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Abstract

The aim of this note is to extend tightness criteria for random measures and
simple point processes to processes with general jump distributions.
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1 Introduction

Consider random elements in the function space D[0, 1] endowed with the Skorohod .J;-
topology. As is well known, weak convergence of a sequence {X,, n > 1} (to X € D]0,1])
follows if the finite-dimensional distributions of X,, converge (appropriately to those of X))
and the sequence {X,} is tight. For background information see Billingsley (1968). Much
attention has been devoted to finding sufficient conditions for tightness. A particular setup
has been random measures and point processes; see Jagers (1974) and Kallenberg (1997)
and further references given there. Motivated by Gut and Hiisler (1999) where extreme
shock models are investigated, the aim of the paper is to prove some tightness criteria
for pure jump processes. A particular case would be when the jumps only take integer
values, in which case the processes reduce to (simple) point processes, which are more
easily handled.

2 Results

Throughout we thus suppose that the random elements of the sequence {X,, n > 1} in
DJ0, 1] are pure jump processes.

A crucial object is w'(-), a kind of modulus of continuity; the proofs below amount to
showing that it is suitably small. For an element x € D[0,1] and a set T' C [0, 1] we set

wy(T) = sup |z(s) — z(t)], and wh(0) = inf max wy[s; 1,5;), (2.1)
s,teT {s;} 0<a<r

where the infimum extends over the finite sets of points {s;} satisfying
0=s51<81<...<8-=1 and 8;—8_1>06, for i=1,2,...,r (2.2)

(cf. Billingsley (1968), pp. 109-110). For brevity, w’y (-) will be denoted wy,(-).
We are now ready to state our results.



Theorem 2.1. The sequence {X,, n > 1} of jump processes is tight if
(i) For each positive n there exists b, such that

P(sup |Xn(s)|>b)<n forall n>1. (2.3)
0<s<1
(ii) For each a >0
6 'limsup sup P(at least two X,-jumps in [s,s +d)) = 0 asd — 0. (2.4)

n—o0o ¢<s<l—a

(iii) For every e > 0,

limsup P( sup |X,(s) — X,(0)| >¢) =0 as a—0. (2.5)
n—>00 0<s<a
(iv)
limsup P( sup |Xn(s) — Xn(1)]>e)—=0 as a—0. (2.6)
n—00 1-a<s<1

Remark 2.2. The conditions of the theorem resemble those of Billingsley (1968), Theo-
rem 15.3. To see this, note that

sup [ Xn(s) — Xn(0)] < wn([0,a]) <2 sup |Xu(s) — X,(0)],
0<s5<a 0<s5<a

that is, we may replace (2.5) by the assumption that

limsup P(wy([0,a]) >¢) -0 as a — 0; (2.7)

n—o0

cf. condition (15.8) in the cited result. Similarly, our (2.6) is equivalent to

limsup P(wp ([l —a,1]) >¢) -0 as a—0; (2.8)

n—oo
cf. (15.9) there.

The meaning of (ii) is that the jumps are well separated from each other as long as
one stays away from the endpoints; on the other hand, no assumption is made on the size
of these jumps apart from the overall boundedness (i). In contrast, we allow many, even
infinitely many, jumps close to 0 or 1, but, by (iii) and (iv), they all have to be small.

In the formulation of the theorem the points 0 and 1 are taken care of in a ”symmetric”
fashion. In cases, such as the one in Gut and Hiisler (1999), where the jumps cluster at
one endpoint only, the following set of conditions is more convenient.

Theorem 2.3. The sequence {X,,, n > 1} of jump processes is tight if (i), (ii), (iii) hold,
together with
(iv')

linrgicng(no Xp-jump in [1 —4,1)) =1 asd — 0. (2.9)



One case of particular importance is when the jumps can only take positive values.
In this case oscillation over an interval reduces to an increase over that same interval, in
which case conditions (iii) and (iv) reduce to

(iii*) For every € > 0,

limsup P(X,(a) — X,(0) >¢) -0 as a—0. (2.10)

n—0o0

and (iv*) For every ¢ > 0,

limsup P(X,(1) — Xp(a) >¢) -0 as a— 1. (2.11)

n—o0

respectively, which leads to the following immediate corollary.
Theorem 2.4. Suppose that the jumps of the elements X, are positive a.s. The sequence
{Xn, n > 1} is tight if conditions (i), (ii), (iiit), and (iv") are satisfied.

Remark 2.5. Note that condition (iii™) corresponds to X,,(a)— X,,(0) — 0 in probability,
or stochastic continuity at 0. Compare the stronger condition (iii) and Remark 2.2. A
similar remark applies to condition (iv™).

Remark 2.6. As an immediate corollary (cf. Billingsley (1968)) it follows that, if in addi-
tion to the tightness conditions above, the finite-dimensional distributions of X,, converge
to those of X, then X,, = X in DJ[0,1].

In the case of only positive jumps an alternative formulation runs as follows.

Theorem 2.7. Suppose that {X,, n > 1} is a sequence of pure jump processes with only
positive jumps. Suppose further that the finite-dimensional distributions converge to those
of X. If X has no jump at 1 and condition (ii) in Theorem 2.1 holds, then X, = X in
DJo,1].

3 Proofs

3.1 Proof of Theorem 2.1

The idea is to show that the conditions in Billingsley (1968), Theorem 15.2 are satisfied.
In fact, as mentioned above, our conditions resemble those of his Theorem 15.3, where
a variation w”(-) of w'(-) is involved. However, since the latter always dominates the
former we actually verify the conditions of both those theorems.

Let e > 0 and n > 0, arbitrary, be given. It follows from (iii), (iv) and Remark 2.2
that we may choose a > 0 so that

P{wy,[0,2a] > e} < n, (3.1)

and
P(wy[l —2a,1)) <n (3.2)

for n > ng, and then d, 0 < § < a, in (ii) such that
6! P(at least two X,-jumps in [s,s 4 8)) <, (3.3)

for s € [a,1 —a] and n > ny.



This provides an upper bound for one interval of length §. Since there are at most 1/0
intervals in [0, 1] of this length (and all the more so in the interval [a, 1 —a]) it follows that
the probability of having at least two X,-jumps in any of the intervals [(j — 1)d,5d) C
[a,1 — a] is at most equal to n for n > ny.

By considering the d-intervals [(j — 1/2)d, (5 + 1/2)d) C [a,1 — a] it follows that the
probability of having two X,,-jumps within §/2 from each other in adjacent J-intervals
from the first set of d-intervals is also bounded by n for n > ny. It thus follows that the
probability of having two or more X,,-jumps in the interval [2a, 1 — 2a] of distance at most
d/2 from each other is bounded by 27 for n > n.

We now choose a partition as described in (2.2), however, with § replaced by §/2. For
a given w we then distinguish between the following three cases depending on the sample
path behaviour in the interval [2a,1 — 2q]:

(i) There exist jumps in [2a,1 — 2a] closer than 6/2 from each other. For n large we
know that the probability for this event is at most equal to 2n.

(ii) There are no jumps in [2a,1 — 2a] closer than §/2 from each other. In this case
we choose s; as the time of the first jump after a, after which the remaining points,
$9,83,...,8r—1, are assigned to the further jump points of X, in [2a,1 — 2a] (recall that
s = 1). Tt follows that

Wh() < max wnlsi1,5) = max{uwn[0, s1), walse 1, 1)}
< max{wa[0, 2a], wn[l — 2a, 1)}, (3.4)

since wy[sj—1,8;) =0 for 2 <i <r —1 and X, is constant on [2a, s1) and [s,_1,1 — 2a].

(iii) There are no jumps at all in [2a,1 — 2a]. In this case we let r = 2 with s; = 1/2
(say), and (3.4) still holds.

Combining the above estimates we find that, given € and 7 positive as above, we can
choose a and §, such that

P(w,(8) > €) < 2n+ P(wy[0,2a] > €) + P(wy[l — 2a,1) > ¢) < 4n (3.5)

uniformly for large values of n.
The proof is complete.

Remark 3.1. An inspection of the proof above shows that we may replace X (1) by X (1—)
in (2.6). Similarly, w,[1l —a, 1] may be replaced by wy[1 —a,1) in (2.8), that is, a possible
jump at 1 does, in fact, not matter.

3.2 Proof of Theorem 2.3
Since wp[1 —§,1) = 0 unless X,, has at least one jump in [1 —§,1), (iv’) implies that (2.8)
holds (with wy[1 —a, 1)). The conclusion thus follows from Theorem 2.1 and Remark 3.1.

3.3 Proof of Theorem 2.7

Since X,,(0) —¢ X (0) and X, (1) =4 X (1) as n — oo, it follows that {X,(0), n > 1} and
{Xn(1), n > 1} are tight. Moreover, supy<s<y |Xn(s)| = max{|X;(0)|,[Xn(1)[}, which
shows that (i) holds.



Next, given &, n > 0, we choose a > 0 such that P(|X(a) — X(0)] > €) < n, and since
(Xn(0), X, (a)) —q (X(0),X(a)) as n — oo it follows that P(|X,(a) — X,(0)] > ¢) <7
for n > ng, that is, (iii*) holds. A similar argument applies to (iv"). An application of
Theorem 2.4 concludes the proof.

4 Remarks and comments

We begin this section by describing the problem in Gut and Hiisler (1999) that motivated
the present investigation, after which we provide some additional remarks and comments.

As mentioned in the introduction, the present paper was motivated by the paper Gut
and Hiisler (1999) which deals with extreme shock models. Shock models describe systems
that at random times are subject to shocks of random magnitudes. One distinguishes
between two major types; cumulative shock models and extreme shock models. Systems
governed by the former kind break down when the cumulative shock magnitude exceeds
some given level, whereas systems modeled by the latter kind break down as soon as an
individual shock exceeds some given level.

The general setup in extreme shock models is a family {(Xy, Yy), k& > 1} of i.i.d. two-
dimensional random vectors, where X represents the magnitude of the kth shock and
where Y}, represents the time between the (k — 1) st and the kth shock. We further set
Tn = > k<n Y, n > 1, and define

7(t) = min{n : X,, > t}, t>0. (4.1)

The main object of investigation is the failure time 7’ ;).
In order to prove weak convergence for the whole process one introduces the process

{Zt(s)a 0<s< 1} = {TT(st)(l - F(t))a 0<s< 1}a (42)

with Z;(0) = 0. We first observe that the realizations of the process are nondecreasing
step functions in the function space D[0,1]. To see that the process fits into the present
discussion we observe that the process starts at 0 and stays constant as s moves from 0
to 1 until a new (shock-)record occurs, at which time point the process jumps, and then
stays constant until the next shock occurs, and so on. Note also that the process differs
from a simple point process in that the jumps are not of size one. Under the additional
assumption that the tail of the distribution of the shock magnitudes is regularly varying
at infinity it is shown in Gut and Hiisler (1999) that the finite-dimensional distributions
converge, and that the sequence {Z;(s), 0 < s < 1} is tight, that is, that the process
converges weakly. The limit process is also described.

Remark 4.1. In Theorem 2.4 we consider the special case when the jumps are positive,
replacing conditions (iii) and (iv) with conditions (iii*) and (iv"), respectively. A com-
pletely analogous argument can of course be made if the jumps only assume negative
values, in which case conditions (iii) and (iv) are replaced by the obvious conditions (iii™)
and (iv ), respectively, the exact formulation of which leave to the interested reader(s).

Remark 4.2. The condition (trouble) at the endpoint 1 can be dispensed with (avoided)
by considering jump processes defined on [0, 00) endowed with the Skorohod J;-topology
on DJ[0,00) (see Lindvall (1973)).



In this case conditions (i) and (ii) become

(i*°) For each T,n > 0 there exists b, such that

P( sup |X,(s)]>b)<n forall n>1 (4.3)
0<s<T

(ii*°) For each a1,a9 > 0

6~ 'limsup sup P(at least two X,-jumps in [s,s +8)) = 0 as d — 0. (4.4)

n—oo ap SSSQQ

A sequence {X,,, n > 1} of jump processes on [0, 00) is tight in D0, c0) if (i*°), (ii*°), and
(iii) hold. In particular, if the jumps are positive, the finite-dimensional distributions of
X, converge to those of X and (ii®°) holds, then X,, —4 X as n — oo; cf. Theorem 2.7.

Remark 4.3. Tt is also possible to consider processes defined on the open interval (0, 1).
One can then show as above that if {X,,, n > 1} is a sequence of jump processes such that
(i) and (ii) hold, then {X,, n > 1} is tight. Here we may also replace (i) by

(i") For each 0 < a1 <az < 1

P( sup |Xp(s)|>b)<n forall n>1. (4.5)

a1<s<a2

Similarly, if (i), (ii), and (iii) hold, then {X,, n > 1} is tight in D|0, 1), and with (i), (ii),
and (iv) it is tight in D(0, 1], and so on. For further remarks in this direction, see Janson
(1994), pp. 5-6, in particular, Proposition 2.4.

By obvious modifications it is also possible to consider processes on arbitrary intervals
[S,T], or [S,T), etc, 0 < S <T < oc.

Remark 4.4. Condition (ii) is used as a convenient tool in order to verify the weaker

(ii") For each a > 0

lim sup P(there exist two X,,-jumps in [a,1 — a] closer than §) -0 asd — 0. (4.6)

n—o0
The purpose of the condition is to prevent asymptotic double points; to ensure that the
limiting process is simple. The reason for this is that if X,, has two points ”close” to each
other in such a way that they collaps in the limit, the J;-topology is too strong to allow
this; whereas X, are simple for all n this is not necessarily the case for X, that is, being
simple is not a Ji-continuous property.

As an example, suppose that

0 f0r0§t<%,
Xo(t) =4 Z for s<t<isl
Zy for 541 <t <1,

where Z1, Z assume the values 1 and 2 with probability 1/2, say, then every X, is clearly
simple, whereas X is not.

The last remark leads us, in turn, to the following two remarks.



Remark 4.5. Consider, for example, the special case of simple non-decreasing point pro-
cesses, that is the jumps are all equal to +1. Suppose further that the finite-dimensional
distributions of X,, converge to those of X, and assume, for simplicity, that X (0) = 0
(the typical case) and that X has no jump at 1. Then X is a point process too and it is
easily seen that (ii’) is equivalent to X being simple as well. Theorem 2.7 now implies that
X, = X in D|0,1] as n — oo. This has been proved by other means in Jagers (1974),
Section 3, see also Kallenberg (1997), Chapter 14.

Remark 4.6. In Remark 4.4 we found that the Ji-topology is too strong for handling the
case when the limit process may have double points. The weaker Skorohod M;-topology
introduced in Skorohod (1956) can cope with this problem. Namely, in this topology con-
vergence of elements in D[0, 1] amounts to uniform convergence of continuous parametric
representations of the elements, that is, convergence of parametric representations that
move continuously along the graphs. For the example considered in Remark 4.5 it fol-
lows that weak convergence in DI0,1] (or D[0,00)) endowed with the M;-topology holds
without condition (ii’), that is, the limit process may have double points in this case.

Remark 4.7. The above results remain true if the “time” parameter is continuous, that
is, we may alternatively consider a family { X}, ¢ > 0} instead of the sequence {X,,, n > 1};
cf. Gut and Hiusler (1999) (and the introduction of this section) for an example.
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