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Abstract. The analysis of an algorithm by Koda and Ruskey for listing
ideals in a forest poset leads to a study of random binary trees and their
limits as infinite random binary trees. The corresponding finite and
infinite random forests are studied too. The infinite random binary
trees and forests studied here have exactly one infinite path; they can
be defined using suitable size-biazed Galton–Watson processs. Limit
theorems are proved using a version of the contraction method.

1. Introduction

The vertices of a rooted forest may be regarded as a poset in a natural
way, with the roots being the minimal elements. Consider the family of all
ideals (or down-sets) of this poset. If the forest consists of trees T1,. . . ,Tk,
then the ideals are the sets of the form V1 ∪ · · · ∪ Vk, where each Vi is either
empty or the vertex set of a rooted subtree of Ti.

Koda and Ruskey [11] described two algorithms for listing the ideals of a
forest poset in a Gray code manner, i.e. such that consecutive ideals differ
by exactly one element. (For background and applications, see [11]. For
actual implementations, see Knuth [10].) We are here concerned only with
their first algorithm, Algorithm P in [11]. Since the algorithm operates on
ordered forests, we assume from now on that all forests and trees are rooted
and ordered.

As noted in [11], the running time per ideal of Algorithm P, i.e. the
total running time divided by the number of ideals listed, is not bounded.
However, it is conjectured in [11, Section 6] that the expected running time
per ideal for a randomly selected rooted tree on n vertices is bounded as
n →∞.

In the present paper, we study random ordered rooted trees, and verify
the conjecture of [11] in this case. (As pointed out by a referee, the conjec-
ture in [11] is really stated for random rooted trees; the algorithm operates
on ordered trees, but the probability distribution depends on whether the
ordering is imposed before or after the random selection. Presumably, the
result holds for random rooted trees and other families of simply generated
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trees too.) Moreover, we show that both the expectation and the distri-
bution of the running time per ideal converges as n →∞ (without further
normalization).

The proofs use a version of the contraction method, which earlier has been
used to study many other algorithms, see e.g. [16, 17, 18, 19]. The present
application includes some novel features, however, which we find at least as
interesting as the results themselves. Thus, although the paper exclusively
studies Algorithm P, it should mainly be seen as an example illustrating
a method that we hope may be useful for the study of other algorithms as
well.

In the proofs we find it convenient to transfer the problem to an equivalent
one for random binary trees, see Section 3. Note that we consider random
binary trees with the uniform distribution over all binary trees of a given
size (sometimes called Catalan trees), in contrast to the binary search trees
that appear in connection with other applications of the contraction method
(in particular, Quicksort). The distributions are quite different, with the
uniform binary trees studied here tending to be much more unbalanced and
stringy, which leads to new phenomena.

In the present case (unlike the case of binary search trees), there is a
natural limit of the random binary tree as its size tends to infinity; this
is a non-trivial infinite random binary tree. Similarly, there is an infinite
random forest that is the limit of the random ordered rooted forest. We
study these infinite trees and forests in Sections 5 and 6 and show that
the cost per ideal can be defined (a.s.) for these infinite objects too, in
such a way that its distribution is the limiting distribution of the cost per
ideal for finite random forests. This enables us to deduce some properties
of the limiting distribution. For example, we show that the distribution is
continuous (Theorem 5.10). It is, however, an open problem whether it is
absolutely continuous.

The infinite random forests and binary trees studied here have exactly
one infinite branch. They can be defined using a size-biased Galton–Watson
branching process, see Section 5. We include some further comments on the
structure of these infinite objects in Sections 5 and 6.

Acknowledgement. I thank Donald Knuth for suggesting this problem.

2. Preliminaries

We let |F | denote the number of vertices in a forest, or tree, F . If T
is a tree, we let T ∗ be the forest obtained by deleting the root, letting the
children of the old root be the new roots. Thus |T ∗| = |T | − 1.

Denote the number of ideals of a forest F by N(F ). If F consists of the
trees T1, . . . , Tm, then

N(F ) =
m∏

i=1

N(Ti). (2.1)
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In particular, N(∅) = 1. Moreover, it is easily seen that if T is a tree, then

N(T ) = 1 + N(T ∗). (2.2)

Note that (2.1) and (2.2) together determine N recursively. It is easily seen
by induction, or directly, considering the ideals consisting of paths from the
root and the empty ideal, that

N(F ) ≥ |F |+ 1. (2.3)

We let W (F ) denote a measure of the running time (work) of Algorithm P
on a forest F . Of course, the actual running time depends on details in the
implementation, but we make a precise definition as follows, using the de-
scriptions in the proof of Lemma 3.1 in [11]:

If F is empty, we let W (F ) = 0.
If F consists of a single tree T , then Algorithm P lists first ∅ and then

all ideals of T ∗, in the order given by Algorithm P on T ∗, with the root of
T added to each. The work required by the algorithm on T is therefore the
same as for T ∗, but with one extra unit for each ideal of T ∗ (because of the
added root) and two extra units for the additional ideal. Hence

W (T ) = W (T ∗) + N(T ∗) + 2 = W (T ∗) + N(T ) + 1. (2.4)

If F consists of several trees T1, . . . , Tk, k ≥ 2, let F ′ = F \ T1 = T2 ∪
· · · ∪Tk. Then Algorithm P first lists all ideals of T1, ignoring F ′, then acts
in F ′ as if running on F ′, then lists all ideals of T1 in reverse order with
the first nonempty ideal of F ′ added to each, then acts in F ′ again, then
lists the ideals of T1 in order with the second nonempty ideal of F ′ added
to each, and so on. Hence the ideals of T1 are run through N(F ′) times (in
alternating directions) with a work W (T1) each time, while the remaining
steps together are equivalent to running the algorithm on F ′, which requires
W (F ′). Hence

W (F ) = N(F ′)W (T1) + W (F ′). (2.5)

This completes our (recursive) definition of W . (This definition of W
by (2.4) and (2.5) was given, in an equivalent form, by Knuth [personal
communication].)

Remark 2.1. There is some arbitrariness in the definition; in particular,
(2.4) might be modified to W (T ) = W (T ∗) + aN(T ∗) + b for some other
positive constants a and b. This would not cause any important differences
to the results of this paper (although numerical values will differ); we can
assume that a = 1 by dividing W by a, and a value of b different from 2
would cause only routine changes below.

Note that N(F ) and W (F ) vary wildly among forests of the same size.
The extreme cases are, as is easily verified by induction:

(i) n isolated roots; N = 2n, W = 3(2n − 1).
(ii) n vertices in a path; N = n + 1, W =

(
n+1

2

)
+ 2n = (n2 + 5n)/2.
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We therefore study Q(F ) := W (F )/N(F ), the work per ideal. Note that
the path in (ii) shows that Q is unbounded (on trees as well as on forests).
(N(F ) and N(T ) are studied in [8, 20], but we do not use the results there.)

There are Cn ordered forests with n vertices, where

Cn =
1

n + 1

(
2n

n

)
=

(2n)!
n! (n + 1)!

(2.6)

is the n:th Catalan number, and thus there are Cn−1 ordered trees with n
vertices [9, 2.3.4.4].

Let Fn denote a random ordered rooted forest with n vertices, uniformly
selected among the Cn possibilities; let similarly Tn be a uniformly selected
random ordered rooted tree with n vertices. We can now state the main
results of the paper, proved in Section 4.

Theorem 2.2. There exists a positive random variable Q with finite mean
such that, as n →∞, Q(Fn) d→ Q and E Q(Fn) → EQ.

Corollary 2.3. As n →∞, with Q as in Theorem 2.2, Q(Tn) d→ Q+1 and
E Q(Tn) → EQ + 1.

Proof. By (2.2) and (2.4),

Q(Tn) =
W (Tn)
N(Tn)

=
W (T ∗n) + N(T ∗n) + 2

N(T ∗n) + 1
= Q(T ∗n) + 1 +

1−Q(T ∗n)
N(T ∗n) + 1

.

Since T ∗n is distributed as Fn−1, and N(T ∗n) ≥ n by (2.3), the results follow
from Theorem 2.2. �

We have no explicit description of the limit distribution L(Q), but it is
characterized by a fixed point equation. This fixed point equation is more
complicated than in many other similar cases, so we postpone it to Section 5,
see Theorems 5.7 and 5.8. In Sections 5 and 6 we further show that Q may
be interpreted as an extension of Q to random infinite forests.

3. Binary trees

We find it convenient to consider binary trees instead of forests, using
the well-known correspondence in [9, Section 2.3.2], which can be defined
recursively as follows: If F = ∅, then B(F ) = ∅. If F is a forest consisting
of trees T1, . . . , Tk, k ≥ 1, then B(F ) is the binary tree with a root, a left
subtree B(T ∗1 ) and a right subtree B(T2∪ · · ·∪Tk). Note that |B(F )| = |F |.

We define N , W and Q for binary trees by this correspondence, setting
N(B(F )) = N(F ) and so on.

It is easily seen that (2.1), (2.2), (2.4), (2.5) translate as follows: If B is
a nonempty binary tree with left and right subtrees L and R, then

N(B) =
(
N(L) + 1

)
N(R) (3.1)

W (B) = N(R)
(
W (L) + N(L) + 2

)
+ W (R). (3.2)
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Together with N(∅) = 1 and W (∅) = 0, (3.1) and (3.2) define N and W
directly on binary trees by recursion. Taking the quotient, we further obtain

Q(B) =
W (L) + N(L) + 2

N(L) + 1
+

W (R)
N(R)(N(L) + 1)

= Q(L) + 1 +
1−Q(L) + Q(R)

N(L) + 1
. (3.3)

Let Bn denote a (uniformly selected) random binary tree with n vertices
(n ≥ 0). Then Theorem 2.2 is equivalent to the following.

Theorem 3.1. As n →∞, Q(Bn) d→ Q and E Q(Bn) → EQ, with Q as in
Theorem 2.2.

Let, for n ≥ 1, Ln and Rn denote the left and right subtrees of Bn. Note
that

|Ln|+ |Rn| = n− 1. (3.4)
Let (pn,k)n−1

k=0 be the probability distribution of the size of the left (or, by
symmetry, the right) subtree of Bn, i.e.

pn,k := P(|Ln| = k) = P(|Rn| = k). (3.5)

By (3.4),

pn,k = P(|Ln| = k) = P(|Rn| = n− 1− k) = pn,n−1−k. (3.6)

There are Cn binary trees with n vertices, where again Cn is the Catalan
number (2.6). Hence, the number of binary trees with k vertices in the left
subtree and n− 1− k in the right is CkCn−1−k, and

pn,k =
CkCn−1−k

Cn
.

Stirling’s formula easily yields

Cn =
1

n + 1

(
2n

n

)
= π−1/2n−3/222n

(
1 + O(n−1)

)
.

Hence, uniformly for 0 ≤ k ≤ n/2,

pn,k = Ck(n− 1− k)−3/2n3/222(n−1−k)−2n
(
1 + O(n−1)

)
= Ck4−k−1

(
1 + O

(k + 1
n

))
= πk

(
1 + O

(k + 1
n

))
,

where
πk = lim

n→∞
pn,k = Ck4−k−1, k ≥ 0.

By the generating function for Catalan numbers

B(z) :=
∞∑

k=0

Ckz
k =

1−
√

1− 4z

2z
, (3.7)
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see e.g. [9, (2.3.4.4-13)], we have
∞∑

k=0

πk =
∞∑

k=0

Ck4−k−1 =
1
4
B

(1
4

)
=

1
2
. (3.8)

Hence (πk)∞0 is not a probability distribution. This reflects the symmetry of
the left and right sides; roughly speaking, for n large, with probability 1/2
|Ln| is small, and with probability 1/2 |Rn| is small and then |Ln| ≈ n. In
particular, a large random binary tree is extremely unbalanced. We state
this more precisely.

Lemma 3.2. For each ε > 0 there exists M such that, for every n,

P(|Ln| < M) > 1
2 − ε (3.9)

P(|Ln| ≥ n−M) > 1
2 − ε (3.10)

P(M ≤ |Ln| < n−M) < 2ε. (3.11)

Proof. Choose M1 such that
∑∞

k=M1
πk < ε. Then, as n →∞,

P(|Ln| < M1) →
M1−1∑
k=0

πk > 1
2 − ε,

so (3.9) holds with M = M1 for sufficiently large n, say n ≥ n0. Taking
M := max(M1, n0), (3.9) holds for all n. Furthermore, (3.10) holds by (3.6),
while (3.11) is an immediate consequence of (3.9) and (3.10). �

We can modify (πk) to make it into a probability distribution in two ways,
both of which will be used below. First, we can allow the value +∞, giving
it the probability 1/2 because of (3.8). We let ξ∗ be a random variable with
values in N∗ := {0, 1, . . . ,∞} having this distribution, i.e.

P(ξ∗ = k) =

{
πk, 0 ≤ k < ∞,
1
2 , k = ∞.

Alternatively, we can renormalize (πk) and consider the probability dis-
tribution (2πk)0≤k<∞. We let ξ be a random variable with this distribution,
i.e.

P(ξ = k) = 2πk = 2−2k−1Ck, k ≥ 0. (3.12)

Note that ξ can be defined as ξ∗ conditioned on ξ∗ < ∞.
With this notation, the following lemmas are immediate consequences of

the results above.

Lemma 3.3. Let n →∞. Then |Ln|
d→ ξ∗, as random variables in N∗. �

Lemma 3.4. Let n →∞. Then |Ln|, conditioned on |Ln| < n/2, converges
in distribution to ξ. �

Of course, the same results hold for |Rn|.
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Remark 3.5. These results for the uniform random binary tree studied here
should be compared with the corresponding results for random binary search
trees, which have a different distribution and for which |Ln| is uniformly
distributed on {0, . . . , n−1}. The stronger imbalance in our case is a source
of phenomena quite different from the binary search tree case.

Finally we record a simple but important observation. We let B̃n be
another (uniform) random binary tree, independent of {Bk}∞k=0.

Lemma 3.6. Let 0 ≤ k < n. The conditional joint distribution of Ln and
Rn given |Ln| = k equals the distribution of (Bk, B̃n−1−k). �

In other words, conditioned on the sizes of the subtrees Ln and Rn, they
are two independent random binary trees.

4. Proof of the limit theorems

We begin with a preliminary estimate, which verifies the conjecture that
the expected running time is bounded.

Lemma 4.1. supn≥0 E Q(Bn) < ∞.

Proof. Define, for n ≥ 0,

an := E Q(Bn) + 1,

bn := E
1

N(Bn) + 1
≤ 1

2
.

From (3.3), conditioning on |Ln| and using Lemma 3.6,

an ≤ E
(
Q(Ln) + 1 + (1 + Q(Rn))

1
N(Ln) + 1

)
+ 1

=
n−1∑
l=0

pn,lal +
n−1∑
r=0

pn,rarbn−1−r + 1

=
n−1∑
l=0

pn,lal(1 + bn−1−l) + 1

≤ 3
2

n−1∑
l=0

pn,lal + 1. (4.1)

Let a∗n := max0≤k≤n ak. By (4.1), for any M ≥ 0,

an ≤ 3
2a∗M P(|Ln| ≤ M) + 3

2a∗n−1 P(|Ln| > M) + 1

≤ 1 + 3
2a∗M + 3

2a∗n−1

(
1− P(|Ln| ≤ M)

)
.

We choose M as in Lemma 3.2 with ε = 0.1. Then P(|Ln| ≤ M) > 0.4 and
thus, for all n ≥ 1,

an ≤ 1 + 3
2a∗M + 3

2 · 0.6a∗n−1 = 0.9a∗n−1 + 1 + 3
2a∗M .
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An easy induction yields

an ≤ 10(1 + 3
2a∗M ), n ≥ 0.

The lemma follows because E Q(Bn) ≤ an. �

We prove Theorem 3.1, and thus Theorem 2.2 and Corollary 2.3, using
the Mallows metric d1 for probability distributions with finite expectations.
(This metric is also known under many other names, such as the Dudley,
Fortet-Mourier, Kantorovich or Wasserstein distance.) It has several equiv-
alent definitions, see e.g. [15]; for us the following is convenient.

If f is a real (or complex) function on R, let

‖f‖Lip := sup
x 6=y

|f(x)− f(y)|
|x− y|

.

If µ and ν are probability measures on R with finite expectations, then

d1(µ, ν) := sup
{∣∣∣∣∫ f dµ−

∫
f dν

∣∣∣∣ : ‖f‖Lip ≤ 1
}

. (4.2)

In other words, we take the supremum in (4.2) over all functions f satisfying
the Lipschitz condition |f(x)− f(y)| ≤ |x− y|. (It does not matter whether
we consider real or complex functions.)

If X and Y are random variables with finite expectations, we will for
simplicity write d1(X, Y ) for the d1 distance between their distributions.
Thus

d1(X, Y ) := sup
{∣∣E f(X)− E f(Y )

∣∣ : ‖f‖Lip ≤ 1
}
. (4.3)

It is easily seen that d1(Xn, X) → 0 implies Xn
d→ X and E Xn →

E X. (Take f(x) = |t|−1eitx, t 6= 0, and f(x) = x.) We will show that
d1(Q(Bn),Q) → 0 for some random variable Q; this thus proves Theo-
rem 3.1. (Indeed, Theorem 3.1 is equivalent to d1(Q(Bn),Q) → 0, using the
fact that d1(Xn, X) → 0 is equivalent to X1

d→ X and E |Xn| → E |X| for
any random variables with finite expectations.)

Remark 4.2. That E Q(Bn) converges could also be shown directly using
a simplified version of the proof below, taking f(x) = x.

Note first that replacing f by f − f(0) does not change E f(X)−E f(Y ).
Hence we may in (4.3) further impose f(0) = 0. Since then |f(x)| = |f(x)−
f(0)| ≤ |x|, we have the bound

d1(X, Y ) ≤ E |X|+ E |Y |. (4.4)

We now consider Q(Bn). For notational convenience we write Xn =
Q(Bn), Yn = (N(Bn) + 1)−1 and X̃n = Q(B̃n). Thus X̃n has the same
distribution as Xn but is independent of all Xk and Yk. Note that, by (2.3),

Yn ≤
1

n + 2
.
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We further define

δN := sup{d1(Xn, Xm) : n, m ≥ N}. (4.5)

Let c1 := supn E Xn, which is finite by Lemma 4.1. By (4.4), δN ≤ 2c1 <
∞.

Fix a function f with ‖f‖Lip ≤ 1 and f(0) = 0. By (3.3) and Lemma 3.6,
conditioning on |Ln|, for n ≥ 1,

E f(Xn) = E f(Q(Bn)) = E f
(
Q(Ln) + 1 +

1−Q(Ln) + Q(Rn)
N(Ln) + 1

)
=

∑
k

pn,k E f
(
Q(Bk) + 1 +

1−Q(Bk) + Q(B̃n−1−k)
N(Bk) + 1

)
=

∑
k

pn,k E f
(
Xk + 1 + Yk(1−Xk + X̃n−1−k)

)
=

∑
k

pn,k E f(Un,k) (4.6)

where

Un,k := Xk + 1 + Yk(1−Xk + X̃n−1−k). (4.7)

We have, for 0 ≤ k ≤ n,

|E f(Un,k)| ≤ E |Un,k| ≤ E(Xk + 2 + X̃n−1−k) ≤ c2 := 2c1 + 2 (4.8)

and
|E f(Un,k)− E f(Xk + 1)| ≤ E |f(Un,k)− f(Xk + 1)|

≤ E |Un,k −Xk − 1| = E |Yk(1−Xk + X̃n−1−k)|

≤ E
1

k + 2
|1−Xk + X̃n−1−k| ≤

c2

k + 2
. (4.9)

Let ε > 0 and let M be as in Lemma 3.2. By (4.8),∣∣∣∣∣
M∑

k=0

pn,k E f(Un,k)−
M∑

k=0

πk E f(Un,k)

∣∣∣∣∣ ≤
M∑

k=0

|pn,k − πk|c2 (4.10)

and∣∣∣∣∣
n−M−2∑
k=M+1

pn,k E f(Un,k)

∣∣∣∣∣ ≤ c2

n−M−2∑
k=M+1

pn,k = c2 P(M < |Ln| < n− 1−M)

< 2c2ε. (4.11)

Furthermore,
n−1∑

k=n−1−M

pn,k E f(Un,k) =
M∑

j=0

pn,n−j−1 E f(Un,n−1−j) =
M∑

j=0

pn,j E f(Un,n−1−j)
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and thus by (4.8) and (4.9)∣∣∣∣∣∣
n−1∑

k=n−1−M

pn,k E f(Un,k)−
M∑

j=0

πj E f(Xn−1−j + 1)

∣∣∣∣∣∣
≤

M∑
j=0

|pn,j − πj | |E f(Un,n−1−j)|+
M∑

j=0

πj |E f(Un,n−1−j)− E f(Xn−1−j + 1)|

≤ c2

M∑
j=0

|pn,j − πj |+
c2

n−M

M∑
j=0

πj .

(4.12)

We define Rn by

E f(Xn) =
M∑

k=0

πk E f(Un,k) +
M∑

k=0

πk E f(Xn−1−k + 1) + Rn (4.13)

and obtain by (4.6) and (4.10)–(4.12), for n ≥ 2M ,

|Rn| ≤ 2c2

M∑
k=0

|pn,k − πk|+ 2c2ε +
c2

n−M
. (4.14)

Let N0 be so large that N0 > 2M , N0 > M +1/ε and |pn,k−πk| < ε/(M +1)
when n ≥ N0 for k ≤ M . Then (4.14) yields

|Rn| ≤ 5c2ε, n ≥ N0. (4.15)

Now suppose N ≥ N0 and m, n ≥ N . Using (4.13) and (4.15) we have

|E f(Xn)− E f(Xm)|

≤
M∑

k=0

πk|E f(Un,k)− E f(Um,k)|

+
M∑

k=0

πk|E f(Xn−1−k + 1)− E f(Xm−1−k + 1)|+ 10c2ε. (4.16)

Since f1(x) := f(x + 1) is a function with ‖f1‖Lip = ‖f‖Lip ≤ 1,

|E f(Xn−1−k + 1)− E f(Xm−1−k + 1)| ≤ d1(Xn−1−k, Xm−1−k). (4.17)

Similarly, for any given Xk and Yk, the function

g(x) := f
(
Xk + 1 + Yk(1−Xk + x)

)
has Lipschitz norm ‖g‖Lip ≤ Yk, and thus by (4.7)

|E
(
f(Un,k)− f(Um,k) | Xk, Yk

)
| = |E g(X̃n−1−k)− E g(X̃m−1−k)|

≤ ‖g‖Lipd1(X̃n−1−k, X̃m−1−k) ≤ Ykd1(Xn−1−k, Xm−1−k).
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Using the crude bound Yk ≤ 1/2 and taking the expectation we have

|E f(Un,k)− E f(Um,k)| ≤ E |E
(
f(Un,k)− f(Um,k) | Xk, Yk

)
|

≤ 1
2d1(Xn−1−k, Xm−1−k). (4.18)

Consequently, by (4.16), (4.18) and (4.5), for m,n ≥ N ≥ N0,

|E f(Xn)− E f(Xm)| ≤
M∑

k=0

πk
1
2δN−1−k +

M∑
k=0

πkδN−1−k + 10c2ε

≤ 3
2δN−1−M

M∑
k=0

πk + 10c2ε

≤ 3
4δN−1−M + 10c2ε.

Taking the supremum over all f with ‖f‖Lip ≤ 1 and f(0) = 0 we find, for
n, m ≥ N ≥ N0,

d1(Xn, Xm) ≤ 3
4δN−1−M + 10c2ε

and thus
δN ≤ 3

4δN−1−M + 10c2ε, N ≥ N0.

Letting N →∞ we obtain

lim sup
N→∞

δN ≤ 3
4 lim sup

N→∞
δN + 10c2ε

and thus, since lim supN→∞ δN ≤ 2c1 < ∞,

lim sup
N→∞

δN ≤ 40c2ε.

Finally, letting ε → 0, we obtain δN → 0 as N →∞.
By the definition (4.5), this shows that (Xn)n, or rather the corresponding

sequence of distributions, is a Cauchy sequence in the d1 metric. It is easily
seen that the space of all probability measures on R with finite expectation
is complete with the metric d1 [15]. Hence there exists a limit distribution,
and thus a random variable Q such that d1(Xn,Q) → 0, which completes
the proof. �

Remark 4.3. The proof above shows that the distributions of (Xn)n form
a Cauchy sequence, and thus converge to some limit. The limit will in
the next section be characterized by fixed point equations. An anonymous
referee has pointed out that, alternatively, it is possible to first define the
limit distribution by the fixed point equation in Theorem 5.7 and then use
arguments similar to the proof above to show that d1(Xn,Q) → 0. This is
the usual procedure in applications of the contraction method; it has some
advantages in the current setting too but also some disadvantages, and we do
not find the differences decisive. Anyone interested in extending the present
results should consider both versions of the method.
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5. More on binary trees

We begin with some more or less well-known (folk-lore?) observations on
random binary trees.

Define a random binary tree B∗ with random size by the following con-
struction: Flip a fair coin. If it comes up tails, let B∗ be empty, otherwise
begin with a root. In the latter case, flip the coin again twice and add a
left child of the root if the first flip results in heads and a right child if the
second flip results in heads. Continue in this way, flipping the coin twice
for every new vertex, as long as new vertices are added. (Equivalently, do
site percolation on the complete infinite binary tree by flipping a fair coin
for each vertex and removing the vertices that get tails, and let B∗ be the
component of the root, if any.)

We can regard B∗ as the family tree of a Galton–Watson branching process
with offspring distribution Bi(2, 1/2) (and children labelled as left or right),
starting with Bi(1, 1/2) individuals. We thus call B∗ the Galton–Watson
binary tree. Since this Galton–Watson process is critical, it a.s. dies out,
and thus B∗ is finite.

The probability that B∗ equals a given binary tree with n vertices is
2−2n−1, since the vertices have to be chosen by n specified coin flips coming
up heads, while n + 1 other coin flips have to yield tails. Hence

P(|B∗| = n) = Cn2−2n−1 = 2πn. (5.1)

In other words, |B∗| has the same distribution as ξ defined in (3.12). More-
over, the conditional distribution of B∗ given |B∗| = n is uniform, and thus
equals the distribution of Bn. This yields yet another possibility of defining
B∗: select its size by (5.1) and then select uniformly a binary tree with this
size. Equivalently, if ξ is independent of (Bn)∞n=0, we can take B∗ = Bξ.

Lemmas 3.4 and 3.6 imply the following:

Lemma 5.1. Let n →∞. Then Ln, conditioned on |Ln| < n/2, converges
in distribution to B∗. �

Consequently, a large random binary tree has one branch at the root
distributed (asymptotically) as B∗, while the other is large. We may continue
recursively with the large branch, which suggests the following construction.

Define a (noncomplete) infinite random binary tree B∞ as follows. Begin
with the root and create an infinite path from it by randomly adding, an
infinite number of times, either a left or a right child to the last added vertex.
Finally, add independent copies of B∗ at the free sites of the vertices in the
path, i.e. as left or right subtrees depending on which side is not already
occupied by the remainder of the infinite path. Note that B∞ has exactly
one infinite path from the root; we call this path the trunk.

It is easily seen that B∞ can be defined by the following modification
of the branching process above creating B∗. Consider a Galton–Watson
process with two types of individuals, mortals and immortals. Let a mortal
have Bi(2, 1/2) children, all mortal, and let an immortal have exactly one
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immortal child and Bi(1, 1/2) mortal children. Moreover, label each child as
left or right, at random but ensuring that two siblings get different labels.
The resulting family tree is B∞.

It is now easy to see that Lemma 5.1 implies the following description
of the asymptotic shape of large random binary trees. Let, for any tree B,
B(M) be the first M levels of B, i.e. the tree with all branches pruned at
height M .

Lemma 5.2. As n →∞, Bn
d→ B∞ in the sense of finite-dimensional

distributions, i.e., B
(M)
n

d→ B
(M)
∞ for every finite M . �

Remark 5.3. If we regard the space B of all finite or infinite binary trees as
a subset of the power set of the vertex set of the complete infinite binary tree,
with the natural product space topology on the power set, B is a metrizable
compact space. A metric can be defined e.g. by d(B,B′) = 1/(k + 1) if B
and B′ differ in the k-th level but not below it. The conclusion of Lemma 5.2
is equivalent to Bn

d→ B∞ in this compact metric space B.

Remark 5.4. The construction of B∞ is a special case of the following
general construction of the size-biased Galton–Watson process (regarded as
a family tree); see e.g. [1] and [13]. Starting from a Galton–Watson process
with an offspring distribution µ having finite, positive mean, the size-biased
process can be obtained by considering a branching process with two types:
mortals with an offspring distribution µ and all children mortals, and immor-
tals with the size-biased offspring distribution µ̂ and exactly one immortal
child (in a random position among its siblings). The process starts with
a single immortal. In the critical case studied here (and in the subcritical
case), the size-biased process is the same as the Q-process studied in [3,
Section I.14]. It is shown there that this process arises as the limit (in the
sense of finite-dimensional distributions) as t → ∞ of the original process
conditioned on extinction occuring after time t (see also [5]). Informally
(for critical and subcritical processes), it is the process conditioned on liv-
ing forever. Similarly, it is easily shown that for a critical Galton–Watson
process with finite offspring variance, the size-biased process is the limit as
n → ∞ of the process conditioned on the total progeny being n [7, 1]. In
the case of random binary trees, this conditioning yields Bn, and we recover
Lemma 5.2.

Having proved that both the trees Bn and the functional Q(Bn) defined
on them converge in distribution, it is natural to try to interpret the limit in
Theorem 3.1 as Q(B∞) for an extension of Q to infinite trees. Unfortunately,
we cannot define this extension by continuity on the space B in Remark 5.3.
Indeed, it is easily seen that for any infinite binary tree b, there is a sequence
bn of finite binary trees such that bn → b in B but Q(bn) →∞; for example,
construct bn by pruning b at height n and adding a sufficiently large complete
binary tree at one of the cuts. (We leave the verification to the reader.)
Hence, Q has no continuous extension to B.
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However, we can extend Q in the following, somewhat weaker, way. We
let N(B) = ∞ for any infinite tree B. We further let L∞ and R∞ denote
the left and right subtree of the root of B∞. Note that exactly one of L∞
and R∞ is finite.

Theorem 5.5. There exists an extension of Q to infinite binary trees such
that E |Q(B(M)

∞ )−Q(B∞)| → 0 as M →∞. This extension satisfies a.s. the
equation

Q(B∞) = Q(L∞) + 1 +
1

N(L∞) + 1
(
1−Q(L∞) + Q(R∞)

)
. (5.2)

Moreover, the limit random variable Q in Theorems 2.2 and 3.1 can be taken
as Q(B∞), i.e. Q(Bn) d→ Q(B∞) as n →∞.

We do not know whether Q(B(M)
∞ ) → Q(B∞) a.s. as M →∞.

We begin with a lemma on truncations of finite trees.

Lemma 5.6. Let, for M ≥ 1,

δ(M) := sup
n

E |Q(B(M)
n )−Q(Bn)|.

Then δ(M) → 0 as M →∞.

Proof. Note first that δ(M) < ∞ by Lemma 4.1 because Q(B(M)
n ) attains

only a finite number of values for each M .
For any n and M ≥ 1, the left and right subtrees of B

(M+1)
n are L

(M)
n and

R
(M)
n , and thus (3.3) yields

Q(B(M+1)
n )−Q(Bn) =

N(L(M)
n )

N(L(M)
n ) + 1

(
Q(L(M)

n )−Q(Ln)
)

+
1

N(L(M)
n ) + 1

(
Q(R(M)

n )−Q(Rn)
)

+
( 1

N(L(M)
n ) + 1

− 1
N(Ln) + 1

)(
1−Q(Ln) + Q(Rn)

)
.

Since either L
(M)
n = Ln or |Ln| > |L(M)

n | > M , this implies

|Q(B(M+1)
n )−Q(Bn)| ≤ |Q(L(M)

n )−Q(Ln)|+ 1
2 |Q(R(M)

n )−Q(Rn)|

+
1
M
|1−Q(Ln) + Q(Rn)|. (5.3)

For any k ≥ 0, by Lemma 3.6,

E
(
|Q(L(M)

n )−Q(Ln)|
∣∣ |Ln| = k

)
= E |Q(B(M)

k )−Q(Bk)| ≤ δ(M).

Moreover, if |Ln| = k ≤ M , then L
(M)
n = Ln. Hence,

E |Q(L(M)
n )−Q(Ln)| ≤ δ(M) P(|Ln| > M).
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The same estimate holds for E |Q(R(M)
n ) − Q(Rn)|. We thus obtain from

(5.3), again letting c1 := supn E Q(Bn) < ∞, see Lemma 4.1,

E |Q(B(M+1)
n )−Q(Bn)| ≤ 3

2δ(M) P(|Ln| > M) +
1 + 2c1

M
. (5.4)

Let M0 be as in Lemma 3.2 with ε = 0.1. Then, for every M ≥ M0, we
have P(|Ln| > M) ≤ P(|Ln| > M0) < 0.6, and thus by (5.4)

E |Q(B(M+1)
n )−Q(Bn)| ≤ 0.9δ(M) +

c2

M
.

for every n and thus

δ(M+1) ≤ 0.9δ(M) +
c2

M
, M ≥ M0. (5.5)

It follows by induction that δ(M) ≤ δ(M0) + 10c2, M ≥ M0, and thus
δ := lim supM→∞ δ(M) < ∞. Furthermore, (5.5) implies δ ≤ 0.9δ, and
consequently δ = 0. �

Proof of Theorem 5.5. For any M,N ≥ 1, it follows from Lemma 5.2 that
Q(B(M)

n )−Q(B(N)
n ) d→ Q(B(M)

∞ )−Q(B(N)
∞ ) as n →∞, and thus by Fatou’s

lemma

E |Q(B(M)
∞ )−Q(B(N)

∞ )| ≤ lim inf
n→∞

E |Q(B(M)
n )−Q(B(N)

n )| ≤ δ(M) + δ(N).

It follows from Lemma 5.6 that B
(M)
∞ , M ≥ 1, is a Cauchy sequence in L1,

and thus this sequence converges to a limit, which can be written Q(B∞).
This proves the first assertion and the third follows from this and Lemmas

5.2 and 5.6 by a standard 3ε argument, see e.g. [4, Theorem 4.2].
For (5.2), we observe again that by (3.3)

Q(B(M+1)
∞ ) = Q(L(M)

∞ ) + 1 +
1−Q(L(M)

∞ ) + Q(R(M)
∞ )

N(L(M)
∞ ) + 1

. (5.6)

As M →∞, the left hand side converges to Q(B∞) in L1 and thus in
probability by the first part of the theorem. Similarly, conditioned on
|L∞| = ∞, Q(L(M)

∞ ) → Q(L∞) in L1 and thus in probability, since the
conditional distribution of L∞ given that it is infinite equals the distri-
bution of B∞. On the other hand, conditioned on |L∞| < ∞, obviously
Q(L(M)

∞ ) → Q(L∞) a.s.. Combining the two cases, Q(L(M)
∞ )

p→ Q(L∞).
Similarly Q(R(M)

∞ )
p→ Q(R∞), while N(L(M)

∞ )
p→ N(L∞) ≤ ∞ is evident.

Letting M →∞ in (5.6) thus yields (5.2). �

We can develop (5.2) further. First, L∞ is infinite with probability 1/2.
In this case, N(L∞) = ∞ and (5.2) reduces to

Q(B∞) = Q(L∞) + 1. (5.7)

Moreover, the conditional distribution of L∞ given |L∞| = ∞ equals the
unconditional distribution of B∞.
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The other possibility is L∞ finite; in this case R∞ is infinite and its
(conditional) distribution equals the unconditional distribution of B∞, while
L∞ has the same distribution as B∗. We rewrite (5.2) as

Q(B∞) = β(L∞) + α(L∞)Q(R∞) (5.8)

where, for a finite binary tree B,

α(B) :=
1

N(B) + 1

β(B) :=
N(B)Q(B) + N(B) + 2

N(B) + 1
=

W (B) + N(B) + 2
N(B) + 1

.

We can combine (5.7) and (5.8) into the following fixed point equation.

Theorem 5.7. The limit random variable Q = Q(B∞) in Theorems 2.2
and 3.1 satifies the fixed point equation Q d= AQ + B, where (A,B) is
independent of Q and has the distribution given by

(A,B) d=

{
(1, 1), η = 0,(
α(B∗), β(B∗)

)
, η = 1,

where η ∼ Bi(1, 1/2) and B∗ are independent. �

We can obtain a slightly simpler fixed point equation if we follow the
leftmost branch of B∞ until we find a vertex v with a finite left subtree, i.e.
until the infinite path makes its first right turn. (In the branching process
construction above, we continue until the left child is mortal.) Let ζ ≥ 0 be
the height of v, and denote its left and right subtrees by L and R. Then,
ζ, L and R are independent; ζ has a geometric distribution Ge(1/2); L is
finite and L

d= B∗; and R is infinite and R
d= B∞. Applying (5.7) ζ times

followed by (5.8), we find

Q(B∞) = β(L) + α(L)Q(R) + ζ.

This yields the following alternative fixed point equation.

Theorem 5.8. The limit random variable Q in Theorems 2.2 and 3.1 sat-
ifies the fixed point equation Q d= A′Q + B′, where (A′, B′) is independent
of Q and has the distribution given by

(A′, B′) d=
(
α(B∗), β(B∗) + ζ

)
,

where ζ ∼ Ge(1/2) and B∗ are independent. �

Corollary 5.9. The limit of E Q(Fn) and E Q(Bn) is given by

EQ = E Q(B∞) =
E B′

1− E A′
=

E β(B∗) + 1
1− E α(B∗)

=
(2− E α(B∗)) E Q(B∗) + 1

1− E α(B∗)
= E Q(B∗) +

E Q(B∗) + 1
1− E α(B∗)

.
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Proof. Taking expectations in Theorem 5.8 we find EQ = E A′ EQ + E B′,
which yields the second inequality, and the third follows by the definitions
of A′ and B′, since E ζ = 1. (Theorem 5.7 leads to the same result.)

Next, we argue as above for the finite random tree B∗ too. In this
case, the tree is empty and Q(B∗) = 0 with probability 1/2, and other-
wise Q(B∗) = β(L∗) + α(L∗)Q(R∗), where L∗ and R∗ are independent with
the same distribution as B∗. This can be written, in analogy with Theo-
rem 5.7, Q(B∗)

d= A0Q(B∗) + B0, where (A0, B0) is independent of Q(B∗)
and has the distribution given by

(A0, B0)
d=

{
(0, 0), η = 0,(
α(B∗), β(B∗)

)
, η = 1,

where η ∼ Bi(1, 1/2) as above is independent of B∗. Taking expectations
we find

E Q(B∗) =
E B0

1− E A0
=

E β(B∗)
2− E α(B∗)

or E β(B∗) = (2− E α(B∗)) E Q(B∗), and the result follows. �

Note that the variables A, B, A′ and B′ are discrete and take only ratio-
nal values; for example, A′ takes the values {1/k}∞k=2, while B and B′ are
unbounded. (We do not know whether the range B and B′ is the set of all
nonnegative rational numbers.) Since B∗ and the auxiliary variables η and
ζ only take countably many values, with explicitly given probabilities, the
distributions of these variables, and in particular their expectations, can in
principle be determined numerically with arbitrary accuracy. In practice,
the slow convergence of P(|B∗| > n) to zero together with the exponential
growth of the number of trees of a given size may make it difficult to attain
high precision.

We have found, using Maple, the estimates E α(B∗) = E(1+N(B∗))−1) .=
0.318, E β(B∗)

.= 2.9, and E Q(B∗)
.= 1.7, which yields EQ .= 5.7; we have

no sharp rigorous error bounds, however, so these values should not be taken
as absolute truths.

The fixed point equations imply further some qualitative properties of Q.

Theorem 5.10. The limit random variable Q has a continuous distribution
with support [3,∞).

Remark 5.11. Although A and B (and A′ and B′) are discrete, Q is con-
tinuous. Indeed, this is very general, and the proof below uses only A′ 6= 0
a.s.. However, we have not been able to resolve whether Q is absolutely con-
tinuous, although it seems very plausible. Note that singular distributions
may occur in this type of fixed point equations. For example, A = 1/3 and
B ∼ Bi(1, 1/2) yields the Cantor measure (up to a scale factor).

Proof. Let p(x) := P(Q = x) and suppose that p(x) > 0 for some x. Let
p0 := supx p(x) > 0. It is easily seen that this supremum is attained, since
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x p(x) ≤ 1, so we can choose x with p(x) = p0. By Theorem 5.8,

p0 = P(A′Q + B′ = x) = E
(
P(Q = (x−B′)/A′)

)
= E p

(
(x−B′)/A′

)
.

Since p(y) ≤ p0, this is possible only if p
(
(x − B′)/A′

)
= p0 for all values

of A′ and B′, but this implies that p(y) = p0 for infinitely many values of
y, which contradicts

∑
y p(y) ≤ 1. Hence p(x) = 0 for every x, i.e., the

distribution of Q is continuous.
Next, it is easily shown by (3.1) and (3.2) and induction that for any

finite binary tree B,
W (B) ≥ 2N(B)− 2.

Consequently,

B′ ≥ β(B∗) ≥
3N(B∗)

N(B∗) + 1
.

Hence, for any ε > 0, again using Theorem 5.8,

P(Q < 3− ε) = P(A′Q + B′ < 3− ε) ≤ P
(Q + 3N(B∗)

N(B∗) + 1
< 3− ε

)
= P

(
Q < 3− (N(B∗) + 1)ε

)
≤ P(Q < 3− 2ε).

Evidently, this implies P(Q < 3 − ε) = 0 for every ε > 0, and thus Q ≥ 3
a.s..

Conversely, let E be the support of the distribution of Q; by definition,
E is closed. It follows from the fixed point equation that if x ∈ E and
P
(
(A′, B′) = (a, b)

)
> 0, then ax + b ∈ E. In particular, taking B∗ = ∅

which yields α(B∗) = 1/2 and β(B∗) = 3/2, we find

x ∈ E =⇒ (x + 3)/2 + n ∈ E for every integer n ≥ 0. (5.9)

Starting with any x ∈ E, taking n = 0 and iterating (5.9), we find in the
limit 3 ∈ E. Taking x = 3 in (5.9), we find 3 + n ∈ E for every n ≥ 0.
Finally, again taking n = 0 in (5.9), we find by induction on k, that E
contains every dyadic rational 3 + m2−k with m, k ≥ 0. Since E is closed,
E ⊇ [3,∞). �

Remark 5.12. Although B∗ is finite, its size has infinite expectation. In-
deed, for every critical branching process, the expected size of each genera-
tion is the same, in this case 1/2; this follows also from the fact that each
of the 2k possible vertices at height k appears with probability 2−k−1.

In B∞, there is at height k one immortal and on the average 1/2 mortal
in each of the k finite branches descending from the k immortals closer to
the root. Hence the expected number of vertices at height k is k/2 + 1
and, by symmetry, each of the 2k possible vertices appears with probability
(k+2)2−k−1. This illustrates that the infinite tree B∞ is sparse and stringy.

As a further illustration, consider the intersection of two independent
copies of B∞; the expected size is

∑∞
k=0 2k(k + 2)22−2k−2 = 11/2. (This

can also be seen by considering the two independent two-type branching
processes generating the trees as a single branching process with 4 types
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representing the common vertices and the pairs of types there. We leave the
details as an exercise.) Hence, two independent random large binary trees
have on the average close to 5.5 vertices in common.

For the finite trees Bn, and more generally for any conditioned Galton–
Watson trees with finite offspring variance, it is known that the bulk of the
vertices have heights of the order

√
n; see e.g. [1], [2] and [14] for much more

detailed results.

6. Back to the forest

The results on binary trees in Section 5 can be translated to results on
forests by the correspondence discussed in Section 3, which extends to in-
finite forests and binary trees. Note that the number of trees in a forest
equals the number of vertices in the rightmost branch of the corresponding
binary tree. Again, we begin with some simple, more or less well-known
observations.

We let F∗ be the (finite) random forest corresponding to the random
binary tree B∗. The construction of B∗ in Section 5 shows that the number
of vertices in the rightmost branch has the geometric distribution Ge(1/2).
Consequently, the number of trees in F∗ is Ge(1/2). Similarly, the number
of children of any vertex is Ge(1/2), and all these numbers are independent.
Consequently, F∗ is a Galton–Watson forest obtained from a Galton–Watson
process with Ge(1/2) initial individuals (roots) and offspring distribution
Ge(1/2). Note that this, too, is a critical Galton–Watson process.

Equivalently, if T∗ is the Galton–Watson tree with offspring distribution
Ge(1/2), then T∗ equals F∗ with all components joined to a common added
root; conversely, F∗ = T ∗∗ .

It follows immediately that |F∗| = |B∗|
d= ξ and |T∗| = |F∗| + 1 d= ξ + 1,

that F∗ conditioned on |F∗| = n has the distribution of Fn, and that T∗
conditioned on |T∗| = n has the distribution of Tn.

Similarly, let F∞ be the random infinite forest corresponding to B∞, and
let T∞ be the random infinite tree obtained by adding a root to F∞; thus
F∞ = T ∗∞. We can decompose the rightmost branch of B∞ into the part
belonging to the infinite path, which has 1 + Ge(1/2) vertices, and the part
after it, which is independent of the first part and has the same distribution
as the rightmost branch in B∗, i.e. it has Ge(1/2) vertices. Hence, if ζ̂ is the
total number of vertices in the rightmost branch of B∞, then ζ̂ = 1+ ζ + ζ ′,
where ζ and ζ ′ are independent and Ge(1/2). (In the equivalent branching
process construction, the rightmost branch has 1+ζ immortal and ζ ′ mortal
vertices.) It follows that ζ̂, which also is the number of components in F∞
and the degree of the root in T∞, has a shifted negative binomial distribution,

P(ζ̂ = k) = k2−k−1, k = 1, 2, . . . ; (6.1)

this is the size-biased distribution Ĝe(1/2).
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Using the branching process construction of B∞, exposing first the right-
most branch, then the rightmost branches in the left subtrees sprouting
from it, and so on, it is now easily seen that T∞ is the tree produced by the
size-biased Galton–Watson process defined in Remark 5.4 with the offspring
distribution Ge(1/2) for the mortals, and thus Ĝe(1/2) for the immortals.
F∞ is obtained by chopping off the root of T∞, or by starting with Ĝe(1/2)
individuals (roots), one of them immortal.

Note that F∞ and T∞ are locally finite and have exactly one infinite path
(the immortals). The equation ζ̂ = ζ + 1 + ζ ′ above shows that F∞ and T∞
also can be constructed by starting with an infinite path (the trunk) and
adding to each vertex in it a Ge(1/2) number of branches to each side, each
branch being an independent copy of T∗; for F∞ we further add a Ge(1/2)
number of copies of T∗ on each side of the infinite component as separate
components. (All random choices should be independent.)

It is easily seen that Lemma 5.2 implies the corresponding statements for
forests and trees. (This is another instance of the general result given in
Remark 5.4.) Note, however, that the truncation F

(M)
∞ does not correspond

to the truncation B
(M)
∞ ; it corresponds to B

[M ]
∞ , where we let B[M ] denote

the binary tree B with each branch truncated after M steps to the left.
(Note that B

[M ]
∞ a.s. is a finite tree.) We give a formal statement.

Lemma 6.1. As n →∞, Fn
d→ F∞ and Tn

d→ T∞ in the sense of finite-di-
mensional distributions, in the sense F

(M)
n

d→ F
(M)
∞ and T

(M)
n

d→ T
(M)
∞ for

every finite M .

Proof. Fix M ≥ 0. Lemma 5.2 implies that for each fixed finite binary tree
b, P(B[M ]

n = b) → P(B[M ]
∞ = b), and thus B

[M ]
n

d→ B
[M ]
∞ . �

Using the correspondence between forests and binary trees, we now define
Q for infinite forests too; thus Q(F∞) = Q(B∞), and the limit Q in Theo-
rem 2.2 can be taken as Q(F∞). The following theorem shows that Q can
be defined (a.s.) directly on infinite forests without our use of binary forests
as a convenient technical tool.

Theorem 6.2. There exists an extension of Q to infinite forests such that
we have E |Q(F (M)

∞ )−Q(F∞)| → 0 as M →∞. We have Q(Fn) d→ Q(F∞)
as n →∞. Furthermore, Q(F∞) = Q(B∞) when B∞ corresponds to F∞.

Proof. It remains only to prove that E |Q(F (M)
∞ ) −Q(F∞)| → 0, or equiva-

lently, transfering to binary trees again, that E |Q(B[M ]
∞ )−Q(B∞)| → 0.

Let, for M ≥ 1,

δ[M ] := sup
n

E |Q(B[M ]
n )−Q(Bn)|.

The proof of Lemma 5.6 shows with minor modifications that δ[M ] → 0;
note that B

[M+1]
n has the subtrees L

[M ]
n and R

[M+1]
n , but this causes no
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significant problem. Moreover, we now need a preliminary step to ensure
that δ[M ] < ∞; this is easily done using induction, since (3.3) implies Q(B) <
Q(L) + 2 + 1

2Q(R), and we omit the details.

For every M we have as n →∞, see the proof of Lemma 6.1, B
[M ]
n

d→
B

[M ]
∞ . Moreover, since B(M) is a truncation of B[M ], we have joint conver-

gence of (B[M ]
n , B

(M)
n ) to (B[M ]

∞ , B
(M)
∞ ), and consequently

Q(B[M ]
n )−Q(B(M)

n ) d→ Q(B[M ]
∞ )−Q(B(M)

∞ ).

Since E |Q(B[M ]
n )−Q(B(M)

n )| ≤ δ[M ] +δ(M) for each n, Fatou’s lemma yields

E |Q(B[M ]
∞ )−Q(B(M)

∞ )| ≤ δ[M ] + δ(M),

which tends to 0 as M →∞ by Lemma 5.6 and the claim above. Finally,
the triangle inequality and Theorem 5.5 yields

E |Q(F (M)
∞ )−Q(F∞)| = E |Q(B[M ]

∞ )−Q(B∞)| → 0, M →∞. �

Remark 6.3. We saw above that the number of components of the infinite
random forest F∞ has the shifted negative binomial distribution in (6.1);
hence, by Lemma 6.1, the number of components of the random forest Fn

has asymptotically this distribution. It is easy to find the exact distribution
for finite n as follows. The generating function for ordered trees is zB(z),
with B(z) given in (3.7), and thus the generating function for ordered forests
with k components is zkB(z)k. It follows as an easy exercise, using e.g. [6,
(5.70)], that, with nk denoting the falling factorial,

P(Fn has k components) =
k

2n−k

(
2n−k

n

)
Cn

= k
(n + 1)k+1

(2n)k+1
.

This evidently converges to k2−k−1 as n →∞, as asserted above.

Remark 6.4. There is a well-known correspondence between (random)
trees and (random) walks on the non-negative integers by means of the
depth first walk, see e.g. [1]. In this context, several nice results are known
for the random trees studied here.

The random tree Tn corresponds to a simple random walk of length 2n
conditioned on returning to 0 at the end but not before (sometimes called
Dyck paths). The random tree T∗ corresponds to a simple random walk
stopped at its first return to 0 [12]. For the infinite tree T∞, the depth first
walk only captures the structure on one side of the infinite trunk; the other
side is described by a depth first walk running in the opposite direction. The
two depth first walks are independent, and each is a biased random walk
which is a discrete version of the three-dimensional Bessel process, see Le
Gall [12].
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