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Abstract. It is well-known that prices of options on one underlying
asset decay with time and are convex in the underlying asset if the
contract function is convex. Here, options on several underlying assets
are studied and we prove that if the volatility matrix is independent of
time, then the option prices decay with time if the contract function is
convex. However, the option prices are no longer necessarily convex in
the underlying assets. If a time dependent volatility is allowed we note
that the option prices do not necessarily decay with time. Moreover,
we show that even if the price processes are independent, convexity
is preserved only for very special volatilities including price processes
driven by a Geometric Brownian motion.

1. Introduction

Let the assets Si have risk neutral processes given by

dSi = Si(t)
n∑

j=1

σij(S(t), t) dBj

for i = 1, . . . , n, where Bj are independent Brownian motions and S(t) =
(S1(t), . . . , Sn(t)). The matrix σ with entries σij is called the volatility ma-
trix. In this model we get rid of the effect of interest rates by using a bond
as a numeraire. The pricing function of a contingent claim with the contract
Φ(S(T )) is given by

F (s, t) = Es,t[Φ(S(T )],
compare [B-S]. Alternatively, one has that the pricing function is a solution
of the partial differential equation

Ft +
1
2

n∑
i,j=1

sisjFijCij = 0

with the boundary condition F (s, T ) = Φ(s), where Cij = [σσ∗]ij . Here, we
will only consider the solutions that come from the stochastic representation.

Prices of options on one underlying asset decay with time and are convex
in the underlying asset if the contract function is convex, compare [B-G-W],
[H] and [J-T1]. In the present paper we study the corresponding properties
for options on several underlying assets. We show that if the volatility
matrix is independent of time, and the contract function is convex, then
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indeed the option prices decay with time. However, many examples show
that the case of several underlying assets is essentially different from the case
of one underlying asset. For instance, even though the contract function is
convex and the solutions decay with time, the option price for a fixed time
t, need not be a convex function of the underlying assets, in contrast to
the one dimensional case. On the other hand, if the price remains a convex
function of the asset values we see directly from the differential equation
that the prices will decay with time. Furthermore, if a time dependent
volatility matrix is allowed, it is easy to find examples where the option
prices do not decrease with time. In the last section we show that even
if the price processes are independent, convexity is preserved only for very
special volatilities including price processes driven by Geometric Brownian
motion.

2. Time-decay of option prices

As noted above prices of options on one underlying asset decay with time
if the contract function is convex. This generalizes to options on several
underlying assets when the volatility matrix is independent of time.

Theorem 1. If the volatility matrix is independent of time, and the contract
function is convex, then the option price F (s, t) given by

F (s, t) = Es,t(Φ(S(T )).

decreases with time.

Proof. Since
F (s, t) = Es,t(Φ(S(T )),

we know that if F (s, T ) = Φ(S(T )) ≥ 0, then F (s, t) ≥ 0 for all t ≤
T . We also note that if the contract function is an affine function then
F (s, t) = F (s, T ) for all t ≤ T . First, we will show that if the contract
function is convex then F (s, t) ≥ F (s, T ) for all t ≤ T and all s. To show
this for some particular s0 we compare the solution F with a solution U
having a supporting hyperplane at s0 as contract function. We then have
F (s, T ) − U(s, T ) ≥ 0, because F is convex, and thus F (s, t) − U(s, t) ≥ 0
for every t ≤ T . Moreover, F (s0, T ) = U(s0, T ) and U(s0, t) = U(s0, T ) for
all t ≤ T because U is affine. Hence,

F (s0, t) ≥ U(s0, t) = U(s0, T ) = F (s0, T ).

Thus we have for arbitrary s and t1 ≥ 0 that

F (s, T − t1) ≥ F (s, T ).

Now, let us consider both sides of this inequality as contract functions and
consider the corresponding solutions at some time T − t2 where t2 ≥ 0. The
corresponding solutions satisfy the same inequality by the argument above.
However, the time-independence of the equation yield that these solutions
are simply given by translates in time of F (s, t) and we obtain

F (s, T − t1 − t2) ≥ F (s, T − t2)

which is the desired monotonicity in t. �
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Remark on convexity and time-decay of option prices and monotonicity in
volatility. Consider a market with two underlying assets S1 and S2. Let this
market have a diffusion matrix which is independent of time in accordance
with the theorem above and with a convex contract function. Then the
theorem yields that the option price decays with time. However, let the
contract function be that of a call option, with strike price K on one of the
assets, say S1, but let the volatility of S1 depend on S2 in such a way that
the volatility has a strict local maximum for some value s2,0 of S2. It is then
easy to see that the solution to the pricing equation is not convex near the
point (K, s2,0) in the S1 − S2-plane. Thus convexity is lost but not time-
decay of the prices. Another property which is lost with the convexity is the
monotonicity in volatility. In the present example we see that if the volatility
in S2 is made larger then the value of the option at (K, s2,0) decreases.

In the time-dependent case there are no general results corresponding to
the theorem above. One can, for instance, easily modify the example above
by letting the volatility for the second asset be time-dependent such that it
is very large at some time and then decreases to a very small value until the
time of expiration. Then the option price at (K, s2,0) will increase with time
during some interval. This corresponds directly to examples in [B-G-W] of
bloating option prices when the volatility is stochastic.

3. Convexity of option prices

The results of the previous section show that time-decay for option prices
with convex contract functions only holds for certain classes of volatility
matrices. We also noted that time-decay can hold without preservation of
convexity holding, but as we remarked in the introduction, if the convexity
is preserved then the option prices do decay with time.

The main result of this section indicates that preservation of convexity
is indeed quite rare. The counterexample above against preservation of
convexity in the case of time independent processes involved dependent pro-
cesses. Let us therefore limit ourselves to independent price processes with,
naturally, a time independent volatility matrix. For the sake of notational
convenience we then choose the Brownian motions so that Si has a risk
neutral processes given by

dSi = Si(t)σii(Si(t)) dBi

for i = 1, . . . , n, where, as above, Bi are independent Brownian motions.
Let us further consider the constant elasticity of variance model studied in
[C-R], meaning that

σii = ciSi(t)−αi

where ci is a constant and 0 ≤ αi ≤ 1 for each i. Note that αi = 0 corre-
sponds to Geometric Brownian motion and αi = 1 corresponds to Brownian
motion. We then have the following result.

Theorem 2. Let the stock prices be independent processes with

σii = ciSi(t)−αi

where ci is a constant and 0 ≤ αi ≤ 1 for each i. Then the corresponding
option prices are convex in the underlying assets for any convex contract
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function, if and only if, for each i, αi = 0 or 1, i.e. if each price process is
described by a Geometric Brownian motion or a Brownian motion.

Proof. (Outline) In the case of Geometric Brownian motion and Brownian
motion there are explicit solution formulas for the stochastic differential
equation describing the price formation. Using these formulas one can show
that convexity is preserved in these cases. Choosing contract functions of
the form (s1 − s2)2s

−q
2 , where 0 ≤ q ≤ 1, one can show that for other pro-

cesses included in the statement of the theorem, convexity is not necessarily
preserved. �

Remark. In [J-T2] we find necessary and sufficient conditions for the preser-
vation of convexity of solutions to second order parabolic equations. The
theorem above is a special case of the results in this paper.
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