
Remarks to Random Dyadi Tilings of the Unit SquareSvante JansonAugust 1, 2001This note ontains some further remarks to Random Dyadi Tilings of the UnitSquare by Svante Janson, Dana Randall and Joel Spener, that were not deemed suitablefor inlusion in the paper. (Although only one of the authors is reponsible for this note,the help of the other two is aknowledged.)The note is informal, and not intended for publiation.1 Number of edges in the graph TnLet en be the number of edges in the graph Tn (see Setion 2 and Problem 2.8). Thuse0 = 0, e1 = 1, e2 = 8, . . . .If n � 2, then the subgraph onsisting of tilings with a vertial ut is isomorphi toTn�1 � Tn�1 and has 2An�1en�1 edges, the same holds for the subgraph onsisting oftilings with a horizontal ut, every edge belongs to at least one of these two subgraphs byTheorem 2.3 and the number of edges belonging to both subgraphs equals the number ofedges in Tn�2�Tn�2�Tn�2�Tn�2, whih is 4en�2A3n�2. Hene, we have the reursionformula en = 4An�1en�1 � 4A3n�2en�2; n � 2: (1)This gives for small n the values in Table 1.e1 1e2 8e3 192e4 52000e5 1874325376e6 1210503319261219968e7 251888520933684030206341784482360832e8 5448250438458315814543618408036661448863619847306233051620928065384960Table 1: number of edges in Tn, n = 1; : : : ; 8Let dn := en=An be (half) the average degree. Then the reursion formula (1) anbe rewritten en = 4dn�1A2n�1 � 4dn�2A4n�21



and thus, see (4.1) and (1.1),dn = 4dn�1pn � 4dn�2(2pn � 1); n � 2:Let xn := 2�ndn. Then x0 = 0, x1 = 1=4, x2 = 2=7, x3 = 12=41, and, by therelations above, xn = 2pnxn�1 � (2pn � 1)xn�2; n � 2:Hene, xn � xn�1 = (2pn � 1)(xn�1 � xn�2); n � 2;and thus xn � xn�1 = 14 nYk=2(2pk � 1); n � 1;and �nally xn = 14 nXj=1 jYi=2(2pi � 1)!  := 14 1Xj=1 jYi=2(2pi � 1):In other words, dn = 2n�2 nXj=1 jYi=2(2pi � 1) � 2n;and hene, see (1.2), we have the asymptotial expressionen � 2nAn � ��12n�2n :Sine 2pi�1! 2��1�1 = 2��3 = p5�2 = 0:236 � � � , the sum de�ning  onvergesrapidly. Numerially,  = 0:2946462157 � � � .2 More lattie theoryBy a theorem of Birkho�'s, every �nite distributive lattie is isomorphi to the family ofall hereditary subsets (down-sets) in some �nite partially ordered set, whih is uniqueup to isomporphism. (The onverse holds too, and this de�nes a bijetion betweensets of isomorphism lasses of �nite distributive latties and �nite posets.) The heightfuntion (in our ase H(T )=2) is the ardinality of the orresponding hereditary subset,and thus the diameter of the lattie equals the ardinality of the poset.It follows by indution and the reursive onstrution of Tn as the union of thetwo (overlapping) subsets of tilings with a horizontal or vertial ut, respetively, thatthe partially ordered set for the lattie Tn looks like a n-dimensional truss. It hasn2n�1 elements, f. Corollary 2.7, and an be realized as follows: Take the produt setf1; : : : ; ng � f0; 1gn�1, and de�ne (i + 1; x1; : : : ; xn�1) > (i; y1; : : : ; yn�1) if xj = yj forevery j 6= i (but xi and yi are arbitrary). Take the transitive losure.(Thanks to Anders Bj�orner for helpful remarks.)2



3 Path oupling, a remarkAtually, the �rst eiling in the onlusion of Theorem 5.4 is not neessary, but [2℄ hasit, so its simplest to keep it.4 Comparison methodTheorem 5.8 is a slight modi�ation of a theorem in [3℄. Here is a detailed proof.Theorem (5.8). Let (P; �;
) and ( eP ; �;
) be two reversible Markov hains suh thateP (x; y) 6= 0 implies P (x; y) 6= 0 for all x; y 2 
. Let �� = minx2
 �(x). Then, for0 < � < 1=2, �(�) � 4 ln(1=(���))Amax� e�(�)ln(1=2�) ; 1�; (2)where A = maxx6=y; eP (x;y)>0 eP (x; y)P (x; y) :Proof. The argument in [3℄ yields that �1 < 1=2 or1� �1 � 14e�(�) log(1=2�)and thus always 1� �1 � min� 14e�(�) log(1=2�); 12�:Moreover, sine we only use paths of length 1, whih is odd, the same argument butusing Theorem 2.2 in [1℄ shows that the same estimate holds for 1 + �j
j�1. Thus theresult holds by [3, Theorem 1(i)℄.Remark. Although we do not need it, the onstant 4 in (2) an be replaed by 2 bythe following sharpening of [3, Theorem 1(ii)℄.Theorem 1. Let �� = max(j�1j; j�
�1j). For 0 < � < 1, we havemaxx �x(�) � ��1� �� log� 12��:Proof. Let Lp denote Lp(
; �), let P denote the operator on these spaes (whih oinideas vetor spaes but have di�erent norms) de�ned by Pf(x) =Py P (x; y)f(y) and let Qdenote the operator de�ned by Qf(x) =Py �(y)f(y); then P is a self-adjoint operatoron L2 and Q is the orthogonal projetion onto the spae of onstant funtions.Sine P �Q is self-adjoint, the operator norm in L2 of P t �Q = (P �Q)t is givenby kP t �QkB(L2) = k(P �Q)tkB(L2) = �t�: (3)
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On the other hand, it is easily seen that the operator norm in L1 and in L1 bothare given bykP t �QkB(L1) = kP t �QkB(L1) = maxx Xy jP t(x; y)� �(y)j = 2maxx �x(t):(That these two norms are equal follows also beause the operator is self-adjoint.)Hene, if t = maxx �x(�), we havekP t �QkB(L1) = kP t �QkB(L1) � 2�:By interpolation (in this ase speial ase due to Shur (1911) and known as Shur'slemma), this implies kP t �QkB(L2) � 2�and the result follows by (3) and log(1=��) � 1=�� � 1.5 A non-uniform random tilingWe have shown that Algorithm 4.1 generates uniformly distributed random tilings inTn. Evidently, one an also produe random tilings in Tn by the following simpleralgorithm: Make a vertial or horizontal ut, with probability 1=2 eah, and ontinuereursively in eah half (independently) n levels. This method, however, does not givea uniformly distributed tiling when n � 2. For example, the probability of obtainingthe all horizontal tiling eT0 is 2�(2n�1) � A�1n .This simpler method is equivalent to hoosing a random labeling of the ompletebinary tree with H and V (or A and D) uniformly among all 22n�1 possibilities withoutany restritions, and onstruting the orresponding tiling as in Setion 3.It might be interesting to study properties of suh non-uniform random tilings too.We give only a few simple remarks.A branhing proess argument, similar to the one in Setion 6.2 but now with aritial branhing proess, shows that for the random tiling generated by this proe-dure, P(there is a vertial ut) ! 1 as n ! 1, in ontrast to (4.1). By symmetry,P(there is a horizontal ut)! 1 too, and hene P(there is a strut)! 0.For the total height we now �nd easily from (6.4) that, with the same normalization(6.1), ~Hn d! ~H 01, where ~H 01 = 1Xk=1 2k�1Xj=1 2�kYkjwith Ykj independent random variables with P(Ykj = �1) = 12 . Hene, Var ~H 01 = 12and the moment generating funtion is given byE ez ~H01 = 1Yk=1(osh(2�kz))2k�1 :Problems. Realling the minimum height hmin from Problem 6.6, it is not diÆult toshow that for the non-uniform model hmin p!1. How fast? What is Ehmin? Does hminhave an asymptoti distribution after normalization? If so, what is it?4
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