = 1 j SUi = 0): (13)Similarly, when j � i 2 I, since fIi; Ijg and SUi\Uj are independent,P(Ii = Ij = 1 j SUi = 0) = P(Ii = Ij = 1 and SUi\Nj = 0 j SUi\Uj = 0)P(SUi\Nj = 0 j SUi\Uj = 0)� P(Ii = Ij = 1 j SUi\Uj = 0)P(SUi\Nj = 0 j SUi\Uj = 0) = P(Ii = Ij = 1)P(SUi\Nj = 0 j SUi\Uj = 0) :Applying Lemma 2, we thus obtainP(Ii = Ij = 1 j SUi = 0) � P(Ii = Ij = 1)e'Pk2Ui\Nj pk : (14)



SUEN'S INEQUALITY 11Note that pi � xi by (12), and thus 1 = (1�xi)e'pi � (1�pi)e'pi; moreover(Nj \Ui)[ fig = Nj nNi provided i � j. By combining (13) and (14) we thusobtain the sought estimateP(Ii = 0 j SInfig = 0) � 1� pi +Xj�i P(Ii = Ij = 1 j SUi = 0)� 1� pi + (1� pi)e'piXj�i P(Ii = Ij = 1)e'Pk2Ui\Nj pk= (1� pi)�1 +Xj�i E (IiIj)e'Pk2NjnNi pk�� (1� pi) exp�Xj�i E (IiIj)e'Pk2NjnNi pk�: (15)For the �nal step, we may assume that the index set I = f1; : : : ; ng. Weapply (15) to the subset f1; : : : ; ig of I and obtain, for i = 1; : : : ; n,P(Ii = 0 j I1 = � � � = Ii�1 = 0) � (1� pi) exp� Xj�i; j<i E (IiIj)e'Pk2NjnNi pk�� (1� pi) exp� Xj�i; j<i E (IiIj)e'�j�:The result follows by multiplying these inequalities for i = 1; : : : ; n, and usinge'�j � e(�+")' = '.Proof of Theorem 8. We follow the proof of Theorem 1. The main idea is thatthere is a lower bound corresponding to (5), viz.(Ii � pi)�Yj2A(1� pj + tpj)� FA(t)� � �piXj2A tIj:The same arguments that led to (6) then yield (we leave the details to thereader), for 0 � t � 1,E F 0(t) � �tXi Xj�i pipj E FUi\Uj(t):We now use the upper bound to E FUi\Uj (t) proved in (7) and obtainE F 0(t) � �tXi Xj�i pipjet2�� Yk2Ui\Uj(1� pk)= �2t��0et2��Yk2I(1� pk) � �2t��0e��Yk2I(1� pk):Integrating this for 0 � t � 1, we obtainF (1)� F (0) � ���0e��Yk2I(1� pk):



12 SVANTE JANSONSince P(S = 0) = F (1) and F (0) =Qk2I(1�pk), this yields the �rst inequalityin the statement. The second follows by the estimate (1�pk)�1 � exp�pk=(1�pk)� � exp�pk=(1� ")�.Proof of Theorem 9. This is just the special case A = I andB = ; of Lemma 2.Proof of Theorem 10. We use the standard method of �rst estimating theLaplace transform E e�tS and then applying Markov's inequality. As remarkedabove, it is possible to estimate the Laplace transform directly by the methodof the proof of Theorem 1. For simplicity, and to avoid repetitions, we will,however, instead use the results above together with another thinning.De�ne thinned variables I 0i = JiIi as above with qi = 1� e�t for every i 2 I.Since the thinned sum S 0 equals 0 if and only if JiIi equals 0 for all i, i.e., ifand only if Ji = 0 for the S indices i with Ii = 1, the conditional probabilityP(S 0 = 0 j S) = e�tS and thusP(S 0 = 0) = E e�tS :Now, for the thinned family fI 0ig, �0 = (1 � e�t)� � (t � t22 )�, �0 = (1 �e�t)2� � t2� and �0 = (1� e�t)� � t�. Consequently, Theorem 2 yieldsE e�tS = P(S 0 = 0) � e��0+�0e2�0 � e�t�+t2( 12�+�e2t�);and thus by Markov's inequality, for any t � 0,P(S � a�) � E eta��tS � e�t(1�a)�+t2( 12�+�e2t�): (16)We choose here t = min�(1� a)�=(4�+�); 1=3��; then e2t� � e2=3 < 2, andthus t2(12�+�e2t�) � 12t2(�+ 4�) � 12t(1� a)�:Consequently, (16) yields P(S � a�) � e�t(1�a)�=2;which is the claimed result. 7. ExamplesWe give three examples showing that the estimates above are of the rightorder, and that no dramatic improvements are possible in general. We beginwith two simple examples.Example 1 (positive correlations, upper bounds). Let m;n � 1 and 0 < p <1, and consider mn Be(p) variables consisting of n groups of m variables each,such that di�erent groups are independent while the m variables in each groupare identical. Let � be the obvious dependency graph consisting of n disjointcopies of the complete graph Km. Then � = mnp, � = �m2 �np, � = (m� 1)p," = p, and P(S = 0) = (1� p)n.Consider �rst the case m = 2, and thus � = 2np, � = np. Theorem 1 yieldsP(S = 0) � exp�np(1� p)�2�(1� p)2n;



SUEN'S INEQUALITY 13the ratio between the right and left hand sides is (for p � 1=2, say)exp�np(1� p)�2�(1� p)n = exp�np(1 + 2p+O(p2))� n(p + 12p2 +O(p3))�= exp�32np2 +O(np3)�:Note that the leading terms np in the exponent cancels, which shows thatthe estimate is quite sharp. Note also that the term Qk�fi;jg(1� pk)�1 in theexponent in Theorem 1 cannot be eliminated completely; in this exampleP(S = 0) > exp(�)Yl2I (1� pl): (17)Theorem 2 yields the slightly weakerP(S = 0) � exp��2np + npe2p� = exp�52np2 +O(np3)�P(S = 0):The improved bound in Theorem 6 isexp�np(1� p)�1�(1� p)2n = exp�12np2 +O(np3)�P(S = 0);while Theorem 7 in this example yields (for p � 1=2e) the weakerexp�np'2(2p)�(1� p)2n = exp�32np2 +O(np3)�P(S = 0):Let us now consider m � 3. Then � � �, and the bounds in Theorems 1and 2 are > 1. For any m � 2, and p � 2=3, Theorem 3 yieldsP(S = 0) � exp(��2=8�) = exp�� m4(m� 1)np�;which for small p is o� by a constant factor in the exponent. Theorems 4 and 5yield similar results with even worse constants in the exponent.Example 2 (negative correlations, lower bounds). Let m;n � 1 and 0 < p �1=m, and consider againmn Be(p) variables consisting of n independent groupsof m variables each, this time assuming that the m variables in each group aresuch that never more than one of them equals 1. Then with � as in thepreceding example, IiIj = 0 whenever i � j, and thus � = 0; moreover,� = mnp, �0 = �m2 �np2, � = (m� 1)p, " = p, and P(S = 0) = (1�mp)n.Theorem 8 yieldsP(S = 0) � �1� �m2�np2(1� p)�m�(1� p)mnwhere the ratio between the right and left hand sides is (for mp � 1=2 andnm2p2 � 1, say)exp���m2�np2(1 +O(mp+ nm2p2))�mn�p+ 12p2 +O(p3)�+ n�mp+ 12m2p2 +O(m3p3)��= exp�O(nm3p3 + n2m4p4)�:



14 SVANTE JANSONThis is quite sharp for small mp provided n is not too large, but fails utterlywhen nm(m� 1)p2 � 2, and thus �0 � 1.Theorem 9 yields, for mp � 1=2e,P(S = 0) � exp��mnp'2(mp)� = exp��mnp� nm2p2 +O(nm3p3)�= exp��12nm2p2 +O(nm3p3)�P(S = 0):This too is quite sharp when mp is small. It performs better than Theorem 9when n is large, but is not as good when both mp and nm2p2 are small.Example 3 (negative correlations, lower bound). This more complicated ex-ample is due to Shearer [7], to which we refer for further details; it shows thatthe condition � + " � e�1 in Theorem 9 is best possible. (We make a mi-nor modi�cation since Shearer only considers the weak version of dependencygraphs, cf. Remark 2.) More precisely:Claim. If a > e�1, then there exists a �nite family fIigi2I having a depen-dency graph � such that � + " < a and P(S = 0) = 0:Shearer's construction as is follows. Given a graph � and 0 � p � 1, let Vbe the vertex set of �, say that a subset of V is dependent if it contains bothendpoints of some edge in � (and independent otherwise), and de�ne a signedmeasure ��;p on 2V , the space of all subsets of V , such that for each A � V��;pfE � V : E � Ag = (pjAj A is independent;0 A is dependent:It is easily seen that this de�nes a unique measure ��;p, since ��;p(fAg) may beexpressed by inclusion-exclusion for every A � V . ��;p may assume negativevalues, but if it is a positive measure, i.e. if ��;p(fAg) � 0 for every A � V ,then ��;p is a probability measure on 2V , and it is easily seen that with thismeasure, the indicators Ii = 1(i 2 E), i 2 V , form a family of random indicatorvariables with dependency graph �; moreover, then pi = E Ii = p for each i,and E (IiIj) = 0 whenever i � j.Let am = (m+2)mm=(m+1)m+1. Then am ! e�1 as m!1, and we maythus �x m � 1 such that am < a.Let b = a=(m + 2) > mm=(m + 1)m+1. Shearer [7] showed that this impliesthat there exists an m-ary tree G such that �G;b(;) < 0. We �x such a G;note that the root of G has degree m, the leaves degree 1 and all other verticesdegree m + 1.On the other hand, it is easily seen that if p is small enough, then �G;pis a probability measure. (Indeed, if p � mm=(m + 1)m+1, there is a simpleprobabilistic construction of �G;p: Add external edges to the root and leavesof G such that every vertex has m+1 edges, 1 going `down' and m going `up';colour all edges black or white independently at random with P(white) = q,where q(1 � q)m = p; de�ne Ii = 1 if the edge going down from vertex i iswhite and the m edges going up are black.)By continuity of p 7! min��G;p(fAg) : A � V is independent	, and the factthat �G;p(fAg) = 0 whenever A is dependent, it follows that for some p with



SUEN'S INEQUALITY 150 < p < b we have �G;p(fAg) � 0 for each A, and thus �G;p is a probabilitymeasure, but �G;p(fAg) = 0 for at least one independent set A.Fix such p and A, and let � be the (induced) subgraph of G obtained bydeleting all vertices in A together with all their neighbours. (In fact, it seemslikely that A = ;, and thus � = G, but we have not veri�ed this.) By a simplecalculation [7], for every B � V (�), ��;p(fBg) = �G;p(fA[Bg)=pjAj; thus ��;pis a probability measure with ��;p(;) = 0.Let the indicators Ii be de�ned as above. For this family of indicators thenP(S = 0) = ��;p(;) = 0 and � + " � (m + 1)p + p < (m + 2)b = a, whichveri�es the claim. 8. DiscussionWe may compare the upper bounds given in this paper with the resultspreviously obtained in the special case when the indicators Ii all are of thetype Qj2Qi Jj, where fJjgj2Q is a family of independent indicator variablesand the Qi are (arbitrary) subsets of the index set Q. In this case, using ournotation, [4, 3] give the boundsP(S = 0) � exp(��+�) (18)and P(S = 0) � exp���2=(2� + �)�; (19)Boppana and Spencer [2, 1] give, using a di�erent proof and under somewhatmore general conditions,P(S = 0) � exp��=(1� ")�Yi2I(1� pi) � exp��� +�=(1� ")�: (20)(Alon and Spencer [1] also give, under the same conditions and provided 2� ��(1� "), the bound exp���2(1� ")=4��; this is similar to but larger than thebound in (19).)The bounds given here in Section 3 (for a much more general situation) areof a similar nature, but somewhat larger. The main di�erence is that � playsno role in the bounds in the special case; for example, the bound in Theorem 2di�ers from (18) only by the factor e2� multiplying �.Furthermore, the constants in the exponent in the bounds in Theorems 3{5are not as good as in (19) for the special case.Example 1 shows that the � in the exponent in Theorem 2 and (18) is quitesharp; for example, it cannot in general be multiplied by a constant less than 1.However, we do not know whether the factor e2� multiplying � in Theorem 2really is needed. As remarked above, the incomparable estimates in Theorems6 and 7, which represent two di�erent attempts to reduce this factor, suggestthat none of the these results is the best possible. Indeed, it seems possiblethat the result (18) known for the special case above holds generally. (Recall,however, from Example 1 that the corresponding factor Qk�fi;jg(1� pk)�1 inTheorem 1 cannot be completely eliminated, see (17). Similarly, by the sameexample, the factor 1=(1� ") cannot be removed from the �rst bound in (20).)



16 SVANTE JANSONSimilarly, there seems to be room for improvements of the constants inTheorems 3{5. Example 1 shows that the best one could hope for is somethinglike (19); for example, the constants in front of � and � there are the bestpossible.This leads to the following open problem.Problem 1. Do (18), (19) and (20) hold under the assumptions of this paper?There are also other questions suggested by the results above.Problem 2. [3] gives a tail estimate similar to Theorem 10, but also a cor-responding lower bound. Is there similar lower bound under the conditions ofthe present paper?As remarked in Remark 2, the Lov�asz local lemma (and our Theorem 9)requires only a weaker version of our condition that � is a dependency graph.Problem 3. Do the results of this paper hold if � only is assumed to be adependency graph in the weaker sense?References[1] N. Alon & J. Spencer, The Probabilistic Method. Wiley, New York 1992.[2] R. Boppana & J. Spencer, A useful elementary correlation inequality. J. Combin. Th.Ser. A 50 (1989), 305{307.[3] S. Janson, Poisson approximation for large deviations. Random Struct. Alg. 1 (1990),221{229.[4] S. Janson, T.  Luczak & A. Ruci�nski, An exponential bound for the probability of nonex-istence of a speci�ed subgraph in a random graph. In Random Graphs '87 (Pozna�n 1987),Wiley, Chichester 1990, 73{87.[5] L.M. Kirousis, E. Kranakis, D. Krizanc & Y.C. Stamatiou, Approximating the unsatis-�ability threshold of random formulas. To appear.[6] J. Spencer, personal communication, Pozna�n 1997.[7] J. Shearer, On a problem of Spencer. Combinatorica 5 (1985), 241{245.[8] W.C.S. Suen, A correlation inequality and a Poisson limit theorem for nonoverlappingbalanced subgraphs of a random graph. Random Struct. Alg. 1 (1990), 231{242.Department of Mathematics, Uppsala University, PO Box 480, S-751 06 Upp-sala, SwedenE-mail address : svante.janson@math.uu.se


