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Abstract

Coined quantum walks may be interpreted as the motion in position space of a quantum particle
with a spin degree of freedom; the dynamics are determined by iterating a unitary transformation
which is the product of a spin transformation and a translation conditional on the spin state.
Coined quantum walks on Zd can be treated as special cases of coined quantum walks on Rd. We
study quantum walks on Rd and prove that the sequence of rescaled probability distributions in
position space associated to the unitary evolution of the particle converges to a limit distribution.

1 Introduction

Several kinds of quantum walks have recently been studied by many authors; a nice overview is given
by [10]. So-called “coined quantum walks” on finite graphs, introduced in [1], are proving to be of
some interest in quantum informatics, where they have been used to devise fast search algorithms
[3, 10, 15]. Quantum walks of the type considered in this article, namely, coined quantum walks on
Zd or Rd, were first introduced in [4], though [2] and [13] can be considered as precursors in some
respects.

A coined quantum walk describes the evolution of a quantum system under iteration of a certain
kind of unitary map. The state of the system is a vector in a product Hilbert space, having position
degrees of freedom and an internal degree of freedom such as spin or polarization. A step of the
walk consists of a unitary transformation of the spin degree of freedom, which one may think of as
“tossing a quantum coin”, followed by a translation conditional upon the state of the coin. Here
we restrict our attention to walks on Zd or Rd and we prove that the position distribution of the
quantum walker, properly rescaled, converges as the number of steps tends to infinity. This type
of convergence was first discovered by N. Konno [11, 12] in the case of one-dimensional lattices Z.
A different proof of Konno’s theorem was given in [7], generalizing the convergence to quantum
walks on higher dimensional lattices Zd. In this article we present a further generalization of the
result to quantum walks on Rd, and we obviate a technical difficulty of [7] that required an extra
hypothesis there.
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2 Basic definitions and review of Konno’s theorem

We start by reviewing some basic definitions and stating Konno’s theorem for a coined quantum
walk on Z.

A simple quantum walk on Z can be defined as a sequence

ψ, Uψ, U2ψ, U3ψ, . . . , (1)

of unit vectors in the Hilbert space `2(Z) ⊗ C2 obtained by iterating a unitary operator U of the
form

U = S(I ⊗ C) . (2)

In (2), I denotes the identity operator on `2(Z), C denotes a unitary operator on C2, and S denotes
the “conditional shift” operator

S(sm ⊗ e1) = sm+1 ⊗ e1

S(sm ⊗ e2) = sm−1 ⊗ e2 , (3)

where e1 and e2 are the standard basis vectors for C2 and sm is the vector in `2(Z) whose mth

member is 1 and all other members are 0. Since the vectors of the sequence (1) are normalized, the
numbers

Pn(m) =
∣∣〈sm ⊗ e1, U

nψ〉
∣∣2 +

∣∣〈sm ⊗ e2, U
nψ〉

∣∣2 (4)

satisfy
∑

m Pn(m) = 1 and thus define a sequence of probability measures on Z. Note that the only
variable considered here is the position of the walker; the internal degree of freedom is disregarded
by summing over both states in the coin space. Konno’s theorem [12] states that the probability
measures ∑

m∈Z
Pn(m) δm/n (5)

converge weakly as n −→ ∞ to a probability measure that depends on the initial state ψ (here
δm/n denotes a point-mass at m/n).

The dynamics described in (1), (2), (3) is reminiscent of simple random walk on Z, though
there are a few important differences. As in ordinary random walks, the rule (3) for stepping left
or right is the same at all locations m ∈ Z, that is, the process is spatially homogeneous. Unlike
ordinary random walks, the probability distributions (4) for the system’s position are not related
by Markov transitions. Similarly to random walk, the sequence of rescaled position distributions
(5) converges weakly, but unlike random walks, the weak limit is obtained by rescaling by a factor
of 1/n rather than 1/

√
n and the limit distribution depends on the initial state (and is not a normal

distribution).
In the next sections we state and prove a generalization of Konno’s theorem in which (i) the

walk takes place in d-dimensional space Rd, (ii) any finite number s of conditional translations
are allowed at each step, and (iii) the translations are not assumed to generate a lattice in Rd.
Quantum walks on the d-dimensional lattice Zd may be viewed as special cases of quantum walks
on Rd where the shifts generate a discrete lattice.

3 General quantum walks convergence theorem

Broadly speaking, a quantum walk is characterized by the unitary operator U that generates the
walk, U being a particular kind of unitary operator on a Hilbert space L2(Zd)⊗Cs or L2(Rd)⊗Cs,
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the former for quantum walks on Zd and the latter for quantum walks on Rd. We now focus our
discussion onto quantum walks on Rd, for quantum walks on Zd are easily embedded into the
framework of walks on Rd.

Let H = L2(Rd) ⊗ Cs. There is a natural isomorphism between L2(Rd) ⊗ Cs and L2(Rd,Cs);
it will be helpful to represent members of H as members of L2(Rd,Cs), and indeed to represent
members of Cs as column vectors for the purpose of interpreting matrix operations. Let C denote
a unitary “coin tossing operator” on the “coin space” Cs and let Is denote the identity operator on
Cs. Let e1, e2, . . . , es be the standard ordered basis of Cs. The steps of the quantum walk involve
a “conditional translation” operator T on H defined by

T (ψ ⊗ ej) = Tvjψ ⊗ ej , (6)

where Tvj denotes translation by vj in Zd or Rd, i.e., (Tvjψ)(x) = ψ(x − vj). The vectors vj are
arbitrary fixed vectors in Zd or Rd. A step of the quantum walk is effected by a unitary operator

U = T (I ⊗ C), (7)

where I denotes the identity operator on L2(Zd) or L2(Rd).
The operator U generates the quantum walk. In the Schrödinger picture, the quantum walk

may be thought of as a sequence

ρ, UρU∗, U2ρU∗2, U3ρU∗3, . . . (8)

of density operators on H. (Recall that a density operator is a nonnegative trace class operator with
normalization Tr(ρ) = 1 [6]. The density operator ρ for the normalized pure state ψ ∈ H has integral
kernel ψ(x)ψ(y). Thus, the definition (8) of quantum walk in terms of density operators generalizes
the original definition (1) for pure states ψ.) The probability measures (4) can be expressed in
terms of density operators instead of wavefunctions as follows. Given an initial density operator ρ
on H and any n ∈ N, there is a probability measure Pρ,n on Zd or Rd that may be defined as a
linear functional on C0(Zd) or C0(Rd) by the formula

Pρ,nf = Tr(UnρU∗n(m[f ]⊗ Is)), (9)

where C0 denotes the set of continuous functions that tend to 0 at ∞, f is an element of this set,
and m[f ] is the operator of multiplication by f . Formula (9) may be written as

Pρ,nf = Tr(TrCs(UnρU∗n)m[f ]), (10)

where TrCs denotes the partial trace; for the special case studied in Section 2, one may verify
that Pρ,n is the same as Pn of (4) when ρ is a pure state ψ. The quantum walk as such is the se-
quence of density operators (8) and the corresponding probabilities (10), which express probabilites
concerning the position of a “particle” without regard to its internal “spin” state in Cs.

One observes that the probability measures Pρ,n spread out in Zd or Rd as n increases. However,
we will discover that dilating each of the Pρ,n by a factor of 1/n produces in a sequence of probability
measures that converges weakly. In other words, if Xn is a random vector describing the position
of the quantum walk after n steps, then the sequence Xn/n converges in distribution.

Now we are prepared to state a generalized version of Konno’s theorem [11, 12, 7]. In the
following, Cb(Rd) denotes the space of bounded continuous functions on Rd, and a sequence of
probability measures is said to converge weakly if the measures converge pointwise as functionals
on Cb(Rd) [5].
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Theorem 1. Let U be a unitary operator on H = L2(Rd)⊗ Cs of the form (7).
There exists a spectral measure P (dx) on Rd such that for any density operator ρ on H, the

probability measures P(n)
ρ,n defined by

P(n)
ρ,nf = Tr

(
TrCs(UnρU∗n)m[f(·/n)]

)
(11)

converge weakly as n −→∞ to the probability measure Pρ(E) = Tr(ρP (E)).

We will prove this theorem — and somewhat more — in the next section, but first it is ap-
propriate to explain in which sense Konno’s theorem for walks on the lattice is generalized by
Theorem 1. Convergence of quantum walks on Rd implies convergence of quantum walks on Zd

because quantum walks on Zd can be identified with quantum walks on Rd that have integral steps.
Indeed, the space L2(Zd) can be identified with the subspace K ⊂ L2(Rd) consisting of functions
that are constant on each unit cube centered at a lattice point. The subspace K is invariant under
translation by any lattice vector in Zd, so that a quantum walk on Zd may be viewed as a quantum
walk on Rd whose initial density operator is supported on the subspace K⊗Cs of L2(Rd)⊗Cs. The
analog of an initial state localized at a vertex of the lattice is a state supported on a cube centered
at the corresponding lattice point. The limit distribution for the discrete case can be retrieved
by taking the initial state in Rd to have support on the unit cube centered at the corresponding
lattice point. Convergence of the P(n)

ρ,n for the walk on Rd then implies the convergence considered
in [12, 7] for walks on Zd.

Remark 1. The scaling by 1/n relates the description of the asymptotic distribution of the quan-
tum walk to the equation of motion for a quantum particle whose wavefunction propagates linearly
in time, with a constant (but random) velocity vector that has the distribution Pρ. Hence, a
physical interpretation of the commuting bounded operators V1, . . . , Vd corresponding to the spec-
tral measure P (cf. Theorem 2) is that they are commuting observables giving the asymptotic
mean velocity vector of the quantum random walk. Note, however, that although this describes
the asymptotic distribution, it does not describe the quantum random walk precisely; indeed, the
observables corresponding to the positions at different times do not commute and hence one can-
not regard the quantum random walk as a stochastic process, since that would mean one could
introduce a common probability space for the positions at different times.

4 Proof of Theorem 1

Theorem 1 is formulated in the Schrödinger picture, where the evolution is applied to the state of
the system. In the Heisenberg picture, where the the state of the system remains constant and the
physical observables evolve, the quantum walk concerns the map

X 7−→ X, U∗XU, U∗2XU2, U∗3XU3, . . .

from bounded operators X on H to sequences of bounded operators. We are interested in operators
X that represent physical observables of position alone. These are operators of the formm[f(x)]⊗Is,
where m[f(x)] denotes the operator ψ(x) 7−→ f(x)ψ(x) on L2(Rd). Theorem 1 is the consequence
of a stronger, dual formulation in the Heisenberg picture. In the following, the notation s · lim
designates the limit in the strong operator topology, the topology in which nets of operators converge
if and only if they converge pointwise as functions on H.

Theorem 2. Let U be a unitary operator on H = L2(Rd)⊗ Cs of the form (7).
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There exists a spectral measure P (dx) on Rd and a corresponding family of commuting bounded
self-adjoint operators V1, . . . , Vd such that

s · lim
n→∞

U∗n(m[f(·/n)]⊗ Is)Un =
∫

Rd

f(x)P (dx) = f(V1, . . . , Vd). (12)

for all f ∈ Cb(Rd).

Theorem 1 follows from Theorem 2 and the observation that if ρ is a pure state, then

lim
n→∞

P(n)
ρ,nf(x) = lim

n→∞
Tr

(
UnρU∗n(m[f(·/n)]⊗ Is)

)
= Tr

(
ρ

(
s · lim
n→∞

U∗n(m[f(·/n)]⊗ Is)Un
))

= Tr
(
ρ

∫
f(x)P (dx)

)
=

∫
f(x) Tr(ρP (dx)) (13)

for any f ∈ Cb(Rn). The validity extends to general ρ by a density argument.
Thus, it suffices to prove Theorem 2. Here is the plan of the proof: Note that, for each n, the

map
Un : ω 7−→ U∗n(m[eix·ω/n]⊗ Is)Un (14)

is a strongly continuous unitary representation of Rd on L2(Rd,Cs), i.e., Un is a group homomor-
phism from Rd to the unitary operators on H such that Un(ω)ψ is continuous in ω for each ψ ∈ H.
We will prove that the Un(ω) converge pointwise in the strong operator topology as n −→ ∞
and we will identify the limit as a uniformly continuous unitary representation of Rd. By Stone’s
spectral theorem there exists a spectral measure P (dx) on Rd such that

s · lim
n→∞

U∗n(m[eiω·x/n]⊗ Is)Un =
∫

Rd

eiω·xP (dx)

for all ω ∈ Rd. This proves that

s · lim
n→∞

U∗n(m[f(·/n)]⊗ Is)Un =
∫
f(x)P (dx) (15)

for all f ∈ span{eiω·x : ω ∈ Rd}. Finally, to complete the proof of Theorem 2, we will extend the
convergence in (15) to all functions f ∈ Cb(Rd).

We begin by showing that Un(ω) converges strongly at each ω ∈ Rd. To do this, we will first
prove that the infinitesimal generators of these unitary groups converge on a dense subset of H to
a bounded skew-Hermitian operator, and then invoke the Trotter–Kato Theorem.

For arbitrary but fixed ω ∈ Rd, the one-parameter unitary group {Un(tω)}t∈R has infinitesimal
generator

Gn = 1
nU

∗n(m[iω · x]⊗ Is)Un. (16)

Observe that if D(ω) is the operator on Cs represented by the diagonal matrix

D(ω) =


ω · v1 0 · · · 0

0 ω · v2 · · · 0
...

...
. . .

...
0 0 · · · ω · vs

 ,
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then, for any f ∈ L2(Rd),

T ∗(m[ω · x]⊗ Is)T (f ⊗ ej) = m[ω · (x+ vj)]⊗ Is(f ⊗ ej) =
(
m[ω · x]⊗ Is + I ⊗D(ω)

)
(f ⊗ ej)

and hence

U∗(m[iω · x]⊗ Is)U = (I ⊗ C∗)T ∗(m[iω · x]⊗ Is)T (I ⊗ C)
= m[iω · x]⊗ Is + i(I ⊗ C∗D(ω)C) . (17)

Applying (17) recursively in (16) shows that

Gn = 1
nm[iω · x]⊗ Is + i

1
n

n−1∑
j=0

U∗j(I ⊗ C∗D(ω)C)U j . (18)

The first term on the right-hand side of (18) is an unbounded multiplication operator; as n −→∞
these operators converge to the zero operator on the dense subset of L2(Rd,Cs) consisting of
functions of bounded support. The second term on the right-hand side of (18) is a bounded
operator; we will prove that these bounded operators converge strongly as n −→∞.

We take Fourier transforms to identify the limit of the operators

1
n

n−1∑
j=0

U∗j(I ⊗ C∗D(ω)C)U j . (19)

Let F denote the Fourier transform

F(ψ)(k) = (2π)−d/2

∫
Rd

ψ(x)e−ik·xdx

on Rd. This is a unitary transformation from L2(Rd) onto an isomorphic space L̂2(Rd) with inverse

F∗(φ)(x) = (2π)−d/2

∫
Rd

φ(k)eik·xdk .

The spaces L2(Rd) ⊗ Cs and L̂2(Rd) ⊗ Cs are mapped onto one another via the unitary transfor-
mations F ⊗ Is and F∗ ⊗ Is. We will denote F ⊗ Is by F̃ from now on. The operator U of (7) is
unitarily equivalent to the operator Û = F̃U F̃∗ on Ĥ. We will think of Ĥ (the momentum space
of the system) as L2(Rd,Cs), that is, we represent vectors in Ĥ by square-integrable column-vector
valued functions on Rd. Then the operator Û may then be represented by a “matrix-multiplication
operator”

(Ûφ)(k) = Ûkφ(k)

with

Ûk =


e−ik·v1 0 · · · 0

0 e−ik·v2 · · · 0
...

...
. . .

...
0 0 · · · e−ik·vs



C11 C12 · · · C1s

C21 C22 · · · C2s

...
...

. . .
...

Cs1 Cs2 · · · Css

 (20)

where the Cjk denote the matrix elements of the coin toss operator C. The Fourier transform of
the operator 1

n

∑n−1
j=0 U

∗j(I ⊗ (C∗D(ω)C))U j is the matrix-multiplication operator

φ(k) 7−→ 1
n

n−1∑
j=0

Û∗jk C∗D(ω)CÛ j
k φ(k) . (21)
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For fixed k ∈ Rd the map X 7−→ Û∗kXÛk is a unitary operator on the space of s × s matrices
endowed with the inner product 〈Y,X〉 = Tr(Y ∗X). The Mean Ergodic Theorem implies that the
matrices in (21) converge as n −→∞ to the orthogonal projection of C∗D(ω)C onto the subspace
of s× s matrices that commute with Ûk. That is,

Wk(ω) = lim
n→∞

1
n

n−1∑
j=0

Û∗jk (C∗D(ω)C)Û j
k (22)

is the unique matrix that commutes with Ûk and satisfies

Tr(N∗Wk(ω)) = Tr(N∗C∗D(ω)C) (23)

for all matrices N that commute with Ûk. Since C∗D(ω)C is Hermitian and since N commutes with
Ûk if and only if N∗ commutes with Ûk, taking adjoints in (23) shows that the matrices Wk(ω) are
Hermitian. From (20) and (22) it is seen that Wk(ω) is a limit of continuous functions of k, hence
it is a measurable function of k. Moreover, the operator norm of each matrix on the right-hand side
of (22) does not exceed the operator norm of D(ω), which is independent of k, and the limit Wk(ω)
enjoys the same uniform bound. Thanks to these bounds, Lebesgue’s Dominated Convergence
Theorem implies that the operators (21) converge strongly to the matrix-multiplication operator
W(ω) defined by

(W(ω)φ)(k) = Wk(ω)φ(k) (24)

on Ĥ, a bounded Hermitian operator. Transforming back to operators on H, we conclude that the
operators (19) converge strongly to

V(ω) = F̃∗W(ω)F̃ . (25)

We have now shown that the generators (18) converge to iV(ω) on a dense subset of H. By
the Trotter–Kato Theorem [14, Theorem 4.5], the operators Un(tω) converge strongly to eitV(ω)

for each t ∈ R. In particular, Un(ω) converges strongly to eiV(ω), i.e.,

s · lim
n→∞

U∗n(m[eiω·x/n]⊗ Is)Un = eiV(ω) .

It follows from (22), (24) and (25) that V(ω) depends linearly on ω ∈ Rd; in particular, ω 7−→
V(ω) is continuous. Moreover, ω 7−→ eiV(ω) is a d-parameter group of unitary operators on H
because each ω 7−→ Un(ω) is. It follows that eiV(ω) is a uniformly continuous d-parameter unitary
group. Stone’s spectral theorem for one-parameter unitary groups can be generalized to d-parameter
unitary groups: for any strongly continuous d-parameter unitary group U(ω) there exists a spectral
measure P (dx) on Rd such that

U(ω) =
∫

Rd

eiω·xP (dx)

(see, e.g., [8, Chapter 2.4]). For one-parameter groups eiωV , P (dx) is just the spectral measure
associated to the self-adjoint operator V , and in general P is the spectral measure of a d-tuple
(V1, . . . , Vd) of commuting bounded operators. Letting P (dx) denote the spectral measure associ-
ated to eiV(ω), what we have shown up to this point is that

s · lim
n→∞

U∗n(m[eiω·x/n]⊗ Is)Un = eiV(ω) =
∫

Rd

eiω·xP (dx) (26)

for all ω ∈ Rd.
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To complete the proof of Theorem 2, we have to extend to all functions in Cb(Rd) the convergence
(26) just established for functions eiω·x. By linearity, the assertion of the theorem holds for all
f ∈ span{eiω·x : ω ∈ Rd}. Let f be an arbitrary but fixed function in Cb(Rd) and define

L[f, n](ψ) = U∗n(m[f(·/n)]⊗ Is)Unψ

on H. We want to prove that

lim
n→∞

L[f, n](ψ) =
∫
f(x)P (dx)ψ

for all ψ ∈ H. The sequence {L[f, n]} is equicontinuous on H thanks to the uniform bound

‖U∗n(m[f(·/n)]⊗ Is)Un‖ = ‖f‖∞ ,

so it suffices to prove the convergence of the sequence {L[f, n]} on a dense subset of H. We will
show that L[f, n](ψ) converges for all ψ that have bounded support.

We continue to represent members of H by functions in L2(Rd,Cs). Let ψ ∈ H have bounded
support, in the sense that there exists r > 0 such that ψ(x) equals 0 ∈ Cs when |x| > r. We claim
that L[f, n]ψ tends to a limit. We may assume that ψ has norm 1 without loss of generality. Let

v = max
1≤j≤s

{
|vj |

}
,

where the vj are the translation vectors appearing in the definition (6) of T . Then Unψ is supported
on the ball of radius r + nv in Rd. For any g ∈ Cb(Rd),∥∥L[f, n]ψ − L[g, n]ψ

∥∥ =
∥∥U∗n((m[f(·/n)]−m[g(·/n)])⊗ Is)Unψ

∥∥
≤ sup

|x|<r+v

{|f(x)− g(x)|} (27)

for all n because of the way that f and g are scaled. By the Stone–Weierstrass Theorem, the linear
span of {eiω·x : ω ∈ Rd} is dense in the space of continuous functions on any compact subset of
Rd, so f(x) can be uniformly approximated within arbitrary ε > 0 on the ball of radius r + v
by some function gε ∈ span{eiω·x : ω ∈ Rd}. We know that each sequence L[gε, n]ψ converges as
n −→ ∞. On the other hand, L[gε, n]ψ is within ε of L[f, n]ψ uniformly in n by (27). It follows
that {L[f, n]ψ} converges as n −→ ∞. The limit is a continuous function of f and hence must
agree everywhere with

∫
f(x)P (dx)ψ = f(V1, . . . , Vd). This proves (12) for arbitrary f ∈ Cb(Rd)

and concludes the proof of Theorem 2.

5 The limit distribution

In special cases there is a nice characterization of the limit distribution Pρ of Theorem 1 in terms
of the distribution of a certain random element of Ω = Rd × {1, 2, . . . , s}.

Let ρ̂ = F̃ρF̃∗ be the density operator on Ĥ corresponding to ρ. This can be regarded as an
integral operator ρ̂ f =

∫
Rd ρ̂ (k, k′)f(k′) dk′ with an s×s matrix valued kernel ρ̂ (k, k′). Since ρ̂ is

trace class, the diagonal ρ̂ (k, k) is well-defined a.e. and integrable. By Theorem 1 and (13), (26),
we have (25),

Pρ[eiω·x] = Tr
(
ρ

∫
Rd

eiω·x dP (x)
)

= Tr
(
ρeiV(ω)

)
= Tr

(
ρ̂ eiW(ω)

)
=

∫
Rd

Tr
[
eiWk(ω)ρ̂ (k, k)

]
dk.
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This shows that the characteristic function of the limit Pρ in Theorem 1 is

Pρ[eiω·x] =
∫

Rd

Tr
[
eiWk(ω)ρ̂ (k, k)

]
dk, (28)

with Wk given by (22) and (23).
We can better identify the limit measure Pρ in cases where the matrices Ûk have s distinct

eigenvalues λ1(k), . . . , λs(k) for a.e. k ∈ Rd. At a point k where there are s distinct eigenvalues,
let ψj(k) be a normalized eigenvector of Ûk with eigenvalue λj(k), and let Pkj = ψj(k)ψj(k)∗ be
the corresponding orthogonal projection onto the eigenspace. We may assume that the eigenvalues
are numbered such that λj are continuous and differentiable in a neighborhood of k for each j
[9][II-5.4], and we then define

π(k, j) = iλj(k)∇λj(k), (29)

where ∇ is the gradient with respect to k ∈ Rd. Since |λj(k)| ≡ 1, the functions iλj(k)∇λj(k) are
real-valued, and π is an a.e. defined map from Rd × {1, 2, . . . , s} to Rd.

Lemma 1. Suppose that Ûk has s distinct eigenvalues at almost every k. Then,

Wk(ω) =
s∑

j=1

(
ω · π(k, j)

)
Pkj (30)

and thus

Pρ[eiω·x] =
∫

Rd

s∑
j=1

eiω·π(k,j) Tr[ρ̂ (k, k)Pkj ]dk . (31)

Proof. We may assume that the eigenvectors ψj are differentiable in a neighborhood of k [9][II-5.4].
Taking the directional derivative ∂ω = ω · ∇ of Ûkψj(k) = λj(k)ψj(k) we obtain, since (20) yields
∂ωÛk = −iD(ω)Ûk,

−iD(ω)Ûkψj(k) + Ûk∂ωψj(k) =
(
∂ωλj(k)

)
ψj(k) + λj(k)∂ωψj(k). (32)

Further,
ψj(k)∗Ûk =

(
Û∗kψj(k)

)∗ =
(
λj(k)ψj(k)

)∗ = λj(k)ψj(k)∗

and thus (32) implies

ψj(k)∗
(
−iD(ω)Ûk

)
ψj(k) = ψj(k)∗

(
∂ωλj(k)

)
ψj(k) = ∂ωλj(k). (33)

Since Wk(ω) commutes with Ûk it is of the form
∑

j ajPkj . Taking N = N∗ = ψj(k)ψj(k)∗ in (23)
yields, using C∗D(ω)C = Û∗kD(ω)Ûk, (33) and (29),

aj = Tr
(
ψj(k)ψj(k)∗Wk(ω)

)
= Tr

(
ψj(k)ψj(k)∗C∗D(ω)C

)
= ψj(k)∗Û∗kD(ω)Ûkψj(k)

= λj(k)ψj(k)∗D(ω)Ûkψj(k) = iλj(k) ∂ωλj(k) = ω · π(k, j).

This gives (30), and (31) then follows from (28).
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Let P̃ρ denote the probability measure

P̃ρ(dk, j) = Tr[ρ̂ (k, k)Pkj ] dk (34)

on Ω = Rd × {1, 2, . . . , s}. Then the right-hand side of (31) is the characteristic function of the
induced probability measure P̃ρ ◦ π−1 on Rd, which identifies this probability measure as Pρ. In
other words, if Y is a random element of Ω with the distribution P̃ρ, then Pρ is the distribution of
the random variable π(Y ). We conclude with an interesting special case:

Corollary 1. Suppose that the initial state is is of the form ρ = ρ0 ⊗ 1
sIs, a tensor product of a

position density operator ρ0 on L2(Rd) with a maximally mixed coin state. Suppose further that the
matrices Ûk have s distinct eigenvalues λ1(k), . . . , λs(k) almost everywhere on Rd. Then the limit
Pρ is the distribution of the random variable π(Y0, Z), where π is given by (29), Y0 is a random
vector in Rd with density function Tr ρ̂0(k, k) and Z is uniformly distributed on {1, . . . , s}, with Y0

and Z independent.

Proof. We have ρ̂ = ρ̂0 ⊗ 1
sIs and, for the kernel, ρ̂ (k, k) = ρ̂0(k, k) 1

sIs. Since each Pkj has rank
1, (34) shows that

P̃ρ(dk, j) = 1
s ρ̂0(k, k)dk.

This is a product measure and thus, if Y above is written as (Y0, Z), then Y0 and Z are independent
with the stated distributions.

Note that in Corollary 1, the definition of the quantum walk, as given by (6) and (7), affects
only π, while the initial state affects only the distribution Y0.

Remark 2. As explained at the end of Section 3, the results transfer to quantum random walks on
Zd too. It can be verified, using the method described there, that in this case the limit distribution
is described by the formulas above, but with k ∈ Kd, the dual group (a d-dimensional torus). This
generalises results in [7]. In particular, if the initial position is 0 ∈ Zd with a maximally mixed coin
state, Corollary 1 holds with Y0 uniformly distributed on Kd.

Acknowledgments. A.G. is supported by the Austrian START project “Nonlinear Schrödinger
and quantum Boltzmann equations” of Norbert J. Mauser (contract Y-137-Tec). S.J. was supported
by the Swedish Royal Academy of Sciences, the London Mathematical Society and Churchill Col-
lege, Cambridge. P.F.S. acknowledges the EU (grant HPRN-CT-2002-002777) and Prof. Joseph
Avron for support. P.F.S. thanks Geoffrey Grimmett, Netanel Lindner and Terry Rudolph for
helpful comments and discussions.

References

[1] D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani. Quantum walks on graphs. Proceedings of
STOC ’01, 50-59 (2001)

[2] Y. Aharonov, L. Davidovich, and N. Zagury. Quantum random walks. Physical Review A 48:
1687 (1993)

[3] A. Ambainis. Quantum walks and their algorithmic applications. International Journal of
Quantum Information 1 (4): 507-518 (2003) quant-ph/0403120

[4] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous. One-dimensional quantum
walks. Proceedings of STOC ’01, 37-49 (2001)

10



[5] P. Billingsley. Convergence of Probability Measures. John Wiley & Sons, New York (1968).

[6] C. Cohen–Tannoudji, B. Diu and F. Laloë. Quantum Mechanics I, II. John Wiley & Sons, New
York (1977)

[7] G. Grimmett, S. Janson, P.F. Scudo. Weak limits for quantum random walks. Physical Review
E 69: 026119 (2004)

[8] H. Helson. The Spectral Theorem. Lecture Notes in Mathematics, volume 1227. Springer-Verlag,
Berlin (1980)

[9] T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin (1995)

[10] J. Kempe. Quantum random walks - an introductory overview. Contemporary Physics 44:
307-327 (2003)

[11] N. Konno. Quantum random walks in one dimension. Quantum Information Processing 1:
345-354 (2002)

[12] N. Konno. A new type of limit theorems for the one-dimensional quantum random walk.
quant-ph/0206103 (2002)

[13] D. Meyer. From quantum cellular automata to quantum lattice gases. Journal of Statistical
Physics 85: 551 - 574 (1996)

[14] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations.
Springer-Verlag, Berlin (1983)

[15] N. Shenvi, J. Kempe, and K. B. Whaley. A quantum random walk search algorithm. Physical
Review A 67: 052307 (2003)

11


