
Tightness and weak convergence for jump processesAllan Gut and Svante Janson, Uppsala UniversityAbstractThe aim of this note is to extend tightness criteria for random measures andsimple point processes to processes with general jump distributions.AMS (1991) Subject Classi�cation: 60F17, 60G50, 60G55Key Words: Weak convergence, tightness, modulus of continuity.Abbreviated title: Tightness and weak convergence1 IntroductionConsider random elements in the function space D[0; 1] endowed with the Skorohod J1-topology. As is well known, weak convergence of a sequence fXn; n � 1g (to X 2 D[0; 1])follows if the �nite-dimensional distributions of Xn converge (appropriately to those of X)and the sequence fXng is tight. For background information see Billingsley (1968). Muchattention has been devoted to �nding su�cient conditions for tightness. A particular setuphas been random measures and point processes; see Jagers (1974) and Kallenberg (1997)and further references given there. Motivated by Gut and H�usler (1999) where extremeshock models are investigated, the aim of the paper is to prove some tightness criteriafor pure jump processes. A particular case would be when the jumps only take integervalues, in which case the processes reduce to (simple) point processes, which are moreeasily handled.2 ResultsThroughout we thus suppose that the random elements of the sequence fXn; n � 1g inD[0; 1] are pure jump processes.A crucial object is w0( � ), a kind of modulus of continuity; the proofs below amount toshowing that it is suitably small. For an element x 2 D[0; 1] and a set T � [0; 1] we setwx(T ) = sups;t2T jx(s)� x(t)j; and w0x(�) = inffsig max0<i�rwx[si�1; si); (2.1)where the in�mum extends over the �nite sets of points fsig satisfying0 = s0 < s1 < : : : < sr = 1 and si � si�1 > �; for i = 1; 2; : : : ; r (2.2)(cf. Billingsley (1968), pp. 109-110). For brevity, w0Xn( � ) will be denoted w0n( � ).We are now ready to state our results. 1



Theorem 2.1. The sequence fXn; n � 1g of jump processes is tight if(i) For each positive � there exists b, such thatP ( sup0�s�1 jXn(s)j > b) � � for all n � 1: (2.3)(ii) For each a > 0��1 lim supn!1 supa�s�1�aP (at least two Xn-jumps in [s; s+ �))! 0 as � ! 0: (2.4)(iii) For every " > 0,lim supn!1 P ( sup0�s�a jXn(s)�Xn(0)j > ")! 0 as a! 0: (2.5)(iv) lim supn!1 P ( sup1�a�s�1 jXn(s)�Xn(1)j > ")! 0 as a! 0: (2.6)Remark 2.2. The conditions of the theorem resemble those of Billingsley (1968), Theo-rem 15.3. To see this, note thatsup0�s�a jXn(s)�Xn(0)j � wn([0; a]) � 2 sup0�s�a jXn(s)�Xn(0)j;that is, we may replace (2.5) by the assumption thatlim supn!1 P (wn([0; a]) > ")! 0 as a! 0; (2.7)cf. condition (15.8) in the cited result. Similarly, our (2.6) is equivalent tolim supn!1 P (wn([1� a; 1]) > ")! 0 as a! 0; (2.8)cf. (15.9) there.The meaning of (ii) is that the jumps are well separated from each other as long asone stays away from the endpoints; on the other hand, no assumption is made on the sizeof these jumps apart from the overall boundedness (i). In contrast, we allow many, evenin�nitely many, jumps close to 0 or 1, but, by (iii) and (iv), they all have to be small.In the formulation of the theorem the points 0 and 1 are taken care of in a "symmetric"fashion. In cases, such as the one in Gut and H�usler (1999), where the jumps cluster atone endpoint only, the following set of conditions is more convenient.Theorem 2.3. The sequence fXn; n � 1g of jump processes is tight if (i), (ii), (iii) hold,together with(iv0) lim infn!1 P (no Xn-jump in [1� �; 1))! 1 as � ! 0: (2.9)
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One case of particular importance is when the jumps can only take positive values.In this case oscillation over an interval reduces to an increase over that same interval, inwhich case conditions (iii) and (iv) reduce to(iii+) For every " > 0,lim supn!1 P (Xn(a)�Xn(0) > ")! 0 as a! 0: (2.10)and (iv+) For every " > 0,lim supn!1 P (Xn(1) �Xn(a) > ")! 0 as a! 1: (2.11)respectively, which leads to the following immediate corollary.Theorem 2.4. Suppose that the jumps of the elements Xn are positive a.s. The sequencefXn; n � 1g is tight if conditions (i), (ii), (iii+), and (iv+) are satis�ed.Remark 2.5. Note that condition (iii+) corresponds to Xn(a)�Xn(0)! 0 in probability,or stochastic continuity at 0. Compare the stronger condition (iii) and Remark 2.2. Asimilar remark applies to condition (iv+).Remark 2.6. As an immediate corollary (cf. Billingsley (1968)) it follows that, if in addi-tion to the tightness conditions above, the �nite-dimensional distributions of Xn convergeto those of X, then Xn ) X in D[0; 1].In the case of only positive jumps an alternative formulation runs as follows.Theorem 2.7. Suppose that fXn; n � 1g is a sequence of pure jump processes with onlypositive jumps. Suppose further that the �nite-dimensional distributions converge to thoseof X. If X has no jump at 1 and condition (ii) in Theorem 2.1 holds, then Xn ) X inD[0; 1].3 Proofs3.1 Proof of Theorem 2.1The idea is to show that the conditions in Billingsley (1968), Theorem 15.2 are satis�ed.In fact, as mentioned above, our conditions resemble those of his Theorem 15.3, wherea variation w00( � ) of w0( � ) is involved. However, since the latter always dominates theformer we actually verify the conditions of both those theorems.Let " > 0 and � > 0, arbitrary, be given. It follows from (iii), (iv) and Remark 2.2that we may choose a > 0 so thatPfwn[0; 2a] > "g < �; (3.1)and P (wn[1� 2a; 1)) < � (3.2)for n � n0, and then �, 0 < � < a, in (ii) such that��1P (at least two Xn-jumps in [s; s+ �)) < �; (3.3)for s 2 [a; 1 � a] and n � n1. 3



This provides an upper bound for one interval of length �. Since there are at most 1=�intervals in [0; 1] of this length (and all the more so in the interval [a; 1�a]) it follows thatthe probability of having at least two Xn-jumps in any of the intervals [(j � 1)�; j�) �[a; 1 � a] is at most equal to � for n � n1.By considering the �-intervals [(j � 1=2)�; (j + 1=2)�) � [a; 1 � a] it follows that theprobability of having two Xn-jumps within �=2 from each other in adjacent �-intervalsfrom the �rst set of �-intervals is also bounded by � for n � n1. It thus follows that theprobability of having two or more Xn-jumps in the interval [2a; 1�2a] of distance at most�=2 from each other is bounded by 2� for n � n1.We now choose a partition as described in (2.2), however, with � replaced by �=2. Fora given ! we then distinguish between the following three cases depending on the samplepath behaviour in the interval [2a; 1� 2a]:(i) There exist jumps in [2a; 1 � 2a] closer than �=2 from each other. For n large weknow that the probability for this event is at most equal to 2�.(ii) There are no jumps in [2a; 1 � 2a] closer than �=2 from each other. In this casewe choose s1 as the time of the �rst jump after a, after which the remaining points,s2; s3; : : : ; sr�1, are assigned to the further jump points of Xn in [2a; 1 � 2a] (recall thatsr = 1). It follows thatw0n(�) � max0<i�rwn[si�1; si) = maxfwn[0; s1); wn[sr�1; 1)g� maxfwn[0; 2a]; wn[1� 2a; 1)g; (3.4)since wn[si�1; si) = 0 for 2 � i � r � 1 and Xn is constant on [2a; s1) and [sr�1; 1� 2a].(iii) There are no jumps at all in [2a; 1 � 2a]. In this case we let r = 2 with s1 = 1=2(say), and (3.4) still holds.Combining the above estimates we �nd that, given " and � positive as above, we canchoose a and �, such thatP (w0n(�) > ") � 2� + P (wn[0; 2a] > ") + P (wn[1� 2a; 1) > ") � 4� (3.5)uniformly for large values of n.The proof is complete.Remark 3.1. An inspection of the proof above shows that we may replaceX(1) byX(1�)in (2.6). Similarly, wn[1� a; 1] may be replaced by wn[1� a; 1) in (2.8), that is, a possiblejump at 1 does, in fact, not matter.3.2 Proof of Theorem 2.3Since wn[1� �; 1) = 0 unless Xn has at least one jump in [1� �; 1), (iv0) implies that (2.8)holds (with wn[1� a; 1)). The conclusion thus follows from Theorem 2.1 and Remark 3.1.3.3 Proof of Theorem 2.7Since Xn(0)!d X(0) and Xn(1)!d X(1) as n!1, it follows that fXn(0); n � 1g andfXn(1); n � 1g are tight. Moreover, sup0�s�1 jXn(s)j = maxfjXn(0)j; jXn(1)jg, whichshows that (i) holds. 4



Next, given "; � > 0, we choose a > 0 such that P (jX(a) �X(0)j � ") < �, and since(Xn(0);Xn(a)) !d (X(0);X(a)) as n ! 1 it follows that P (jXn(a) � Xn(0)j � ") < �for n � n0, that is, (iii+) holds. A similar argument applies to (iv+). An application ofTheorem 2.4 concludes the proof.4 Remarks and commentsWe begin this section by describing the problem in Gut and H�usler (1999) that motivatedthe present investigation, after which we provide some additional remarks and comments.As mentioned in the introduction, the present paper was motivated by the paper Gutand H�usler (1999) which deals with extreme shock models. Shock models describe systemsthat at random times are subject to shocks of random magnitudes. One distinguishesbetween two major types; cumulative shock models and extreme shock models. Systemsgoverned by the former kind break down when the cumulative shock magnitude exceedssome given level, whereas systems modeled by the latter kind break down as soon as anindividual shock exceeds some given level.The general setup in extreme shock models is a family f(Xk; Yk); k � 1g of i.i.d. two-dimensional random vectors, where Xk represents the magnitude of the k th shock andwhere Yk represents the time between the (k � 1) st and the k th shock. We further setTn =Pk�n Yk; n � 1, and de�ne�(t) = minfn : Xn > tg; t � 0: (4.1)The main object of investigation is the failure time T�(t).In order to prove weak convergence for the whole process one introduces the processfZt(s); 0 � s � 1g = fT�(st)(1� F (t)); 0 � s � 1g ; (4.2)with Zt(0) = 0. We �rst observe that the realizations of the process are nondecreasingstep functions in the function space D[0; 1]. To see that the process �ts into the presentdiscussion we observe that the process starts at 0 and stays constant as s moves from 0to 1 until a new (shock-)record occurs, at which time point the process jumps, and thenstays constant until the next shock occurs, and so on. Note also that the process di�ersfrom a simple point process in that the jumps are not of size one. Under the additionalassumption that the tail of the distribution of the shock magnitudes is regularly varyingat in�nity it is shown in Gut and H�usler (1999) that the �nite-dimensional distributionsconverge, and that the sequence fZt(s); 0 � s � 1g is tight, that is, that the processconverges weakly. The limit process is also described.Remark 4.1. In Theorem 2.4 we consider the special case when the jumps are positive,replacing conditions (iii) and (iv) with conditions (iii+) and (iv+), respectively. A com-pletely analogous argument can of course be made if the jumps only assume negativevalues, in which case conditions (iii) and (iv) are replaced by the obvious conditions (iii�)and (iv�), respectively, the exact formulation of which leave to the interested reader(s).Remark 4.2. The condition (trouble) at the endpoint 1 can be dispensed with (avoided)by considering jump processes de�ned on [0;1) endowed with the Skorohod J1-topologyon D[0;1) (see Lindvall (1973)). 5



In this case conditions (i) and (ii) become(i1) For each T; � > 0 there exists b, such thatP ( sup0�s�T jXn(s)j > b) � � for all n � 1: (4.3)(ii1) For each a1; a2 > 0��1 lim supn!1 supa1�s�a2 P (at least two Xn-jumps in [s; s+ �))! 0 as � ! 0: (4.4)A sequence fXn; n � 1g of jump processes on [0;1) is tight in D[0;1) if (i1), (ii1), and(iii) hold. In particular, if the jumps are positive, the �nite-dimensional distributions ofXn converge to those of X and (ii1) holds, then Xn !d X as n!1; cf. Theorem 2.7.Remark 4.3. It is also possible to consider processes de�ned on the open interval (0; 1).One can then show as above that if fXn; n � 1g is a sequence of jump processes such that(i) and (ii) hold, then fXn; n � 1g is tight. Here we may also replace (i) by(i0) For each 0 < a1 < a2 < 1P ( supa1�s�a2 jXn(s)j > b) � � for all n � 1: (4.5)Similarly, if (i), (ii), and (iii) hold, then fXn; n � 1g is tight in D[0; 1), and with (i), (ii),and (iv) it is tight in D(0; 1], and so on. For further remarks in this direction, see Janson(1994), pp. 5-6, in particular, Proposition 2.4.By obvious modi�cations it is also possible to consider processes on arbitrary intervals[S; T ], or [S; T ), etc, 0 � S � T � 1.Remark 4.4. Condition (ii) is used as a convenient tool in order to verify the weaker(ii0) For each a > 0lim supn!1 P (there exist two Xn-jumps in [a; 1� a] closer than �)! 0 as � ! 0: (4.6)The purpose of the condition is to prevent asymptotic double points; to ensure that thelimiting process is simple. The reason for this is that if Xn has two points "close" to eachother in such a way that they collaps in the limit, the J1-topology is too strong to allowthis; whereas Xn are simple for all n this is not necessarily the case for X, that is, beingsimple is not a J1-continuous property.As an example, suppose thatXn(t) = 8><>: 0 for 0 � t < 12 ;Z1 for 12 � t < 12 + 1n ;Z2 for 12 + 1n � t � 1;where Z1; Z2 assume the values 1 and 2 with probability 1/2, say, then every Xn is clearlysimple, whereas X is not.The last remark leads us, in turn, to the following two remarks.6



Remark 4.5. Consider, for example, the special case of simple non-decreasing point pro-cesses, that is the jumps are all equal to +1. Suppose further that the �nite-dimensionaldistributions of Xn converge to those of X, and assume, for simplicity, that X(0) = 0(the typical case) and that X has no jump at 1. Then X is a point process too and it iseasily seen that (ii0) is equivalent to X being simple as well. Theorem 2.7 now implies thatXn ) X in D[0; 1] as n ! 1. This has been proved by other means in Jagers (1974),Section 3, see also Kallenberg (1997), Chapter 14.Remark 4.6. In Remark 4.4 we found that the J1-topology is too strong for handling thecase when the limit process may have double points. The weaker Skorohod M1-topologyintroduced in Skorohod (1956) can cope with this problem. Namely, in this topology con-vergence of elements in D[0; 1] amounts to uniform convergence of continuous parametricrepresentations of the elements, that is, convergence of parametric representations thatmove continuously along the graphs. For the example considered in Remark 4.5 it fol-lows that weak convergence in D[0; 1] (or D[0;1)) endowed with the M1-topology holdswithout condition (ii0), that is, the limit process may have double points in this case.Remark 4.7. The above results remain true if the \time" parameter is continuous, thatis, we may alternatively consider a family fXt; t � 0g instead of the sequence fXn; n � 1g;cf. Gut and H�usler (1999) (and the introduction of this section) for an example.AcknowledgementWe wish to thank Peter Jagers for some pertinent remarks.ReferencesBillingsley, P. (1968). Convergence of probability measures. Wiley, New York.Gut, A. and H�usler, J. (1999). Extreme shock models. U.U.D.M. Report 5:1999.Jagers, P. (1974). Aspects of random measures and point processes. Advances in probabilityand related topics, Vol 3. Eds. P. Ney and S. Port., 179-239. Marcel Dekker, New York.Janson, S. (1994). Orthogonal decompositions and functional limit theorems for random graphstatistics. Memoirs of the Amer. Math. Soc. 534 Providence, RI.Kallenberg, O. (1997). Foundations of Modern Probability. Springer, New York.Lindvall, T. (1973). Weak convergence of probability measures and random functions in thefunction space D[0;1). J. Appl. Probab. 10, 109-121.Skorohod, A.V. (1956). Limit theorems for stochastic processes. Theory Probab. Appl. I,261-290.Allan Gut, Department of Mathematics, Uppsala University, Box 480, S-751 06 Uppsala, Sweden;allan.gut@math.uu.seSvante Janson, Department of Mathematics, Uppsala University, Box 480, S-75106 Uppsala, Swe-den; svante.janson@math.uu.seApril 1999 7


