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Abstract

We study the profile Xn,k of random search trees including binary
search trees and m-ary search trees. Our main result is a functional limit
theorem of the normalized profile Xn,k/ E Xn,k for k = bα log nc in a
certain range of α.

A central feature of the proof is the use of the contraction method to
prove convergence in distribution of certain random analytic functions in
a complex domain. This is based on a general theorem on the contraction
method for random variables in an infinite dimensional Hilbert space. As
part of the proof, we show that the Zolotarev metric is complete for a
Hilbert space.
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1 Introduction

We study the profile of random search trees. The search trees that we consider
are characterized by two integer parameters m ≥ 2 and t ≥ 0. The search tree
is built from a set of n distinct keys taken from some totally ordered set such as
the real numbers or integers; for our purposes we can assume that the keys are
the integers 1, . . . , n. The search tree will be an m-ary tree where each node has
at most m children; moreover, each node will store one or several of the keys,
up to at most m− 1 keys in each node. The parameter t affects the probability
distribution of the trees; higher values of t tend to make the tree more balanced.
We postpone the details of the construction to Section 2 and remark only that
the simplest, and most often studied, case is the random Binary Search Tree
obtained by taking m = 2 and t = 0.

The profile of our search tree is the infinite vector Xn = (Xn,k)k≥0 where
Xn,k is the number of keys that are stored in nodes with depth k.

The profile of binary search trees (and related structures) has been inten-
sively studied in the literature [4, 8, 6, 7, 10, 11, 12, 15, 17, 25]. Most results
concern 1st and 2nd moments. However, there are also distributional results, in
particular, for binary search trees and recursive trees [4, 6, 15] that are of the
form

Xn,bα log nc

EXn,bα log nc

d−→ X(α)

for fixed α (contained in a suitable interval). The advantage of binary search
trees and recursive trees is that there is a martingale structure behind which
also allows to prove functional limit theorems (see [4, 6] for binary search trees).
Unfortunately this martingale structure is (generally) missing in the kind of
trees that we want to study.

Our main result is the following, where we actually prove functional conver-
gence of random functions on an interval I ′. More precisely we use the space
D(I ′) of right-continuous functions with left-hand limits equipped with the Sko-
rohod topology; see Section 4 for the definition and note that when, as here,
the limit is continuous, convergence in the Skorohod topology is equivalent to
uniform convergence on every compact subinterval.

We use in the formulation of Theorem 1.1 also the function λ1(z) defined in
Section 3 as the dominant root of (3.4) and the stochastic process (Y (z), z ∈ B)
(of analytic functions in a certain domain B containing the interval I) that is
defined as the unique solution of a stochastic fixed point equation (3.7) which
is discussed in Section 9, satisfying the further conditions that EY (z) = 1 and
that for each x ∈ I there exists s(x) > 1 such that E |Y (z)|s(x) is finite and
bounded in a neighbourhood of x.

Theorem 1.1. Let m ≥ 2 and t ≥ 0 be given integers and let (Xn,k)k≥0 be the
profile of the corresponding random search tree with n keys.

Set I = {β > 0 : 1 < λ1(β2) < 2λ1(β) − 1}, I ′ = {βλ′1(β) : β ∈ I}, and let

2



β(α) > 0 be defined by β(α)λ′1(β(α)) = α. Then we have, in D(I ′),(
Xn,bα log nc

EXn,bα log nc
, α ∈ I ′

)
d−→ (Y (β(α)), α ∈ I ′) . (1.1)

Remark 1.1. From the definition of I and I ′ it is not clear that they are in
fact intervals. We will make this precise in Lemma 8.5.

Remark 1.2. In completely the same way one can consider other similarly
defined parameters. For example, in Section 11 we discuss the external profile.

The proof of Theorem 1.1 is divided into several steps. After defining suitable
function spaces (Section 4) we show (Section 9) the following theorem saying
that if Wn(z) :=

∑
k Xn,kz

k are the profile polynomials, then the normalized
profile polynomials Wn(z)/EWn(z) converge weakly to Y (z) for z contained
in a suitable complex region B, where Y (z) is, as above, the solution of a
stochastic fixed point equation (3.7). Note that convergence in H(B) means
uniform convergence on every compact subset of B.

Theorem 1.2. There exists a complex region B that contains the real interval
(1/m, β(α+)), where α+ is defined in (1.3), and an analytic stochastic process
(Y (z), z ∈ B) satisfying (3.7) and EY (z) = 1, such that, in H(B),(

Wn(z)
EWn(z)

, z ∈ B
)

d−→ (Y (z), z ∈ B) . (1.2)

Finally we apply a suitable continuous functional (that is related to Cauchy’s
formula) in order to derive Theorem 1.1 from this property (Section 10).

Important tools in this argument are Theorems 5.1 and 6.1, which show that
one can use the contraction method with the Zolotarev metric ζs for random
variables with values in a separable Hilbert space. (We do not know whether
these theorems extend to arbitrary Banach spaces.)

In the special case of binary search trees, Theorems 1.1 and 1.2 have been
proved earlier, also in stronger versions [4, 6, 7].

Before we go into the details we want to comment on the interval I of
Theorem 1.1. It is well known that the height of random search trees is order
log n. Thus, it is natural that there might be a restriction on the parameter
α = k/ log n, where k denotes the depth.

In fact, there are several critical values for α = k/ log n, namely

• α = α0 :=
(

1
t+ 1

+
1

t+ 2
+ · · ·+ 1

(t+ 1)m− 1

)−1

,

• α = αmax :=
(

1
t+ 2

+
1

t+ 3
+ · · ·+ 1

(t+ 1)m

)−1

,

• α = α+, where α+ > α0 is the solution of the equation

λ1(β(α))− α log(β(α))− 1 = 0. (1.3)
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In order to explain these critical values we have to look at the expected
profile EXn,k. If α = k/ log n ≤ α0 − ε (for some ε > 0) then

EXn,k ∼ (m− 1)mk.

whereas if α = k/ log n ≥ α0 + ε then

EXn,k ∼
E(β(α))nλ1(β(α))−α log(β(α))−1√

2π(α+ β(α)2λ′′1(β(α))) log n

for some continuous function E(z), see Lemma 8.3. This means that up to
level k = α0 log n the tree is (almost) complete. Note that the critical value
k/ log n = α0 corresponds to z = β = 1/m and λ1(1/m) = 1, and that thus

nλ1(β(α0))−α0 log(β(α0))−1 = nα0 log m = mk.

We can be even more precise. If α = k/ log n ∈ [ε, α0 − ε], then

EXn,k = (m− 1)mk − rn,k

with

rn,k ∼
E1(β(α))nλ1(β(α))−α log(β(α))−1√

2π(α+ β(α)2λ′′1(β(α))) log n

for some continuous function E1(z).
The second critical value k/ log n = αmax corresponds to z = β = 1 and

λ1(1) = 2. Here we have

EXn,k ∼
n√

2π(αmax + λ′′1(1)) log n
exp

(
− (k − αmax log n)2

2(αmax + λ′′1(1)) log n

)
(uniformly for k = αmax log n + O(

√
log n)). This means that most nodes are

concentrated around that level. In fact, αmax log n is the expected depth.
Finally, if α = k/ log n < α+ then EXn,k → ∞ and if α = k/ log n > α+

then EXn,k → 0. This means the range α = k/ log n ∈ (0, α+) is exactly the
range where the profile Xn,k is actually present.

We also see that the interval I ′ of Theorem 1.1 is strictly contained in
(α0, α+) but we have αmax ∈ I ′. This means that we definitely cover the most
important range. However, it seems that Theorem 1.1 is not optimal. The con-
dition λ1(β2) < 2λ1(β)−1 comes from the fact that we are using L2-techniques
in order to derive Theorem 1.1 from Theorem 1.2. We conjecture that this is
just a technical restriction and that Theorem 1.1 actually holds for α ∈ (α0, α+).

By the way, rn,k has a similar critical value α− < α0 that is the second
positive solution of (1.3). If α < α− then rn,k → 0 and if α > α− then
rn,k → ∞. The two constants α−, α+ are related to the speed of the leftmost
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and rightmost particles in suitable discrete branching random walks (see [5]).
Note that they can be also computed by

α− =

(t+1)(m−1)−1∑
j=0

1
λ− + t+ j

−1

and α+ =

(t+1)(m−1)−1∑
j=0

1
λ+ + t+ j

−1

,

where λ− and λ+ are the two solutions of

(t+1)(m−1)−1∑
j=0

log(λ+ t+ j)− log
(
m(tm+m− 1)!/t!

)
=

(t+1)(m−1)−1∑
j=0

λ− 1
λ+ t+ j

.

(1.4)
Further, the expected height of m-ary search trees satisfies EHn ∼ α+ log n and
the expected saturation level E H̃n ∼ α− log n.

Notation. If f and g are two functions on the same domain, f . g means the
same as f = O(g), i.e. |f | ≤ Cg for some constant C.

Acknowledgement. We thank Ludger Rüschendorf for helpful comments.

2 Random search trees

To describe the construction of the search tree, we begin with the simplest case
t = 0. If n = 0, the tree is empty. If 1 ≤ n ≤ m − 1, the tree consists of
a root only, with all keys stored in the root. If n ≥ m, we randomly select
m − 1 keys that are called pivots (with the uniform distribution over all sets
of m − 1 keys). The pivots are stored in the root. The m − 1 pivots split the
set of the remaining n−m+ 1 keys into m subsets I1, . . . , Im: if the pivots are
x1 < x2 < . . . xm−1, then I1 := {xi : xi < x1}, I2 := {xi : x1 < xi < x2}, . . . ,
Im := {xi : xm−1 < xi}. We then construct recursively a search tree for each
of the sets Ii of keys (ignoring it if Ii is empty), and attach the roots of these
trees as children of the root in the search tree.

In the case m = 2, t = 0, we thus have the well-studied Binary Search Tree
[4, 6, 7, 11, 12, 15, 26].

In the case t ≥ 1, the only difference is that the pivots are selected in a
different way, which affects the probability distribution of the set of pivots and
thus of the trees. We now select mt + m − 1 keys at random, order them as
y1 < · · · < ymt+m−1, and let the pivots be yt+1, y2(t+1), . . . , y(m−1)(t+1). In the
case m ≤ n < mt + m − 1, when this procedure is impossible, we select the
pivots by some supplementary rule (possibly random, but depending only on
the order properties of the keys); our results do not depend on the choice of this
supplementary rule.

This splitting procedure was first introduced by Hennequin for the study
of variants of the Quicksort algorithm and is referred to as the generalized
Hennequin Quicksort, cf. Chern, Hwang and Tsai [9].
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In particular, in the case m = 2, we let the pivot be the median of 2t + 1
randomly selected keys (when n ≥ 2t+ 1).

We describe the splitting of the keys by the random vector Vn = (Vn,1, Vn,2,
. . . , Vn,m), where Vn,k := |Ik| is the number of keys in the kth subset, and thus
the number of nodes in the kth subtree of the root (including empty subtrees).

We thus always have, provided n ≥ m,

Vn,1 + Vn,2 + · · ·+ Vn,m = n− (m− 1) = n+ 1−m

and elementary combinatorics, counting the number of possible choices of the
mt + m − 1 selected keys, shows that the probability distribution is, for n ≥
mt+m− 1 and n1 + n2 + · · ·+ nm = n−m+ 1,

P{Vn = (n1, . . . , nm)} =

(
n1
t

)
· · ·
(
nm

t

)(
n

mt+m−1

) . (2.1)

(The distribution of Vn for m ≤ n < mt+m− 1 is not specified.)
In particular, for n ≥ mt + m − 1, the components Vn,j are identically

distributed, and another simple counting argument yields, for n ≥ mt+m− 1
and 0 ≤ ` ≤ n− 1,

P{Vn,j = `} =

(
`
t

)(
n−`−1

(m−1)t+m−2

)(
n

mt+m−1

) . (2.2)

For example, for the binary search tree with m = 2 and t = 0, we thus have
Vn,1 and Vn,2 = n− 1− Vn−1 uniformly distributed on {0, . . . , n− 1}.

3 The profile polynomial

The recursive construction of the random search tree in Section 2 leads to a
recursion for the profile Xn = (Xn,k)k≥0:

Xn,k
d= X

(1)
Vn,1,k−1 +X

(2)
Vn,2,k−1 + · · ·+X

(m)
Vn,m,k−1, (3.1)

jointly in k ≥ 0 for every n ≥ m, where the random vector Vn = (Vn,1, Vn,2, . . . ,

Vn,m) is as in Section 2 and is the same for every k ≥ 0, and X(j)
n = (X(j)

n,k)k≥0,
j = 1, . . . ,m, are independent copies of Xn that are also independent of Vn.
We further have Xn,0 = m − 1 for n ≥ m. For n ≤ m − 1 we simply have
Xn,0 = n and Xn,k = 0, k ≥ 1.

Note that, by induction, Xn,k = 0 when k ≥ n; hence each vector Xn has
only a finite number of non-zero components.

Let Wn(z) =
∑

k Xn,kz
k denote the random profile polynomial. By (3.1) it

is recursively given by Wn(z) = n for n ≤ m− 1 and

Wn(z) d= zW
(1)
Vn,1

(z) + zW
(2)
Vn,2

(z) + · · ·+ zW
(m)
Vn,m

(z) +m− 1, n ≥ m, (3.2)
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where W (j)
` (z), j = 1, . . . ,m, are independent copies of W`(z) that are indepen-

dent of Vn, ` ≥ 0. From this relation we obtain a recurrence for the expected
profile polynomial EWn(z). We have, using (2.2), for n ≥ mt+m− 1,

EWn(z) = mz
n−1∑
`=0

(
`
t

)(
n−`−1

(m−1)t+m−2

)(
n

mt+m−1

) EW`(z) +m− 1. (3.3)

For any fixed complex z, this is a recursion of the type studied in Chern, Hwang
and Tsai [9]. More precisely, it fits [9, (13)] with an = EWn(z), r = mt+m− 1
and ct = mz r!/t! while cj = 0 for j 6= t; further bn = m− 1 for n ≥ mt+m− 1
while bn = an = EWn(z) for n < mt+m− 1.

It follows from [9] that the asymptotics of EWn(z) as n→∞ depend on
the roots of the indicial polynomial, using xm := x(x + 1) · · · (x + m − 1) =
Γ(x+m)/Γ(x),

Λ(θ; z) : = θmt+m−1 −mz
(mt+m− 1)!

t!
θt

= θ(θ + 1) · · · (θ +mt+m− 2)

−mz
(mt+m− 1)!

t!
θ(θ + 1) · · · (θ + t− 1).

(3.4)

If we set

F (θ) :=
t!

m(mt+m− 1)!
(θ + t)(θ + t+ 1) · · · (θ +mt+m− 2), (3.5)

then

Λ(θ; z) =
m(mt+m− 1)!

t!
θt (F (θ)− z) ,

which implies that the roots of Λ(λ; z) = 0 are 0,−1,−2, . . . ,−t + 1 (if t ≥ 1)
and the roots of F (θ) = z. Let λj(z), j = 1, . . . , (m− 1)(t+ 1) denote the roots
of F (θ) = z (counted with multiplicities) and arranged in decreasing order of
the real parts: <λ1(z) ≥ <λ2(z) ≥ . . . .

Further, let Ds, for real s, be the set of all complex z such that <λ1(z) > s
and <λ1(z) > <λ2(z) (in particular, λ1(z) is a simple root). It is easily seen
that the set Ds is open and that λ1(z) is an analytic function of z ∈ Ds. If
z ∈ Ds is real, then λ1(z) has to be real (and thus > s), because otherwise λ1(z)
would be another root with the same real part.

By [9, Theorem 1(i)] we have the following result; note that K0 and K1 (our
E(z)) in [9, Theorem 1(i)] are analytic functions of z and λ1, and thus of z ∈ D1,
and that they are positive for λ1 > 0 because bk = m−1 > 0 for k ≥ mt+m−1
and bk = EWk(z) ≥ 0 for smaller k. (See also Lemma 8.2 and the appendix.)

Lemma 3.1. If z ∈ D1, then

EWn(z) =
(
E(z) + o(1)

)
nλ1(z)−1,

for some analytic function E(z) with E(z) > 0 for z ∈ D1 ∩ (0,∞).
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Lemma 3.2. The set D1 is an open domain in the complex plane that contains
the interval (1/m,∞).

(Lemma 3.2 will be proved in a more general context in Lemma 8.1. Note that
F (1) = 1/m and thus λ1(1/m) = 1.)

Set Mn(z) = Wn(z)/Gn(z), where Gn(z) = EWn(z). Then (3.2) rewrites
to1

Mn(z) d=
GVn,1(z)
Gn(z)

zM
(1)
Vn,1

(z) + · · ·+
GVn,m(z)
Gn(z)

zM
(m)
Vn,m

(z) +
m− 1
Gn(z)

.

Next let the random vector V = (V1, V2, . . . , Vm) be supported on the simplex
∆ = {(s1, . . . , sm) : sj ≥ 0, s1 + · · ·+ sm = 1} with density

f(s1, . . . , sm) =
((t+ 1)m− 1)!

(t!)m
(s1 · · · sm)t,

where t ≥ 0 is the same integer parameter as above. (This is known as a
Dirichlet distribution.) It is easy to show that

1
n
Vn

d−→ V as n→∞. (3.6)

Remark 3.1. For n ≥ mt+m−1, the shifted random vector (Vn,1−t, . . . , Vn,m−
t) has a multivariate Pólya–Eggenberger distribution, that can be defined as the
distribution of the vector of the numbers of balls of different colour drawn in
the first n− (mt+m− 1) draws from an urn with balls of m colours, initially
containing t+1 balls of each colour, where we draw balls at random and replace
each drawn ball together with a new ball of the same colour, see e.g. Johnson
and Kotz [20, Section 4.5.1].

This distribution can be obtained by first taking a random vector V with the
Dirichlet distribution above and then a multinomial variable with parameters
n − (mt + m − 1) and V [20, Section 4.5.1]. Using this representation, (3.6)
follows immediately from the law of large numbers, even in the stronger form
Vn/n

a.s.−→ V.

It follows from (3.6) and Lemma 3.1 that

GVn,j
(z)

Gn(z)
d−→ V

λ1(z)−1
j

if z ∈ D1 and E(z) 6= 0. Hence, if Mn(z) has a limit (in distribution) Y (z) for
some z ∈ D1 with E(z) 6= 0, then this limit has to satisfy the stochastic fixed
point equation

Y (z) d= zV
λ1(z)−1
1 Y (1)(z) + zV

λ1(z)−1
2 Y (2)(z) · · ·+ zV λ1(z)−1

m Y (m)(z), (3.7)
1Note that GV (z), where V is an integer valued random variable, is considered as the

random variable E Wn(z)|n=V and not as E WV (z), that is, the expected value is only taken
with respect to Xn.
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where Y (j)(z) are independent copies of Y (z) that are independent of V. (Note
that z ∈ D1 and E(z) 6= 0 imply that Gn(z) →∞.)

In Section 9 we will show that this limit relation is actually true in a suitable
domain, even in a strong sense, as asserted in Theorem 1.2. We will also see
that we have a unique solution of this stochastic fixed point equation under the
assumption EY (z) = 1 and a certain integrability condition.

4 Function Spaces

For functions defined on an interval I ⊆ R we use the space D(I) of right-
continuous functions with left-hand limits equipped with the Skorohod topology;
a general definition of this topology is that fn → f , as n→∞, if and only if
there exists a sequence λn of strictly increasing continuous functions that map
I onto itself such that λn(x) → x and fn(λn(x)) → f(x), uniformly on every
compact subinterval of I; see e.g. [2, Chapter 3] (I = [0, 1]), [24], [18, Chapter
VI], [21, Appendix A2] ([0,∞)), [19, §2]. It is of technical importance that this
topology can be induced by a complete, separable metric [2, §14], [18, Theorem
VI.1.14], [21, Theorem A2.2]. Note that it matters significantly whether the
endpoints are included in the interval I or not, but we can always reduce to the
case of compact intervals because fn → f in D(I) if and only if fn → f in D(Jk)
for an increasing sequence of compact intervals Jk with

⋃
Jk = I. In particular,

when f is continuous, fn → f in D(I) if and only if fn → f uniformly on every
compact subinterval. Similarly, if Fn and F are random elements of D(I), and
F is a.s. continuous, then Fn

d−→ F in D(I) if and only if Fn
d−→ F in D(J) for

every compact subinterval J ⊆ I.

For analytic functions on a domain (i.e., a non-empty open connected set)
D ⊆ C, we will use two topological vector spaces.

• H(D) is the space of all analytic functions on D with the topology of
uniform convergence on compact sets. This topology can be defined by
the family of seminorms f 7→ supK |f |, where K ranges over the compact
subsets of D. H(D) is a Fréchet space, i.e. a locally convex space with a
topology that can be defined by a complete metric, and it has (by Montel’s
theorem on normal families) the property that every closed bounded subset
is compact, see e.g. [28, §1.45] or [29, Example 10.II and Theorem 14.6].
It is easily seen that the topology is separable (for example, by regarding
H(D) as a subspace of C∞

0 (D)).

• B(D) is the Bergman space of all square integrable analytic functions on
D, equipped with the norm given by ‖f‖2

B(D) =
∫

D
|f(z)|2 dm(z), where

m is the two-dimensional Lebesgue measure. B(D) can be regarded as a
closed subspace of L2(R2), and is thus a separable Hilbert space, see e.g.
[22, §1.4].

Since these spaces are metric spaces, we can use the general theory in e.g.
Billingsley [2] or Kallenberg [21] for convergence in distribution of random func-
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tions in these spaces (equipped with their Borel σ-fields). In particular, recall
that “convergence in distribution” really means convergence of the correspond-
ing distributions, but it is often convenient to talk about random variables
instead of their distributions.

B(D) has the advantage of being a Hilbert space, which will be important
for us later. On the other hand, H(D) is in several ways the natural space for
analytic functions. One important technical advantage of H(D) is that it is easy
to characterize tightness. Recall that a sequence (Wn) of random variables in a
metric space S is tight if for every ε > 0, there exists a compact subset K ⊆ S
such that P(Wn ∈ K) > 1 − ε for every n. In a Polish space, i.e. a complete
separable metric space, tightness is equivalent to relative compactness (of the
corresponding distributions) by Prohorov’s theorem [2, Theorems 6.1 and 6.2],
[21, Theorem 16.3]. (Both H(D) and B(D) are Polish, by the properties above.)

Lemma 4.1. Let D be a domain in C. A sequence (Wn) of random analytic
functions on D is tight in H(D) if and only if the sequence (supz∈K |Wn(z)|)
is tight for every compact K ⊂ D, i.e. if and only if for every compact K ⊂ D
and every ε > 0, there exists M such that P(supz∈K |Wn(z)| > M) < ε for all
n.

Proof. This is an easy consequence of the characterization of compact sets as
closed bounded sets in H(D); we omit the details.

The embedding B(D) → H(D) is continuous [22, Lemma 1.4.1]. Thus,
convergence in distribution in B(D) implies convergence in H(D). Similarly, if
D′ ⊂ D is a subdomain, then the restriction mappings H(D) → H(D′) and
B(D) → B(D′) are continuous, and thus convergence in distribution in H(D) or
B(D) implies convergence (of the restrictions) in H(D′) or B(D′), respectively.

The following theorem is a converse, which makes it possible to localize in
proofs of convergence in H. In applications, it is convenient to let Dx be a small
disc with centre x.

Theorem 4.1. Let D ⊆ C be a domain. Suppose that (Wn) is a sequence of
random analytic functions on D, and that for each x ∈ D, there is an open
subdomain Dx with x ∈ Dx ⊂ D and a random analytic function Zx on Dx

such that Wn
d−→ Zx in H(Dx) as n→∞. Then there exists a random analytic

function Z on D such that Wn
d−→ Z in H(D) as n→∞, and the restriction

Z|Dx

d= Zx for every x.

To prove this, we use the following general measure-theoretic lemma, which
we copy from Bousquet-Mélou and Janson [3, Lemma 7.1].

Lemma 4.2. Let S1 and S2 be two Polish spaces, and let φ : S1 → S2 be an
injective continuous map. If (Wn) is a tight sequence of random elements of S1

such that φ(Wn) d−→ Z in S2 for some random Z ∈ S2, then Wn
d−→ W in S1

for some W with φ(W ) d= Z.
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Proof of Theorem 4.1. Let, for every x ∈ D, D′
x be a small open disc with

centre x such that D′
x ⊂ Dx. Since Wn

d−→ Zx in H(Dx), the sequence (Wn)
is tight in H(Dx) for every x ∈ D. In particular, by Lemma 4.1, the sequence
(supD′

x
|Wn|) is tight.

If K ⊂ D is compact, then K can be covered by a finite number of the discs
D′

x, and it follows that the sequence (supK |Wn|) is tight. Consequently, the
sequence (Wn) is tight in H(D) by Lemma 4.1.

We now fix x ∈ D and apply Lemma 4.2 with S1 = H(D), S2 = H(Dx), and
φ the restriction map. Note that φ is injective since the functions are analytic
and D is connected. The result follows.

For future use, we include the following alternative characterization of com-
pleteness in an arbitrary complete metric space S. If A ⊆ S, let Aε denote the
set {x : d(x,A) < ε}.

Lemma 4.3. If {Wα} is a family of random variables in a complete metric space
S, then the following are equivalent characterizations of tightness of {Wα}:

(i) For every ε > 0, there exists a compact set K ⊆ S such that
P(Xα /∈ K) < ε for every α.

(ii) For every ε, δ > 0, there exists a compact set K ⊆ S such that
P(Xα /∈ Kδ) < ε for every α.

(iii) For every ε, δ > 0, there exists a finite set F ⊆ S such that
P(Xα /∈ F δ) < ε for every α.

Proof. (i) is the standard definition of tightness [2, §6].
(i) =⇒ (ii) is obvious.
(ii) =⇒ (iii). Given ε and δ, let K be as in (ii). Since K is compact,

there exists a finite set F such that K ⊆ F δ, and thus Kδ ⊆ F 2δ. Hence
P(Xα /∈ F 2δ) < ε.

(iii) =⇒ (i). Let Fn be a finite set such that P(Xα /∈ F
1/n
n ) < ε · 2−n for

every α, and let K :=
⋂

n≥1 F
1/n
n . Then K is closed and totally bounded, and

thus compact, and P(Xα /∈ K) ≤
∑

n P(Xα /∈ F 1/n
n ) < ε for every α.

5 The Zolotarev metric on a Hilbert space

We recall the definition of the Zolotarev metric for probability measures in a
Banach space, see Zolotarev [30].

If B and B1 are Banach spaces and f : U → B1 is a function defined on an
open subset U ⊆ B, f is said to be (Fréchet) differentiable at a point x ∈ U if
there exists a linear operator Df(x) : B → B1 such that ‖f(x + y) − f(x) −
Df(x)y‖B1 = o(‖y‖B) as ‖y‖B → 0. Further, f is differentiable in U if it is
differentiable for every x ∈ U ; then Df is a function U → L(B,B1), and we
may talk about its derivative D2f = DDf , and so on. Note that the m:th
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derivative Dmf (if it exists) is a function from U into the space of multilinear
mappings Bm → B1. Let Cm(B,B1) denote the space of m times continuously
differentiable functions f : B → B1.

Given a Banach space B and a real number s > 0, write s = m + α with
0 < α ≤ 1 and m := dse − 1 ∈ N≥0, and define

Fs := {f ∈ Cm(B,R) : ‖Dmf(x)−Dmf(y)‖ ≤ ‖x− y‖α, x, y ∈ B}.

We will also write F∗
s := {f ∈ Cm(B,R) : cf ∈ Fs for some c > 0}.

The Zolotarev metric ζs is a distance between distributions, but it is often
convenient to talk about it as a distance between random variables, keeping in
mind that only their distributions matter. For two random variables X and Y
with values in B, or for their corresponding distributions L(X) and L(Y ), the
Zolotarev metric ζs is defined by

ζs(X,Y ) := ζs(L(X),L(Y )) := sup
f∈Fs

|E(f(X)− f(Y ))|. (5.1)

Note that this distance may be ∞, but it is easily seen, by a Taylor expansion
of f , that it is finite if E ‖X‖s <∞, E ‖Y ‖s <∞, and X and Y have the same
moments up to order m, where the k:th moment of X is EX⊗k, regarded as an
element of the k:th (completed) projective tensor power B⊗k.

Remark 5.1. The dual space of B⊗k is the space of bounded multilinear
mappings Bk → R; hence EX⊗k = EY ⊗k if and only if E g(X, . . . ,X) =
E g(Y, . . . , Y ) for every bounded multilinear mapping Bk → R. See e.g., [29,
Chapter 45] for facts on tensor products.

We define, for a given sequence z = (z1, . . . , zm) with zk ∈ B⊗k, k =
1, . . . ,m,

Ps,z(B) := {L(X) : E ‖X‖s <∞, EX⊗k = zk, k = 1, . . . ,m},

i.e., the set of probability measures on B with finite absolute s:th moment and
moments z1, . . . , zk. Thus ζs is finite on each Ps,z(B), and it is obviously a
semi-metric there.

We are mainly concerned with the cases 0 < s ≤ 1 whenm = 0 and 1 < s ≤ 2
when m = 1. In these cases we write Ps(B) and Ps,z(B), where z ∈ H is the
mean, respectively.

For a general Banach space B, we do not know whether ζs always is a
complete metric on Ps,z(B). Moreover, according to Bentkus and Rachkauskas
[1], it is not hard to show that in a general Banach space, convergence in ζs
does not imply weak convergence (convergence in distribution) when s > 1,
although we do not know any explicit counter example. (It is easy to see that
convergence in ζs for 0 < s ≤ 1 implies weak convergence, by the proof of
Theorem 2.1(ii) =⇒ (iii) in [2].) We will therefore in the sequel restrict ourselves
to separable Hilbert spaces, where we can show these desirable properties.
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Theorem 5.1. If H is a separable Hilbert space and s > 0, then ζs is a complete
metric on the set Ps,z(H) of all probability measures on H with a finite s:th
absolute moment and given k:th moments zk, 1 ≤ k < s. Moreover, if Xn, X are
H-valued random variables with distributions in Ps,z(H) and ζs(Xn, X) → 0,

then Xn
d−→ X.

The final assertion is proved by Giné and Léon [16]; for completeness, we
include a short proof using lemmas needed for the first part.

Proof. First note that ζs is a metric on Ps,z(H) [30]; the fact that ζs(µ, ν) = 0
implies µ = ν for probability measures µ, ν ∈ Ps,z(H) is well known and follows
easily because x 7→ ei〈x,y〉 ∈ F∗

s for every y ∈ H, and thus if ζs(µ, ν) = 0, then,
by (5.1), the characteristic functions

∫
ei〈x,y〉 dµ(x) and

∫
ei〈x,y〉 dν(x) are equal,

which implies that all finite-dimensional projections coincide for µ and ν, and
then µ = ν follows by a monotone class argument, see e.g. [23, Section 2.1].

We continue by constructing some other functions in F∗
s ; taking small posi-

tive multiples of them we thus obtain functions in Fs.

Lemma 5.1. Let ϕ ∈ C∞(R) with ϕ(x) = x2 for |x| < 1/2, ϕ(x) = 1 for
|x| > 1, and 1/4 ≤ ϕ(x) ≤ 1 for 1/2 ≤ |x| ≤ 1. Then f(x) := ϕ(‖x‖) ∈ F∗

s for
every s > 0.

Proof. First, note that x 7→ ‖x‖2 is infinitely differentiable on H. (In fact,
the third derivative vanishes.) Hence, if g : R → R is any C∞ function, then
g(‖x‖) = g

(
(‖x‖2)1/2

)
is infinitely differentiable on H \ {0}.

Consequently, ϕ(‖x‖) is infinitely differentiable both in {x : ‖x‖ < 1/2} and
in {x : ‖x‖ > 0}, and thus everywhere. Further, any derivative of order ≥ 1
vanishes for ‖x‖ > 1, and is bounded on ‖x‖ ≤ 1; hence it is globally bounded.
In particular, Dmf is both bounded and has a bounded derivative, which implies
that f ∈ F∗

s . (Consider the cases ‖x− y‖ ≤ 1 and ‖x− y‖ > 1 separately.)

Lemma 5.2. Let ψ ∈ C∞(R) with ψ(x) ≥ 0, ψ(x) = 0 for |x| ≤ 1/2, and
ϕ(x) = |x|s for |x| ≥ 1. Then f(x) := ψ(‖x‖) ∈ F∗

s for every s > 0.

Proof. It is easily seen, as in Lemma 5.1, that f is infinitely differentiable, and
that Dkf(x) = O(‖x‖s−k) for every fixed k ≥ 0. Hence, if x, y ∈ H with
‖x− y‖ < ‖x‖/2, then

Dm+1f(z) = O
(
‖z‖s−m−1

)
= O

(
‖x‖α−1

)
for z ∈ [x, y], and thus

‖Dmf(x)−Dmf(y)‖ = O
(
‖x− y‖‖x‖α−1

)
= O

(
‖x− y‖α

)
.

The same holds by symmetry if ‖x− y‖ < ‖y‖/2.
Finally, if ‖x− y‖ ≥ 1

2‖x‖,
1
2‖y‖, then

‖Dmf(x)−Dmf(y)‖ ≤ ‖Dmf(x)‖+ ‖Dmf(y)‖ = O
(
‖x‖s−m + ‖y‖s−m

)
= O

(
‖x− y‖α

)
.

Thus f ∈ F∗
s .
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In the following Lemmas 5.3–5.6, assume that {µn}∞1 is a sequence of prob-
ability measures in Ps,z(H) that is a Cauchy sequence for ζs, and let {Xn}∞1 be
H-valued random variables such that Xn has the distribution µn.

Lemma 5.3. The random variables ‖Xn‖s are uniformly integrable.

Proof. Let f(x) = ψ(‖x‖) be as in Lemma 5.2 (for some fixed choice of ψ); by
Lemma 5.2, cf ∈ Fs for some constant c > 0. Let, for r > 0, fr(x) = crsf(x/r).
Then, as is easily seen, fr ∈ Fs for every r > 0; further, fr(x) = c‖x‖s when
‖x‖ > r but fr(x) = 0 when ‖x‖ < r/2.

Since |fr(Xm)| ≤ cC‖Xm‖s for all r, where C := supx6=0 f(x)/‖x‖s < ∞,
and fr(Xm) → 0 as r → ∞, dominated convergence yields E fr(Xm) → 0 as
r →∞ for every fixed m.

Now, let ε > 0 and choose N such that ζs(Xn, XN ) < ε for n ≥ N . Choose
r such that E fr(Xm) < ε for m = 1, . . . , N . Then, for every n > N ,

E fr(Xn) ≤ E fr(XN ) + ζs(Xn, XN ) < 2ε;

thus E fr(Xn) < 2ε for all n. Consequently, for all n,

E
(
‖Xn‖s1[‖Xn‖ > r]

)
≤ c−1 E fr(Xn) < 2c−1ε.

Since ε > 0 is arbitrary, this shows the desired uniform integrability.

Lemma 5.4. The sequence (Xn) is tight.

Proof. Let f(x) be as in Lemma 5.1, and let c > 0 be such that cf ∈ Fs.
Let ε, η > 0, and assume ε, η < 1/2. Let δ := ε2η/6 < 1/2.
Choose N such that ζs(Xn, XN ) < cδ for n ≥ N . Since H is complete and

separable, each Xn is tight [2, Theorem 1.4]; hence there exists by Lemma 4.3
for each n a finite set Fn ⊂ H such that P(Xn /∈ F δ

n) < δ. Let F :=
⋃N

1 Fn.
LetM be the subspace ofH spanned by F , let P be the orthogonal projection

onto M and let Q = I − P be the complementary projection. If Xn ∈ F δ, then
‖Q(Xn)‖ < δ, and thus f(Q(Xn)) = ‖Q(Xn)‖2 < δ2. Hence,

E f(Q(Xn)) ≤ δ2 + P(Xn /∈ F δ) < 2δ, n ≤ N. (5.2)

Since cf ∈ Fs, and Q is a linear operator with norm at most 1, it is easily
seen that cf ◦Q ∈ Fs too. Hence, for n ≥ N ,

|E f(Q(Xn))− E f(Q(XN ))| ≤ c−1ζs(Xn, XN ) < δ,

and, by (5.2),

E f(Q(Xn)) ≤ E f(Q(XN )) + δ ≤ 3δ, n ≥ N.

Combining this with (5.2), we see that E f(Q(Xn)) ≤ 3δ for all n. Hence, by
Markov’s inequality,

P
(
‖Q(Xn)‖ > ε

)
≤ P

(
f(Q(Xn)) > ε2

)
≤ 3δ/ε2 = η/2. (5.3)
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Next, the random variables P (Xn) lie in the finite-dimensional space M , and
supn E ‖P (Xn)‖s ≤ supn E ‖Xn‖s < ∞ by Lemma 5.3. Let KR := {x ∈ M :
‖x‖ ≤ R}. Then KR is compact, and it follows from Markov’s inequality that if
R is large enough, then P

(
P (Xn) /∈ KR

)
< η/2 for every n, and consequently,

recalling (5.3),

P(Xn /∈ Kε
R) ≤ P(P (Xn) /∈ KR) + P

(
‖Q(Xn)‖ ≥ ε

)
< η. (5.4)

We have shown that for every ε, η > 0, there exists a compact set KR such
that (5.4) holds for all n. (We may clearly assume ε, η < 1/2 as we did.) By
Lemma 4.3, the family {Xn} is tight.

Lemma 5.5. If further Xn
d−→ X for some H-valued random variable X, then

L(X) ∈ Ps,z(H) and E f(Xn) → E f(X) for every f ∈ Fs.

Proof. First, by Fatou’s lemma and Lemma 5.3,

E ‖X‖s ≤ lim inf
n→∞

E ‖Xn‖s ≤ sup
n

E ‖Xn‖s <∞.

Next, if f ∈ Fs, then f(Xn) d−→ f(X) because f is continuous. Further,
a Taylor expansion yields, see [30, (18)], |f(x)| ≤ K + K‖x‖s for some K
(depending on f); hence |f(Xn)| ≤ K + K‖Xn‖s and {f(Xn)} is uniformly
integrable by Lemma 5.3. Consequently, E f(Xn) → E f(X).

If f(x) = g(x, . . . , x) for some continuous multilinear mapping g : Bk → R
with k ≤ m, then, for every n, using the duality between tensor powers and
multilinear mappings in Remark 5.1,

E f(Xn) = E〈g,X⊗k
n 〉 = 〈g,EX⊗k

n 〉 = 〈g, zk〉.

Further, Dmf is constant and thus f ∈ Fs, and consequently

〈g,EX⊗k〉 = E f(X) = lim
n

E f(Xn) = 〈g, zk〉.

Since g is arbitrary, this implies EX⊗k = zk, and thus L(X) ∈ Ps,z(H).

Lemma 5.6. If Xn
d−→ X for some H-valued random variable X, then

ζs(Xn, X) → 0.

Proof. Let ε > 0 and choose N such that ζs(Xn, Xm) < ε if n,m ≥ N . For
any f ∈ Fs and any n,m ≥ N we thus have |E f(Xn)− E f(Xm)| < ε. Letting
m → ∞, we thus obtain, by Lemma 5.5, |E f(Xn) − E f(X)| ≤ ε, for n ≥ N
and every f ∈ Fs. Thus ζs(Xn, X) ≤ ε for n ≥ N .

We may now complete the proof of Theorem 5.1. First, assume that (µn)
is a Cauchy sequence in Ps,z(H), equipped with the metric ζs. Let Xn be
random variables with the distributions µn. By Lemma 5.4, the sequence (Xn)
is tight, so by Prohorov’s theorem, there exists a subsequence that converges in
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distribution to some H-valued random variable X. Let µ be the distribution of
X. Considering this subsequence only, we see by Lemma 5.5 that µ ∈ Ps,z(H)
and by Lemma 5.6 that µn → µ in Ps,z(H) along the subsequence. Since (µn) is
a Cauchy sequence, the full sequence converges too. Hence Ps,z(H) is complete.

Secondly, assume that Xn and X are H-valued random variables with dis-
tributions in Ps,z(H) such that ζs(Xn, X) → 0. In particular, the distributions
L(Xn) form a Cauchy sequence in Ps,z(H), so by Lemma 5.4, the sequence is
tight. If a subsequence converges in distribution to some random variable Y ,
then Lemma 5.6 shows that ζs(Xn, Y ) → 0 along the subsequence, and thus
ζs(X,Y ) = 0 so Y d= X. Hence all subsequence limits of (Xn) have the distri-
bution of X, and since the sequence is tight, this means Xn

d−→ X.

We will later use an upper bound of ζs by the minimal Ls-metric `s; see
Zolotarev [30] for similar bounds. The `s metric, s > 0, is defined of all random
variable X and Y with values in B and E ‖X‖s, E ‖Y ‖s <∞ by

`s(X,Y ) := `s(L(X),L(Y ))

:= inf{(E ‖X ′ − Y ′‖s)(1/s)∧1 : L(X ′) = L(X),L(Y ′) = L(Y )}.

Lemma 5.7. For all L(X),L(Y ) ∈ Ps,z(B) and s > 1 we have

ζs(X,Y ) ≤
(
(E ‖X‖s)1−1/s + (E ‖Y ‖s)1−1/s

)
`s(X,Y ). (5.5)

For 0 < s ≤ 1 we have
ζs(X,Y ) ≤ `s(X,Y ).

Proof. For s > 1 and arbitrary f ∈ Fs we define

g(x) := f(x)− f(0)−Df(0)(x)− · · · − 1
m!
Dmf(0)(x, . . . , x).

Thus, we have

g(0) = Dg(0) = · · · = Dmg(0) = 0, ‖Dmg(x)−Dmg(y)‖ ≤ ‖x− y‖α.

This implies, by backward induction on k,

‖Dkg(x)‖ ≤ ‖x‖s−k, 0 ≤ k ≤ m.

Thus, with Z := Y −X we obtain, for an appropriate 0 ≤ ϑ ≤ 1,

|g(Y )− g(X)| = |g(X + Z)− g(X)| = |Dg(X + ϑZ)(Z)|
≤ ‖Dg(X + ϑZ)‖‖Z‖ ≤ ‖X + ϑZ‖s−1‖Z‖
≤
(
‖X‖s−1 + ‖Y ‖s−1

)
‖Z‖.

This implies with Hölder’s inequality

|E[f(Y )− f(X)]| = |E[g(Y )− g(X)]| ≤ E
[(
‖X‖s−1 + ‖Y ‖s−1

)
‖Z‖

]
≤
(
(E ‖X‖s)1−1/s + (E ‖Y ‖s)1−1/s

)
(E ‖Z‖s)1/s.
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Taking supremum over all f ∈ Fs and infimum over all realisations of L(X) and
L(Y ) we obtain (5.5).

For 0 < s ≤ 1 we have |E[f(Y ) − f(X)]| ≤ E |f(Y ) − f(X)| ≤ ‖X − Y ‖s.
This implies ζs(X,Y ) ≤ `s(X,Y ).

6 Contraction Method for Hilbert spaces

In this section we extend the contraction method as developed for the Zolotarev
metric in Rd in [27] to random variables in a separable Hilbert space H. We
denote by P(H) the set of all probability distributions on H. The limit distri-
butions occurring subsequently are characterized as fixed-points of the maps

T : P(H) → P(H) (6.1)

L(Z) 7→ L

(
m∑

r=1

A∗r(Z
(r)) + b∗

)
,

where m ≥ 1 is an integer, A∗1, . . . , A
∗
m are random linear operators in H, b∗ is

a random variable in H, and (A∗1, . . . , A
∗
m, b

∗), Z(1), . . . , Z(m) are independent
with L(Z(r)) = L(Z) for r = 1, . . . ,m.

We denote ‖A‖op := sup‖x‖=1 ‖Ax‖ for a linear operator A in H. By A∗r
being s-integrable we mean that E ‖A∗r‖s

op < ∞. Furthermore, we abbreviate
Ps := Ps(H) and Ps,0 := Ps,0(H), as defined in Section 5.

Lemma 6.1. Let (A∗1, . . . , A
∗
m, b

∗) be as in (6.1) and s-integrable for some 0 <
s ≤ 2. For 0 < s ≤ 1 we have T (Ps) ⊆ Ps. For 1 < s ≤ 2 and E b∗ = 0 we have
T (Ps,0) ⊆ Ps,0.

Proof. The existence of moments of order s of T (L(Z)) with E ‖Z‖s follows by
independence of A∗r and Z(r). For 1 < s ≤ 2 and E b∗ = 0 we obtain that
T (L(Z)) is centered.

Lemma 6.2. Let (A∗1, . . . , A
∗
m, b

∗) be as in (6.1) and s-integrable for some 0 <
s ≤ 2. Assume that

E
m∑

r=1

‖A∗r‖s
op < 1. (6.2)

If 0 < s ≤ 1 then the restriction of T to Ps is a strict contraction. If 1 < s ≤ 2
and E b∗ = 0 then the restriction of T to Ps,0 is a strict contraction.

Proof. Similar to the proof of Lemma 3.1 in [27]. Note that for a linear operator
A in H and L(X),L(Y ) ∈ Ps,z we have ζs(A(X), A(Y )) ≤ ‖A‖s

opζs(X,Y ),
cf. Zolotarev [31, Theorem 3].

Lemma 6.2 and Theorem 5.1 imply that the restrictions of T in Lemma 6.2
have unique fixed-points in Ps and Ps,0 respectively.
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We consider a sequence (Xn)n≥0 of random variables in H satisfying the
recurrence

Xn
d=

m∑
r=1

A(n)
r

(
X

(r)

I
(n)
r

)
+ b(n), n ≥ n0, (6.3)

where n0 ≥ 1, A(n)
r are random linear operators in H, b(n) is a random variable

in H, I(n) = (I(n)
1 , . . . , I

(n)
m ) is a vector of random integers I(n)

r ∈ {0, . . . , n},
and we have that (X(1)

j ), . . . , (X(m)
j ), (A(n)

1 , . . . , A
(n)
m , b(n), I(n)) are independent,

and L(X(r)
j ) = L(Xj) for all r and j. Then we have the following extension of

Theorem 4.1 in [27]:

Theorem 6.1. Let (Xn) be as in (6.3) with all quantities there being s-integrable
for some 0 < s ≤ 2. For 1 < s ≤ 2 assume that EXn = 0 for all n ≥ 0. Assume
that for appropriately chosen (A∗1, . . . , A

∗
m, b

∗) we have

E ‖A(n)
r −A∗r‖s

op → 0, E ‖b(n) − b∗‖s → 0, (6.4)

E
m∑

r=1

‖A∗r‖s
op < 1, (6.5)

E
[
1{I(n)

r ≤`}‖A
(n)
r ‖s

op

]
→ 0, (6.6)

for all ` ∈ N and r = 1, . . . ,m. Then we have

ζs(Xn, X) → 0, n→∞, (6.7)

where L(X) is the unique fixed point of T in Ps for 0 < s ≤ 1 and in Ps,0 for
1 < s ≤ 2.

Proof. The proof of Theorem 4.1 in [27] extends directly: For 1 < s ≤ 2 from
EXn = 0 and (6.3) we obtain E b(n) = 0, thus (6.4) implies E b∗ = 0. Therefore,
Lemma 6.2 implies existence and uniqueness of the fixed point of T as claimed
in the theorem for all 0 < s ≤ 2.

We introduce the accompanying sequence

Qn : d=
m∑

r=1

A(n)
r

(
X(r)

)
+ b(n), n ≥ n0, (6.8)

where (A(n)
1 , . . . , A

(n)
m , b(n), I(n)), X(1), . . . , X(m), (X(1)

n ), . . . , (X(m)
n ) are indepen-

dent with L(X(r)) = L(X) for r = 1, . . . ,m. We obtain that E ‖Qn‖s <∞ and,
for 1 < s ≤ 2, that EQn = 0. Thus ζs distances between Xn, Qn, and X are
finite for n ≥ n0. We obtain from the triangle inequality that

ζs(Xn, X) ≤ ζs(Xn, Qn) + ζs(Qn, X). (6.9)

First we show that ζs(Qn, X) → 0. For this note that we have E ‖X‖s < ∞
and supn≥n0

E ‖Qn‖s < ∞ by representation (6.8), independence and (6.4).
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Hence, Lemma 5.7 implies ζs(Qn, X) ≤ C`s(Qn, X) with some constant C that
is independent of n. For a random variable Y in H we denote the Ls-norm of Y
by ‖Y ‖s := (E ‖Y ‖s)1/s. With (6.4) we obtain from X

d=
∑
A∗rX

(r) + b∗ that

`s(Qn, X) ≤

∥∥∥∥∥
m∑

r=1

(A∗r −A(n)
r )(X(r))

∥∥∥∥∥
s∧1

s

+
∥∥∥b(n) − b∗

∥∥∥s∧1

s

≤
m∑

r=1

∥∥∥∥∥∥∥A∗r −A(n)
r

∥∥∥
op
‖X‖

∥∥∥∥s∧1

s

+
∥∥∥b(n) − b∗

∥∥∥s∧1

s

→ 0, n→∞.

Next, we bound the first summand in (6.9). Let Υn denote the joint distribution
of (A(n)

1 , . . . , A
(n)
m , b(n), I(n)) and write α = (α1, . . . , αm), j = (j1, . . . , jm). Then

we obtain for n ≥ n0

ζs(Xn, Qn)

= ζs

( m∑
r=1

A(n)
r

(
X

(r)

I
(n)
r

)
+ b(n),

m∑
r=1

A(n)
r

(
X(r)

)
+ b(n)

)

≤
∫
ζs

( m∑
r=1

αr

(
X

(r)
jr

)
,

m∑
r=1

αr

(
X(r)

))
dΥn(α, β, j)

≤
∫ m∑

r=1

‖αr‖s
opζs(Xjr

, X) dΥn(α, β, j) (6.10)

≤
(

E
m∑

r=1

‖A(n)
r ‖s

op

)
max

0≤j≤n
ζs(Xj , X).

Thus with (6.9) it follows that

ζs(Xn, X) ≤
(

E
m∑

r=1

‖A(n)
r ‖s

op

)
max

0≤j≤n
ζs(Xj , X) + o(1).

We denote dn := ζs(Xn, X). We show that the sequence (dn) is bounded.
With rn := ζs(Qn, X) , ξn := E

∑m
r=1 ‖A

(n)
r ‖s

op, d∗n := max0≤j≤n dj , and R :=
supn≥n0

rn we obtain from (6.9) and (6.10) that

dn ≤ ξnd
∗
n + rn, n ≥ n0. (6.11)

By (6.4) and (6.5) there exist ξ < 1 and n1 ≥ n0 such that ξn ≤ ξ for all
n ≥ n1. Let B := d∗n1

+ R/(1 − ξ). We claim that d∗n ≤ B for all n ≥ 0. If
this fails to hold, then for some n we have d∗n−1 ≤ B < d∗n = dn ∨ d∗n−1. Hence
dn = d∗n > B. Moreover, we have n > n1; hence (6.11) yields dn ≤ ξdn + R,
thus dn ≤ R/(1−ξ) ≤ B, contradicting our assumption. Consequently, we have
d∗n ≤ B for all n ≥ 0.
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Let η := lim supn→∞ dn, and ε > 0 be arbitrary. There exists an ` ∈ N with
dn ≤ η + ε, for all n ≥ `. We deduce using (6.10), (6.9), (6.6) and (6.4)

dn ≤
∫ m∑

r=1

1{0≤jr≤`}‖αr‖s
opζs(Xjr

, X) dΥn(α, β, j)

+
∫ m∑

r=1

1{`<jr≤n}‖αr‖s
opζs(Xjr

, X) dΥn(α, β, j) + rn

≤ E
m∑

r=1

(
1{I(n)

r ≤`}‖A
(n)
r ‖s

op

)
+ (η + ε) E

m∑
r=1

‖A(n)
r ‖s

op + rn

≤
(

E
m∑

r=1

‖A∗r‖s
op

)
(η + ε) + o(1).

With n→∞ we obtain

η ≤

(
E

m∑
r=1

‖A∗r‖s
op

)
(η + ε).

Since ε > 0 is arbitrary and E
∑m

r=1 ‖A∗r‖s
op < 1 we obtain η = 0. Hence

ζs(Xn, X) → 0.

Remark 6.1. Note that the conditions (6.4) on the Ls convergence of the
coefficients could be replaced by the joint `s convergence

(A(n)
1 , . . . , A(n)

m ) `s−→ (A∗1, . . . , A
∗
m, b

∗).

Remark 6.2. We assume s ≤ 2 in the theorem above unlike the finite-dimensional
theorem in [27] where s ≤ 3. The reason is that for 2 < s ≤ 3 we need to nor-
malize the second moments, and that is not in general possible in an infinite
dimensional Hilbert space.

7 Contraction Method for analytic functions

In this section we link the general contraction theorem of Section 6 to recurrences
of random analytic functions as needed subsequently. Suppose that (Xn)n≥0 is
a sequence of random analytic functions in a domain D ⊆ C such that for some
n0 ≥ 1,

Xn
d=

m∑
r=1

A(n)
r ·X(r)

I
(n)
r

+ b(n), n ≥ n0, (7.1)

where A(n)
1 , . . . , A

(n)
m and b(n) are random analytic functions in D, and I(n) =

(I(n)
1 , . . . , I

(n)
m ) is a vector of random integers I(n)

r ∈ {0, . . . , n}; furthermore
L(X(r)

j ) = L(Xj) for all r and j, and we have that (A(n)
1 , . . . , A

(n)
m ,b(n),I(n)),

(X(1)
j ), . . . , (X(m)

j ), are independent. Note that the dot in (7.1) is meant as
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a pointwise complex multiplication; hence (7.1) is a special case of recurrence
(6.3) with random variables being analytic functions. The maps corresponding
to T in (6.1) now have for some domain D̃ the form

T : P(H(D̃)) → P(H(D̃)) (7.2)

L(Z) 7→ L

(
m∑

r=1

A∗r · Z(r) + b∗

)
,

whereA∗1, . . . , A
∗
m, and b∗ are random analytic functions in D̃, we have L(Z(r)) =

L(Z) for r = 1, . . . ,m, and (A∗1, . . . , A
∗
m, b

∗), Z(1), . . . , Z(m) are independent.
We say that a random function Ξ(z) is locally bounded in Ls if the function

z 7→ E |Ξ(z)|s is locally bounded.
Then Theorem 6.1 implies the following theorem.

Theorem 7.1. Let 0 < s ≤ 2. Let (Xn) be as in (7.1) with Xn, A(n)
r , b(n)

being analytic functions of z ∈ D locally bounded in Ls. For 1 < s ≤ 2 assume
that EXn(z) = 0 for all n ≥ 0 and z ∈ D. Assume that A∗1, . . . , A

∗
m and b∗

are random analytic functions in D and that ∆ ⊆ D is a connected subset such
that for each x ∈ ∆ there exists a neighbourhood Ux ⊆ D of x and a number
s(x) ≤ s such that

sup
z∈Ux

E |A(n)
r (z)−A∗r(z)|s(x) → 0, sup

z∈Ux

E |b(n)(z)− b∗(z)|s(x) → 0, (7.3)

sup
z∈Ux

E |A∗r(z)|s(x) <∞, (7.4)

E
m∑

r=1

|A∗r(x)|s(x) < 1, (7.5)

sup
z∈Ux

E
[
1{I(n)

r ≤`}|A
(n)
r (z)|s(x)

]
→ 0, (7.6)

for all ` ∈ N and r = 1, . . . ,m. Then, there exists a domain D̃ ⊆ D with ∆ ⊆ D̃
and a random analytic function X in D̃ such that, as n→∞,

Xn
d−→ X in H(D̃), (7.7)

where L(X) is a fixed point of the map T from (7.2). Moreover, for each x ∈ ∆
there exists a neighbourhood Ũx such that E supz∈Ũx

|X(z)|s(x) < ∞, and if
s(x) > 1 also EX(z) = 0, z ∈ Ũx; L(X) is the only fixed point of T with
this property (even for a single x ∈ ∆, and even with the integrability condition
weakened to supz∈Ũx

E |X(z)|s(x) <∞).

Proof. We begin by showing that the assumptions hold locally uniformly in the
following sense: Each x ∈ ∆ has a neighbourhood U ′

x = B(x, %x) ⊆ D with
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%x > 0 such that

E sup
z∈U ′

x

|A(n)
r (z)−A∗r(z)|s(x) → 0, E sup

z∈U ′
x

|b(n)(z)− b∗(z)|s(x) → 0, (7.8)

E
m∑

r=1

sup
z∈U ′

x

|A∗r(z)|s(x) < 1, (7.9)

E

[
1{I(n)

r ≤`} sup
z∈U ′

x

|A(n)
r (z)|s(x)

]
→ 0. (7.10)

To show this, we use the following simple lemma:

Lemma 7.1. If Ψ is a random analytic function in a disc B(w, r), then for
some constant C > 0 and every s > 0,

E sup
z∈B(w,r/2)

|Ψ(z)|s ≤ C sup
z∈B(w,r)

E |Ψ(z)|s.

Proof. Let γ be the circle |z − w| = 3r/4, and let |γ| = 3πr/2 be its length.
Since |Ψ(z)|s is subharmonic, standard properties of the Poisson kernel yield

sup
z∈B(w,r/2)

|Ψ(z)|s ≤ C|γ|−1

∫
γ

|Ψ(z)|s dz.

Taking expectations on both sides implies the assertion.

Now, by assumption, for every x ∈ ∆ there exists a disc B(x, %x) such that
(7.3) holds uniformly in B(x, %x). Lemma 7.1 now shows that (7.8) holds with
U ′

x = B(x, %x/2). Similarly, (7.6) and Lemma 7.1 applied to 1{I(n)
r ≤`}A

(n)
r yield

(7.10). For (7.9) we note first that (7.4) and Lemma 7.1 imply that, for each
r = 1, . . . ,m,

E sup
z∈B(x,%x)

|A∗r(z)|s(x) <∞

for a suitable %x > 0. Hence, dominated convergence shows that, as % ↓ 0, since
A∗r is continuous,

E sup
|z−x|≤%

|A∗r(z)|s(x) → E |A∗r(x)|s(x).

Summing over r = 1, . . . ,m and using (7.5), we see that (7.9) holds for some
U ′

x.
Consider now a disc U ′

x such that (7.8)–(7.10) hold. We may assume that
U ′

x ⊂ D. We let H be the Bergman space B(U ′
x) and regard (the restric-

tion of) Xn and b(n) as random elements of H, while A
(n)
r are regarded as

random pointwise multiplication operators f 7→ A
(n)
r · f . Clearly, ‖A(n)

r ‖op ≤
supz∈U ′

x
|A(n)

r (z)|. Note that Lemma 7.1 implies that E ‖Xn‖s <∞, E ‖b(n)‖s <

∞, and E ‖A(n)
r ‖s

op <∞.
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By (7.8)–(7.10), Theorem 6.1 applies in H (with s replaced by s(x)), and
shows that there exists a random analytic function Zx ∈ H = B(U ′

x) such that
Xn

d−→ Zx in B(U ′
x), and thus in H(U ′

x), with L(Zx) being the unique fixed-
point of T from (7.2), with D̃ = U ′

x, in Ps(x)(B(U ′
x)) for 0 < s(x) ≤ 1 and in

Ps(x),0(B(U ′
x)) for 1 < s(x) ≤ 2. The result now follows from Theorem 4.1 with

D̃ =
⋃

x∈∆ U
′
x. Note that the condition E ‖X‖s(x)

B(U ′
x) = E ‖Zx‖s(x)

B(U ′
x) < ∞ by

Hölder’s inequality implies

E
∫

U ′
x

|X(z)|s(x) dm(z) = E ‖X‖s(x)

Ls(x)(U ′
x)
≤ C(x) E ‖X‖s(x)

L2(U ′
x) <∞,

and the fact that |X(z)|s(x) is subharmonic implies that for any strictly smaller
disc U ′′

x ⊂ U ′
x we have supz∈U ′′

x
|X(z)|s(x) ≤ C ′(x)

∫
U ′

x
|X(z)|s(x) dm(z); hence

E sup
z∈U ′′

x

|X(z)|s(x) <∞ (7.11)

and thus
sup

z∈U ′′
x

E |X(z)|s(x) <∞. (7.12)

Conversely, (7.11) implies E ‖X‖s(x)
B(U ′′

x ) < ∞, and (7.12) implies (7.11) in a
smaller disc by Lemma 7.1, so any of these, together with EX(z) = 0 in a
neighbourhood of x when s(x) > 1, yields uniqueness of L(X|Ũx

) for some
neighbourhood Ũx, and thus of L(X).

Remark 7.1. Theorem 7.1 and its proof extend immediately to (finite-dimen-
sional) vector-valued functions Xn and b(n), and matrix-valued functions A(n)

r ;
condition (7.5) then becomes E

∑
r ‖A∗r(x)‖s

op < 1.

8 The Expected Profile

The purpose of this section is to discuss in detail the first (and second) moment
of the profile polynomialsWn(z) =

∑
k≥0Xn,kz

k and the expected value EXn,k.
We already know that for fixed z ∈ D1 (recall the definition of the set Ds in
Section 3) the expected profile polynomial EWn(z) behaves as E(z)nλ1(z)−1. In
order to get more precise results we need more information on λ1(z).

Lemma 8.1. Suppose that s > −t. Then Ds is an open domain in the complex
plane that contains the interval (F (s),∞) and λ1(z) is analytic in Ds.

Furthermore, if z ∈ Ds then all z′ ∈ C with |z′| = |z| and | arg(z′)| ≤ | arg(z)|
are contained in Ds, too. Moreover, the mapping ϕ 7→ <(λ1(|z|eiϕ)) is strictly
decreasing for 0 ≤ ϕ ≤ | arg(z)|; in particular <(λ1(z)) ≤ λ1(|z|) where equality
holds if and only if z is real and positive.
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Proof. Recall that λ1(z) is the root of F (λ) = z with largest real part. Further
note that F is a polynomial of degree d = (m−1)(t+1). For the sake of brevity
we will only discuss the case d > 2. The cases m = 2, t = 0 (where d = 1) and
m = 3, t = 0 resp. m = 2, t = 1 (where d = 2) can be treated separately (and
are in fact very easy).

We will first describe the “inverse map”. For this purpose we consider the
mapping

τ 7→ F (σ + iτ) (τ ∈ R),

for fixed σ > 0. Since F (σ − iτ) = F (σ + iτ) it is sufficient to consider τ ≥ 0.
By the definition (3.5), it is clear that the argument arg(F (σ + iτ)) and the
modulus |F (σ + iτ)| are strictly increasing functions for τ ≥ 0 and we have
limτ→∞ arg(F (σ + iτ)) = dπ/2. Hence, if d > 2 then there exists a unique
minimal τ0 = τ0(σ) > 0 with arg(F (σ + iτ0)) = π. Note that the mapping
σ 7→ |F (σ + iτ)| is also strictly increasing but the mapping σ 7→ arg(F (σ + iτ))
is strictly decreasing, for σ > 0 and fixed τ > 0. This implies that the curves
γ+

σ := {F (σ + iτ) : 0 ≤ τ ≤ τ0(σ)}, σ > 0, are all disjoint and that the
mapping σ 7→ τ0(σ) is strictly increasing. Further, the mapping σ 7→ τ0(σ) is
also continuous. It follows also that we can parametrize γ+

σ as {rσ(φ)eiφ : 0 ≤
φ ≤ π} for some strictly increasing continuous function rσ on [0, π].

The curve γσ := {F (σ + iτ) : −τ0(σ) ≤ τ ≤ τ0(σ)} = {rσ(|φ|)eiφ : −π ≤
φ ≤ π} is a simple closed curve that is the boundary of a compact set Kσ =
{reiφ : r ∈ [0, rσ(|φ|)), φ ∈ [−π, π]}, i.e., the union of γσ and its interior. Our
next goal is to show that Ds = C \ (Ks ∪ Ls), where Ls := (−∞, F (s+ iτ0(s))]
is a half-line. For this purpose consider the set

Zs := {λ ∈ C : <(λ) > s, −τ0(<(λ)) < =(λ) < τ0(<(λ))}.

Suppose that λ ∈ Zs. Then F (λ) ∈ γ<(λ) and thus F (λ) /∈ γs. Moreover,
F (λ) can be connected to ∞ by a path disjoint from γs (e.g., a piece of γ<(λ)

plus the half-line [F (<(λ)),∞)), and thus F (λ) belongs to the exterior of γs,
i.e. F (λ) /∈ Ks. Since λ ∈ Zs further implies | arg(F (λ))| < π, we also have
F (λ) /∈ Ls. Consequently, F : Zs → C \ (Ks ∪ Ls).

Since the curves γσ, σ > s, are disjoint and simple, F is injective on Zs.
Furthermore, to see that F maps Zs onto C \ (Ks ∪ Ls), suppose the contrary.
Since C \ (Ks ∪ Ls) is connected, then there would be some z ∈ C \ (Ks ∪ Ls)
such that z ∈ F (Zs) \ F (Zs). Thus there would exist a sequence λn ∈ Zs such
that F (λn) → z. This implies that the sequence (λn) is bounded, and there
thus exists a subsequence converging to some λ ∈ Zs. By continuity, F (λ) = z,
and since z /∈ F (Zs), this implies λ /∈ Zs and thus λ ∈ ∂Zs. But if λ ∈ ∂Zs,
then either F (λ) ∈ γs ⊂ Ks or =(λ) = ±τ0(<(λ)) and F (λ) ∈ Ls; both cases
contradict F (λ) = z ∈ C \ (Ks ∪ Ls). Consequently, F : Zs → C \ (Ks ∪ Ls) is
a bijection.

Now let z ∈ C \ (Ks ∪ Ls); we will show that z ∈ Ds. We have just shown
that then there exists θ ∈ Zs with F (θ) = z. By symmetry we can assume
that =(θ) ≥ 0. By the monotonicity properties of |F (σ + iτ)|, it follows that
|F (σ+iτ)| > |z| if σ ≥ <(θ) and |τ | > =(θ). Further, if σ ≥ <(θ) and |τ | ≤ =(θ)
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then σ + iτ ∈ Zs so F (σ + iτ) 6= F (θ) = z unless σ + iτ = θ. Hence, F (λ) = z
has no other root with <(λ) ≥ <(θ); moreover F ′(θ) 6= 0 (for example because
F is a bijection on Zs), and thus θ is a simple root of F (λ) = z. Consequently,
θ = λ1(z) and <(λ1(z)) > <(λ2(z)) which implies that z ∈ Ds.

Similarly, if θ = s + iτ ′ with |τ ′| ≤ τ0(s), then |F (σ + iτ)| > F (θ) if σ > s
and |τ | ≥ |τ ′|, while if σ > s and |τ | < |τ ′|, then | arg(F (σ+iτ))| < | arg(F (θ))|.
Hence, if σ > s and τ ∈ R, then F (σ + iτ) /∈ γs. Since the half-plane {σ + iτ :
σ > s} is connected, it is thus mapped by F into the exterior of γs, i.e. into
C \ Ks. Consequently, if z ∈ Ks, then F (λ) = z has no root with <λ > s,
and thus z /∈ Ds. Finally, if z ∈ Ls, then z = F (σ ± iτ0(σ)) for some σ ≥ s.
Thus, z ∈ γσ and the argument just given shows that F (θ) = z has no root
with <(θ) > σ. Hence, <(λ1(z)) = σ, but there are two such roots, σ ± iτ0(σ),
so <(λ1(z)) = <(λ2(z)) and z /∈ Ds.

We have shown that

Ds = C \ (Ks ∪ Ls) = {reiφ : r > rs(|φ|), −π < φ < π} (8.1)

and that the inverse mapping F−1 : C \ (Ks ∪ Ls) → Zs explicitly computes
λ1(z) = F−1(z) which is a simple root. Note, too, that λ1(z) (for z ∈ Ds)
is characterized by the property that it has smallest absolute imaginary part
among all solutions of F (λ) = z with <(λ) > s. By the implicit function
theorem λ1(z) is analytic in Ds.

Since F (s) is the only boundary point ofDs on the positive real line it follows
that Ds contains the interval (F (s),∞). (Alternatively, use (8.1).)

Finally, (8.1) and the fact that rs is strictly increasing on [0, π] imply that
if reiφ ∈ Ds and |φ′| < |φ| < π, then r > rs(|φ|) > rs(|φ′|) and reiφ

′ ∈ Ds

too. Moreover, if σ := <(λ1(reiφ)), then reiφ ∈ ∂Dσ = γσ ∪ Lσ, and thus
reiφ ∈ γσ. The same argument shows r = rσ(|φ|) > rσ(|φ′|) and reiφ

′ ∈ Dσ.
Hence, <(λ1(reiφ

′
)) > σ = <(λ1(reiφ)), and the final statement in the lemma

follows.

The next step is an extension of Lemma 3.1. Note that <(λ1(z)) is well
defined for all z ∈ C. (Estimates involving log n are only supposed to hold for
n ≥ 2.)

Lemma 8.2. Let Wn(z) =
∑

k≥0Xn,kz
k denote the (random) profile polyno-

mials.

(i) If K is a compact subset of D1 then there exists δ > 0 such that

EWn(z) = nλ1(z)−1
(
E(z) +O(n−δ)

)
(8.2)

uniformly for z ∈ K.

(ii) K is a compact subset of C then there exists D ≥ 0 such that

|EWn(z)| . nmax{<(λ1(z))−1,0}(log n)D (8.3)

uniformly for z ∈ K.
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Proof. The proof is a direct extension of the results of [9] applied to the recur-
rence relation (3.3). In particular, we have to take care of the uniformity in
z ∈ K. This can be done by a careful inspection of the proof in [9], see the
appendix.

With help of Lemma 8.2 we directly get bivariate asymptotic expansions for
EXn,k in a large range. It turns out that one has to solve the equation

βλ′1(β) = α. (8.4)

From (3.5) it follows that

βλ′1(β) = F (λ1(β))/F ′(λ1(β))

=
(

1
λ1(β) + t

+
1

λ1(β) + t+ 1
+ · · ·+ 1

λ1(β) + (t+ 1)m− 2

)−1

. (8.5)

Note that this formula also shows that the mapping β 7→ βλ′1(β) is strictly
increasing because λ1(β) is strictly increasing for β > 0. Moreover, λ1(β) in-
creases from −t to ∞ for 0 < β <∞, and it follows that βλ′1(β) increases from
0 to ∞. Hence (8.4) has a unique solution β(α) > 0 for every α > 0, with β(α)
strictly increasing. Since we have to assume that λ1 > 1, we note that (8.4) has
a proper solution with λ1(β) > 1, and thus β ∈ D1, if and only if

α > α0 :=
(

1
t+ 1

+
1

t+ 2
+ · · ·+ 1

(t+ 1)m− 1

)−1

.

Lemma 8.3. Suppose that α1, α2 with α0 < α1 < α2 < ∞ are given and let
β(α) be defined by β(α)λ′1(β(α)) = α. Then

EXn,k =
E(β(αn,k))nλ1(β(αn,k))−αn,k log(β(αn,k))−1√

2π(αn,k + β(αn,k)2λ′′1(β(αn,k))) log n

(
1 +O((log n)−1/2)

)
uniformly for αn,k = k/ log n ∈ [α1, α2] as n, k →∞.

Proof. By Cauchy’s formula we have

EXn,k =
1

2πi

∫
|z|=β

EWn(z)z−k−1 dz.

Note that EWn(z)z−k behaves as

EWn(z)z−k ∼ E(z)nλ1(z)−1z−k =
1
n
E(z)eλ1(z) log n−k log z. (8.6)

In order to evaluate the above Cauchy integral we use a standard saddle point
method. The saddle point of the function z 7→ λ1(z) log n − k log z is given by
z0 = β that satisfies βλ′1(β) = k/ log n, i.e. by β(k/ log n).
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By construction the real interval [β(α1), β(α2)] is contained in D1. Hence
there exists γ > 0 such that the set {z ∈ C : |z| ∈ [β(α1), β(α2)], | arg(z)| ≤ γ}
is contained in D1, too.

Set K = {z ∈ C : |z| ∈ [β(α1), β(α2)], γ ≤ | arg(z)| ≤ π}. Then by
Lemma 8.1 there exists η > 0 such that for all β ∈ [β(α1), β(α2)]

max
z∈K,|z|=β

max{<(λ1(z)), 1} ≤ λ1(β)− η.

(Uniformity follows from the continuity of λ1(z).) Hence, by Lemma 8.2∫
|z|=β, | arg(z)|≥γ

∣∣EWn(z)z−k−1
∣∣ dz . nλ1(β(α))−1−η/2−α log(β(α)),

where α = k/ log n and β = β(α). Thus, this part of the integral is negligible.
For the remaining integral (leading to the asymptotic leading term) we use

the substitution z = βeit (|t| ≤ γ) and the approximation

λ1(z) log n− k log z = (λ1(β)− α log β) log n

+
1
2
(
(λ′′1(β) + αβ−2) log n

)
(z − β)2

+O
(
log n |z − β|3

) (8.7)

to obtain the final form after standard saddle point algebra.

In what follows we will also need estimates for the second moments of Wn(z).

Lemma 8.4. For every compact set K ⊆ C we have

E |Wn(z)|2 = O
(
nmax{λ1(|z|2)−1, 2<(λ1(z))−2, 0}(log n)D′

)
(8.8)

uniformly for z ∈ K, where D′ ≥ 0 is an absolute constant.

Proof. We use (3.2) twice, for z and z, and obtain

|Wn(z)|2 d= |z|2
(
|W (1)

Vn,1
(z)|2 + · · ·+ |W (m)

Vn,m
(z)|2

)
+ |z|2

∑
i 6=j

W
(i)
Vn,i

(z)W (j)
Vn,j

(z)

+ 2(m− 1)<

 m∑
j=1

zW
(j)
Vn,j

(z)

+ (m− 1)2.

(8.9)

We take the expectation. By Lemma 8.2, |EWn(z)| = O
(
An(z)

)
, uniformly for

z ∈ K, where An(z) := nmax{<(λ1(z))−1,0}(log n)D (for some fixed D ≥ 0) for
n ≥ 2, and A0(z) := A2(z) := 1, say. Hence, for l < n, and uniformly in z ∈ K,

E
(
WVn,1(z) | Vn,1 = l

)
= O

(
Al(z)

)
= O

(
An(z)

)
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and thus

E
(
zWVn,1(z) | Vn,1 = l

)
= O

∣∣E(WVn,1(z) | Vn,1 = l
)∣∣ = O

(
An(z)

)
= O

(
An(z)2

)
.

Similarly, for l1 + l2 < n, and uniformly in z ∈ K,

E
(
WVn,1(z)WVn,2(z) | Vn,1 = l1, Vn,2 = l2

)
= O

(
Al1(z)Al2(z)

)
= O

(
An(z)2

)
.

Consequently, uniformly for x ∈ K, (8.9) yields, using (2.2),

E |Wn(z)|2 = m|z|2 E |WVn,1(z)|2 +O
(
An(z)2

)
= m|z|2

n−1∑
`=0

(
`
t

)(
n−`−1

(m−1)t+m−2

)(
n

mt+m−1

) E |W`(z)|2

+O
(
nmax{2<(λ1(z))−2,0}(log n)2D

)
.

(8.10)

This is an equation of the same type as (3.3), and we again can apply [9] and
obtain the stated estimate. As in the proof of Lemma 8.2, an inspection of [9]
shows that the estimate holds uniformly in z, see the appendix for details.

Remark 8.1. A special case of this result for m = 2 and t = 0 has been proved
in [4]. In this case we have λ1(z) = 2z and we obtain (for some D ≥ 0; in fact
D = 2 will do for all z, and D = 1 or 0 will do for all z 6= 1/2)

E |Wn(z)|2 . nmax{4<z−2,0}(log n)D (|z − 1| ≤ 1/
√

2)

and
E |Wn(z)|2 . nmax{2|z|2−1,0}(log n)D (|z − 1| ≥ 1/

√
2).

Remark 8.2. The method of Lemma 8.4 can be used for many other functionals
of Wn(z). For example, the expected derivative EW ′

n(z) satisfies the recurrence

EW ′
n(z) = mz

n−1∑
`=0

(
`
t

)(
n−`−1

(m−1)t+m−2

)(
n

mt+m−1

) EW ′
`(z) +m

n−1∑
`=0

(
`
t

)(
n−`−1

(m−1)t+m−2

)(
n

mt+m−1

) EW`(z).

For simplicity let z ∈ D1 be real and non-negative. Then from

m
n−1∑
`=0

(
`
t

)(
n−`−1

(m−1)t+m−2

)(
n

mt+m−1

) EW`(z) =
1
z

(EWn(z)− (m− 1)) = O(nλ1(z)−1)

and from an application of [9] we get

EW ′
n(z) = O(nλ1(z)−1 log n).

(This also follows from (8.2) by Cauchy’s estimates.)

We close this section with a proof that the sets I and I ′ (that are defined in
Theorem 1.1) are in fact intervals.
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Lemma 8.5. Let I := {β > 0 : 1 < λ1(β2) < 2λ1(β) − 1} and I ′ := {βλ′1(β) :
β ∈ I}. Then I and I ′ are open intervals that are contained in the positive real
line, more precisely, 1 ∈ I ⊆ ( 1

m , β(α+)) and αmax ∈ I ′ ⊆ (α0, α+).

Proof. Since λ1(z) is increasing for z > 0 it is clear that I1 := {β > 0 : 1 <
λ1(β2)} is an interval. We show that I2 := {β > 0 : λ1(β2) < 2λ1(β)− 1} is an
interval, too; this implies that I = I1 ∩ I2 is an interval.

Suppose that β > 0 and that λ = λ1(β) with λ1(β2) = 2λ1(β) − 1. Then
F (2λ− 1) = F (λ1(β2)) = β2 = F (λ)2. However, for λ > −(t− 1)/2 we have

d

dλ

(
logF (2λ− 1)− 2 logF (λ)

)
=

mt+m−2∑
i=t

(
2

2λ− 1 + i
− 2
λ+ i

)
which is > 0 for λ < 1 and < 0 for λ > 1. Thus, q(λ) := F (2λ − 1)/F (λ)2 is
strictly increasing on [(1 − t)/2, 1] and strictly decreasing on [1,∞); moreover
q((1−t)/2) = 0, q(1) = 1/F (1) = m > 1 and q(λ) → 0 as λ→∞. Consequently
there are exactly two roots λ∗1 < λ∗2 in [(1− t)/2,∞) to F (2λ− 1) = F (λ)2, and
two roots β∗j = F (λ∗j ) > 0 to λ1(β2) = 2λ1(β) − 1. (Note that 2λ1(β) − 1 =
λ1(β2) > −t implies λ1(β) > (1 − t)/2.) Since λ1(1) = 2 it is easily seen that
λ1(β2) < 2λ1(β)− 1 (for β > 0) if and only if β∗1 < β < β∗2 .

Set I = (β, β). Since λ(1) = 2 we surely have 1 ∈ I. Next note that β = 1
m

corresponds to λ1(β) = 1. Thus, λ1(1/m2) < λ1(1/m) = 1 which implies that
1
m < β.

In order to prove β+ := β(α+) > β it suffices to show that λ1(β2
+) >

2λ1(β+)− 1 or equivalently F (2λ1(β+)− 1) < F (λ1(β+))2 (since F (λ1(β+))2 =
β2

+ = F (λ1(β2
+))). First, by definition

logF (λ1(β+)) = (λ1(β+)− 1)
mt+m−2∑

i=t

1
λ1(β+) + i

.

Moreover, with S+ :=
∑mt+m−2

i=t (λ1(β+) + i)−1, it follows by an convexity ar-
gument (compare with [5, Lemma 3.2]) that, for every λ ≥ 1,

logF (λ) ≤ (λ− 1)S+,

with equality only for λ = λ1(β+). Consequently,

logF (2λ1(β+)− 1) < (2λ1(β+)− 2)S+ = 2 logF (λ1(β+)).

Thus, we have F (2λ1(β+)− 1) < F (λ1(β+))2 and consequently β(α+) > β.
Finally, since the mapping β 7→ βλ′1(β) is strictly increasing by (8.5) and

continuous it also follows that I ′ is an interval (that is contained in (α0, α+)).

Remark 8.3. In Theorem 11.1 we consider the set J = {β > 0 : λ1(β2) <
2λ1(β) − 1} instead of I. This equals I2 in the proof above, so J too is an
open interval. Futhermore, a slight extension of the above proof shows that
J ⊂ (β(α−), β(α+)); the proof shows β+ > supJ , and β− := β(α−) < inf J can
be shown in exactly the same way.
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9 Proof of Theorem 1.2

In this section we prove Theorem 1.2.

Proof. The sequence of random analytic functions (Wn) in Theorem 1.2 satisfies
the recurrence (3.2). Hence, for

Xn(z) :=
Wn(z)− EWn(z)

EWn(z)
=

Wn(z)
EWn(z)

− 1

we obtain, with Gn(z) := EWn(z), that

Xn(z) d=
m∑

r=1

z
GVn,r

(z)
Gn(z)

X
(r)
Vn,r

+
1

Gn(z)

(
m− 1−Gn(z) + z

m∑
r=1

GVn,r
(z)

)
.

Hence, we have

Xn
d=

m∑
r=1

A(n)
r ·X(r)

I
(n)
r

+ b(n),

with I(n)
r = Vn,r, A

(n)
r = zGVn,r

(z)/Gn(z),

b(n) =
1

Gn(z)

(
m− 1−Gn(z) + z

m∑
r=1

GVn,r
(z)

)
,

and conditions as in (7.1). We will see below that the sequence (Xn) of random
analytic functions satisfies the conditions of Theorem 7.1 for all 1 < s ≤ 2 with
D = {z ∈ D1 : E(z) 6= 0},

A∗r(z) = zV λ1(z)−1
r , b∗ = z

m∑
r=1

V λ1(z)−1
r − 1,

for r = 1, . . . ,m, and ∆ = (1/m, β(α+)).
Then, Theorem 7.1 implies Xn

d−→ X in H(D̃), where D̃ is a complex
neighbourhood of the real interval (1/m, β(α+)) and L(X) is the fixed-point of
T defined in (7.2), with the integrability condition in Theorem 7.1. Recall that
for x ∈ (1/m, β(α+)) we have λ1(x) > 1 and note that this convergence implies
the assertion since Wn(z)/EWn(z) = Xn + 1; hence we have that

Wn(z)
EWn(z)

d−→ Y (z) = X(z) + 1 in H(D̃),

where

Y
d=

m∑
r=1

zV λ1(z)−1
r · Y (r),

with conditions as in (7.2), which is (3.7). The integrability condition on X
is obviously equivalent to the same condition for Y , and since, as we shall see
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below, we may take s(x) > 1 arbitrarily close to 1, the condition is equivalent
to the existence for each x ∈ I of some s(x) > 1 such that E |Y (z)|s(x) is finite
and bounded in a neighbourhood of x, as asserted in Section 1.

It remains to verify conditions (7.3)–(7.6). Using Lemma 8.2 we obtain,
uniformly in each compact subset of D,

A(n)
r = z

GVn,r (z)
Gn(z)

= z
V

λ1(z)−1
n,r (E(z) +O(V −δ

n,r ))
nλ1(z)−1(E(z) +O(n−δ))

= z

(
Vn,r

n

)λ1(z)−1 (
1 +O(V −δ

n,r )
)
.

(Vn,r may equal 0 but that is no problem; the cautious reader may write (1 +
Vn,r)−δ above.)

We have Vn,r/n
d−→ Vr by (3.6), and thus we may by a suitable coupling

assume Vn,r/n → Vr a.s. (see also Remark 3.1). Since these random variables
are bounded by 1, and <λ1(z) − 1 > 0 in D, dominated convergence yields
A

(n)
r (z) → A∗r(z) in Ls for any s > 0. This also implies that b(n)(z) → b∗(z) in

Ls; moreover, these Ls convergences are uniform in any compact subset ofD and
arbitrary s > 1. This establishes condition (7.3). For bounded neighbourhoods
Ux and arbitrary 1 < s(x) ≤ 2 we have that |A∗r(z)|s(x) is uniformly bounded in
z ∈ Ux. This implies conditions (7.4) and (7.6), since we have P(I(n)

r ≤ `) → 0
for all ` ∈ N as I(n)

r /n→ Vr and P(Vr = 0) = 0.
For condition (7.5) note that Vr has the Beta(t+1, (m−1)(t+1)) distribution.

This implies that for α > 0 we have

EV α
r =

Γ(t+ α+ 1)((t+ 1)m− 1)!
t! Γ(m(t+ 1) + α)

=
1

mF (α+ 1)
,

with F given in (3.5). Let x ∈ ∆ = (1/m, β(α+)). We have

m∑
r=1

E |A∗j (x)|s =
xs

F (sλ1(x)− s+ 1)
=: gx(s).

We have gx(1) = 1. Thus the existence of an s(x) ∈ (1, s) with (7.5) follows from
g′x(1) < 0. To verify a negative derivative we consider hx(s) := − log(gx(s)) =
log(F (s(λ1(x)− 1) + 1)− s log x. Then we have

h′x(1) = (λ1(x)− 1)
F ′

F
(λ1(x))− log x

=
mt+m−2∑

i=t

λ1(x)− 1
λ1(x) + i

− log x.

From log x = log(F (λ1(x))) and (1.4) we obtain that the only zeros of h′x(1) are
at x = F (λ−) = β(α−) and x = F (λ+) = β(α+). For x = 1 we obtain with
λ1(1) = 2 that h′1(1) > 0, thus by continuity of x 7→ h′x(1) we obtain h′x(1) > 0
for all β(α−) < x < β(α+).
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Thus, for all β(α−) < x < β(α+) there exists s(x) ∈ (1, s) such that
gx(s(x)) < 1. In particular, this shows (7.5). We have verified the conditions of
Theorem 7.1, and the proof is complete.

10 Reduction to the Profile

We now come back to the original problem. We know (Theorem 1.2) that the
profile polynomials Wn(z) satisfy a functional limit theorem

(Wn(z)/EWn(z), z ∈ B) d−→ (Y (z), z ∈ B) (10.1)

for some open domain B ⊆ C including the open interval (1/m, β(α+)) ⊆ R and
(Y (z), z ∈ B) is the process (of random analytic functions) that satisfies the
stochastic fixed point equation (3.7) with EY (z) = 1 and a certain integrability
condition.

The idea is now to reconstruct Xn,k from the limit relation (10.1). In par-
ticular we want to show that(

Xn,bα log nc

EXn,bα log nc
, α ∈ I ′

)
d−→ (Y (β(α)), α ∈ I ′) , (10.2)

where I ′ (defined in Theorem 1.1) has the property that all β = β(α) (for α ∈ I ′)
satisfy 1 < λ1(β2) < 2λ1(β)− 1.

We use the Cauchy formula and split it into two parts. More precisely, we fix
a compact interval Ic ⊆ (1/m, β(α+)) and a small ϕ > 0 such that the compact
set B1 := {z ∈ C : |z| ∈ Ic, | arg(z)| ≤ ϕ} is contained in B. Let further
I ′c = {βλ′1(β) : β ∈ Ic} and B2 := {z ∈ C : |z| ∈ Ic, ϕ < | arg(z)| ≤ π}.

We write for α ∈ I ′c, so that β(α) ∈ Ic,

Xn,bα log nc =
1

2πi

∫
|z|=β(α), z∈B1

Wn(z)z−bα log nc−1 dz

+
1

2πi

∫
|z|=β(α), z∈B2

Wn(z)z−bα log nc−1 dz.

(10.3)

We study the two integrals separately. For the first part we define linear opera-
tors Tn, mapping the space C(B1) of continuous functions on B1 into the space
D(I ′c) of right-continuous functions with left limits on I ′c, by

Tn(G)(α) =

1
2πi

∫
|z|=β(α), z∈B1

G(z) EWn(z)z−bα log nc−1 dz

EXn,bα log nc
, α ∈ I ′c. (10.4)

Note that if we take G(z) = Wn(z)/EWn(z), the numerator in (10.4) equals the
first term on the right hand side of (10.3). The second term will be shown to
be small and thus Tn(Wn(z)/EWn(z)) is an approximation to(

Xn,bα log nc/EXn,bα log nc, α ∈ I ′c
)
.
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We begin by studying Tn in Lemma 10.1. We will then in Lemma 10.2
show that the second term of (10.3) is sufficiently small to be neglected, and
Theorem 1.1 will follow.

We will use the supremum norm, for convenience we write any set E,

‖f‖E := sup
E
|f |.

Lemma 10.1.

(i) The operators Tn are uniformly continuous with respect to the supremum
norm. More precisely there exists a constant C > 0 (depending on Ic and
B1) such that

‖Tn(F )− Tn(G)‖I′c ≤ C · ‖F −G‖B1 .

(ii) If Fn → F uniformly on B1, then Tn(Fn) → F uniformly on I ′c.

Proof. (i) Suppose that ‖F −G‖B1 ≤ δ and that α ∈ I ′c. Then

|Tn(F )(α)−Tn(G)(α)| ≤ δ

EXn,bα log nc

1
2π

∫
|z|=β(α),z∈B1

∣∣∣EWn(z)z−bα log nc−1
∣∣∣ |dz|.

(10.5)
Suppose first that k = α log n is an integer. Lemma 8.3 yields an estimate of
EXn,k and its proof, in particular (8.6) and (8.7), yields an estimate of the same
order for the integral in (10.5). Hence, (10.5) implies

|Tn(F )(α)− Tn(G)(α)| ≤ C δ (10.6)

for some C, uniformly in α ∈ I ′c such that α log n is an integer.
For general α, we define α′ = bα log nc/ log n and note that |α′ − α| ≤

1/ log n, so |β(α′) − β(α)| = O(1/ log n). It is easily checked that if we replace
α′ by α in the estimate of Xn,k in Lemma 8.3, the result will change by at most
a factor nO(1/ log n) = eO(1). It follows that

EXn,bα log nc & (log n)−
1
2nλ1(β(α))−α log β(α)−1, (10.7)

and that (10.6) holds uniformly in all α ∈ I ′c, possibly with a larger constant.
For (ii), let F ∈ C(B1). By using standard saddle point techniques as in the

proof of Lemma 8.3, we have

lim
n→∞

1
EXn,bα log nc

1
2πi

∫
|z|=β(α), z∈B1

F (z) EWn(z)z−bα log nc−1 dz = F (β(α)),

that is, Tn(F ) → F , uniformly on I ′c. Finally, if Fn → F uniformly on B1, then
Tn(Fn) − Tn(F ) → 0, by (i), and consequently Tn(Fn) → F uniformly on I ′c.
This completes the proof of the lemma.
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Next we focus on the error

Xn,bα log nc

EXn,bα log nc
− Tn

(
Wn(z)

EWn(z)

)
=

1
2πi

∫
|z|=β(α), z∈B2

Wn(z)z−bα log nc−1 dz

EXn,bα log nc
,

(10.8)
where we recall that B2 = {z ∈ C : |z| ∈ Ic, ϕ < | arg(z)| ≤ π}.

Lemma 10.2. For every compact interval Ic contained in I = {β > 0 : 1 <
λ1(β2) < 2λ1(β)− 1},

sup
α∈I′c

∣∣∣∣∣
1
2π

∫
|z|=β(α),z∈B2

Wn(z)z−bα log nc−1 dz

EXn,bα log nc

∣∣∣∣∣ p−→ 0

as n→∞.

Proof. Let

Gn,α(z) :=

∣∣Wn(z)z−bα log nc
∣∣

EXn,bα log nc
.

If we further define

Hn(z) :=
Wn(z)
nλ1(|z|)−1

, (10.9)

it follows from (10.7) that, uniformly for α ∈ I ′c and z ∈ B2 with |z| = β(α),

Gn,α(z) . |Hn(z)| (log n)1/2. (10.10)

Let z ∈ B2 and let δn = 1/ log n. Since Wn is analytic,

|Wn(z)|2 ≤ 1
πδ2n

∫
|w−z|<δn

|Wn(z)|2 dm(w), (10.11)

where m is the two-dimensional Lebesgue measure.
Further, if |w − z| < δn, then nλ1(|z|)−1 and nλ1(|w|)−1 differ by at most a

constant factor. Hence,

|Hn(z)|2 . (log n)2
∫

|w−z|<δn

|Hn(z)|2 dm(w). (10.12)

Fix δ > 0 – we will be more precise in a moment – and let Bδ
2 = {w :

dist(w,B2) ≤ δ}. Then, by (10.12), if n is so large that δn < δ,

sup
z∈B2

|Hn(z)|2 . (log n)2
∫

Bδ
2

|Hn(z)|2 dm(z). (10.13)

We now use Lemma 8.4. By Lemma 8.1 and the assumption Ic ⊂ I,

max
(
λ1(|z|2)− 1, 2<(λ1(z))− 2, 0

)
< 2λ1(|z|)− 2
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on B2. By continuity this holds on Bδ
2 , too, if δ > 0 is small enough, and by

Lemma 8.4 and compactness there exists η > 0 such that

E |Wn(z)|2 . n2λ1(|z|)−2−η

uniformly for z ∈ Bδ
2 , and thus by (10.9)

E |Hn(z)|2 . n−η

and by (10.13)

E
(

sup
z∈B2

|Hn(z)|2
)

. (log n)2
∫

Bδ
2

E |Hn(z)|2 dm(z) . (log n)2 n−η.

Hence, sup
z∈B2

log n|Hn(z)| p−→ 0 and the result follows by (10.10).

Proof of Theorem 1.1. By Theorem 1.2, Wn(z)/EWn(z) d−→ Y in H(B), and
thus for every compact subset Bc in the space C(Bc) with the uniform topology.
Hence, Lemma 10.1.(ii) and [2, Theorem 5.5] show that

Tn(Wn/EWn) d−→ Y in D(I ′c).

Finally, Lemma 10.2 and (10.8) show that, provided Ic ⊂ I,

Xn,bα log nc

EXn,bα log nc
− Tn

(
Wn(z)

EWn(z)

)
p−→ 0

uniformly on I ′c. The theorem follows.

Remark 10.1. The reason that we have to restrict ourselves to the interval I ′

(and cannot extend our result to a larger interval, compare with the discussion
of the critical values in Section 1) is that we use an L2-estimate for |Wn(z)| in
the proof of Lemma 10.2 that only works if α ∈ I ′. In fact, I ′ is the largest
interval, where we have L2-convergence to the process Y (z).

However, it is very likely that one can prove similar estimates for E |Wn(z)|p
for any p > 1, and that our method of proof, using the version of (10.11) for pth
powers, then would prove Theorem 1.1 for the largest possible interval (α0, α+).

11 The External Profile

In this final section we will discuss a variation of Theorem 1.1 dealing with a
similarly defined profile process.

The external profile Yn,k denotes the number of free positions at level k in
a tree with n keys. A free position is a position where the (n+ 1)st key can be
put, for example Y0,0 = m− 1 and Y0,k = 0 for k ≥ 1. More precisely, we have

Yn,k
d= Y

(1)
Vn,1,k−1 + Y

(2)
Vn,2,k−1 + · · ·+ Y

(m)
Vn,m,k−1, (11.1)
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jointly in k ≥ 0 for every n ≥ m−1, where the random vector Vn = (Vn,1, Vn,2,

. . . , Vn,m) is as in Section 2 and is the same for every k ≥ 0, and Y(j)
n =

(Y (j)
n,k)k≥0, j = 1, . . . ,m, are independent copies of Yn that are also independent

of Vn. The initial conditions are Yn,0 = 0 for n ≥ m − 1, and for n ≤ m − 2
we simply have Yn,0 = m − 1 − n for 0 ≤ n ≤ m − 2 and Yn,k = 0 for k ≥ 1.
However, we want to mention that the initial conditions for Y0,0, Y1,0, . . . , Ym−2,0

only effect implicit constants in our analysis. The limit theorem (Theorem 11.1)
is not effected. For example, one can also use Yn,0 = 1 for 0 ≤ n ≤ m − 2 in
oder to count the number of nodes where one can put a new item.

Let Un(z) =
∑

k Yn,kz
k denote the random external profile polynomial. By

(11.1) it is recursively given by Un(z) = m− 1− n for 0 ≤ n ≤ m− 2 and

Un(z) d= zU
(1)
Vn,1

(z) + zU
(2)
Vn,2

(z) + · · ·+ zU
(m)
Vn,m

(z), n ≥ m− 1, (11.2)

where U (j)
` (z), j = 1, . . . ,m, are independent copies of U`(z) that are indepen-

dent of Vn, ` ≥ 0. From this relation we obtain (similarly to the above) a
recurrence for the expected external profile polynomial EUn(z). We have, using
(2.2), for n ≥ mt+m− 1,

EUn(z) = mz
n−1∑
`=0

(
`
t

)(
n−`−1

(m−1)t+m−2

)(
n

mt+m−1

) EU`(z). (11.3)

By [9, Theorem 1(i)] we get as above

EUn(z) ∼ E(z)nλ1(z)−1, (11.4)

for some analytic function E(z) with E(z) > 0 for z > 0. Moreover, this limit
relation is true for all z ∈ D−t and not only for z ∈ D1 as we will see in a
moment. Since D1 ⊂ D−t we can expect that corresponding limit theorems
hold for a larger range.

The fact that (11.4) holds for z ∈ D−t needs some explanation. If we just use
[9, Theorem 1(i)] then one gets the impression that z ∈ D0 is the largest region
for (11.4) since [9, Theorem 1(i)] assumes that <(λ1(z)) > 0. Furthermore the
indicial polynomial Λ(λ; z) has always the roots 0,−1,−2, . . . ,−t+1, that is, if
<(λ1(z)) ≤ 0 then the dominant root of Λ(λ; z) is always 0.

However, the contribution a simple root λ(z) of Λ(λ; z) to the behaviour of
EUn(z) is of the form c(z)(−1)n

(−λ(z)
n

)
. This implies that the roots 0,−1,−2, . . .,

−t+ 1, provided they are simple, only matter for n < t, that is, they do not af-
fect the asymptotics of EUn(z). Hence, if λ1(z), the dominant root of F (θ) = z,
is different from 0,−1,−2, . . . ,−t+ 1 then (11.4) is also true. Further, by The-
orem A.1 (11.4) holds uniformly for any compact set contained in D−t with
λ1(z) 6∈ {0,−1,−2, . . . ,−t+ 1}.

Nevertheless, a little bit more careful analysis reveals that the exceptional
values 0,−1,−2, . . . ,−t + 1 are only present in the analysis but not in the
asymptotic result. The limit relation (11.4) extends continuously to all z ∈ D−t.
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For example, if t ≥ 1 and λ1(z) is close to zero then it follows that the power
series of EUn(z) can be represented as (compare to the Appendix)∑

n≥0

EUn(z) ζn = Γ(λ1(z))E(z)
(

1
(1− ζ)λ1(z)

− 1
)

+ smaller order terms.

(11.5)
Further, if λ1(z0) = 0 then Λ(λ; z) has a double zero and we have∑

n≥0

EUn(z0) ζn = E(z0) log
1

1− ζ
+ smaller order terms. (11.6)

Note that (11.5) and (11.6) are consistent for z → z0 and they imply that we
also have (11.4) uniformly in a neighborhood of z = z0. Similar phenomena
appear if λ1(z) is close to −1,−2, . . . ,−t+ 1.

It can also be shown, using (an analytic extension of) the formula in [9,
Theorem 1(i)] as for E(z) in Lemma 3.1, that E(z) > 0 if z > 0 is real.

The expected external profile EYn,k is, thus, given by the following asymp-
totic formula which can be proved exactly as Lemma 8.3.

Lemma 11.1. Suppose that α1, α2 with 0 < α1 < α2 < ∞ are given and let
β(α) be defined by β(α)λ′1(β(α)) = α. Then

EYn,k =
E(β(αn,k))nλ1(β(αn,k))−αn,k log(β(αn,k))−1√

2π(αn,k + β(αn,k)2λ′′1(β(αn,k))) log n

(
1 +O((log n)−1/2)

)
uniformly for αn,k = k/ log n ∈ [α1, α2] as n, k →∞.

Hence we can proceed as above and obtain the following variation of Theo-
rem 1.1, with some minor differences in the proofs. (For example, we use that
E(1 + Vn,r)a = O(na) for any a > −t − 1; we omit the verification of this
estimate.)

Theorem 11.1. Let m ≥ 2 and t ≥ 0 be given integers and let (Yn,k)k≥0 be the
external profile of the corresponding random search tree with n keys.

Set J = {β > 0 : λ1(β2) < 2λ1(β) − 1} and J ′ = {βλ′1(β) : β ∈ J}. Then
we have (

Yn,bα log nc

EYn,bα log nc
, α ∈ J ′

)
d−→ (Y (β(α)), α ∈ J ′) , (11.7)

where Y (z) is as in Theorem 1.1.

The difference between Theorems 1.1 and 11.1 is that Theorem 11.1 is true
for a larger range for k/ log n since I ′ ⊂ J ′. The reason is that the internal profile
Xn,k has a phase transition at level α0 that is not present for the external profile
(compare with the discussion of critical constant in the introduction).

Further note that we can also deal with the process Rn,k := (m−1)mk−Xn,k

that can be approximated by Y (z) in the range α ∈ (0, α0) ∩ J ′. (We do not
work out the details here.)
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We close this section with a vector valued generalization of Theorem 1.1. As
we know from the introduction, a node in an m-ary search tree stores one or
several of the keys up to at most m− 1. This means that we can partition the
nodes into types. We say that a node has type j (j ∈ {1, 2, . . . ,m − 1}) if it
stores exactly j keys. Further we can also extend this definition to j = 0 if we
define nodes of type 0 to be external nodes.

Now, let X(j)
n,k denote the number of nodes of type j at level k in a random

m-ary search tree with n keys. Here we can prove the following theorem.

Theorem 11.2. Let m ≥ 2 and t ≥ 0 be given integers and let (X(0)
n,k, . . . , X

(m−1)
n,k ),

k ≥ 0, be the random profile vector of the random search tree with n keys.
Set I = {β > 0 : 1 < λ1(β2) < 2λ1(β)− 1} and I ′ = {βλ1(β) : β ∈ I}. Then

we have X
(0)
n,bα log nc

EX(0)
n,bα log nc

, . . . ,
X

(m−1)
n,bα log nc

EX(m−1)
n,bα log nc

; α ∈ I ′


d−→ (Y (β(α)), . . . , Y (β(α));α ∈ I ′) . (11.8)

We do not work out the details but the same proof techniques as for the
proof of Theorem 1.1 work here, too, using Remark 7.1. We obtain convergence
to a vector (Yi(z))m−1

i=0 satisfying

(Yi(z))i
d=
(
zV

λ1(z)−1
1 Y

(1)
i (z) + zV

λ1(z)−1
2 Y

(2)
i (z) · · ·+ zV λ1(z)−1

m Y
(m)
i (z)

)
i
,

where (Y (j)
i (z))i, 1 ≤ j ≤ m, are independent copies of (Yi(z))i, and this

equation is solved by Y0(z) = · · · = Ym−1(z) = Y (z). It follows that the profiles
X

(i)
n,k, 0 ≤ i ≤ m− 1, are asymptotically proportional.

Note that (11.8) is a functional limit result; hence joint convergence for
several different arguments α follows; in particular, we obtain limits for vectors(
X

(0)
n,bα0 log nc, . . . , X

(m−1)
n,bαm−1 log nc

)
with fixed α0, . . . , αm−1.

We just want to mention that Theorem 1.1 follows directly from Theo-
rem 11.2, since

Xn,k = X
(1)
n,k + 2X(2)

n,k + · · ·+ (m− 1)X(m−1)
n,k .

A Appendix: Detailed proof of Lemmas 8.2 and
8.4

In Lemmas 8.2 and 8.4 we used results by Chern, Hwang and Tsai [9], where
we claimed uniformity in z (in certain compact sets). This uniformity can be
verified by a tedious checking of the proofs in [9] (Hwang, personal communi-
cation) but for completeness we give a detailed proof here. See also Chern and
Hwang [8] for the case m = 2.
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Fortunately, we are in the situation where the relevant generating functions
can be analytically continued outside the unit disc so that the singularity analy-
sis of Flajolet and Odlyzko [13], see also Flajolet and Sedgewick [14, Chapter 6]
applies. As pointed out in [9, p. 197], this simplifies the arguments considerably,
so we consider only this case.

We introduce the generating function Ψ(ζ; z) :=
∑

n≥0 EWn(z)ζn. Let
Λ(θ; z) be the polynomial (in θ) of degree r := mt+m− 1 defined in (3.4) and
let ϑ denote the differential operator (1 − ζ) d

dζ . Let further bn(z) := EWn(z)
for n < r and bn(z) := m − 1 for n ≥ r, and define the generating function
g(ζ; z) :=

∑
n≥0 bn(z)ζn. Then, as is shown in [9], (3.3) is equivalent to the

differential equation (in ζ, with z fixed)

Λ(ϑ; z)Ψ(ζ; z) = φ(ζ; z) := (1− ζ)r ∂
r

∂ζr
g(ζ; z). (A.1)

Note that g(ζ; z), for every z, differs from (m− 1)(1− ζ)−1 by a polynomial in
ζ of degree less than r; hence

φ(ζ; z) := (m− 1)(1− ζ)r ∂
r

∂ζr
(1− ζ)−1 = (m− 1)r! (1− ζ)−1. (A.2)

We study solutions to (A.1) in some generality, and state a theorem where Λ
and φ can be rather arbitrary polynomials and analytic functions, respectively,
depending on a parameter z. (The parameter set K can be any set, although
we only need subsets of the complex plane for the present paper.)

A ∆-domain is a domain of the type

∆(R, δ) := {z ∈ C : |z| < R and | arg(z − 1)| > π/2− δ}

for some R > 1 and δ ∈ (0, π/2).

Theorem A.1. Let r ≥ 1 and let for each z ∈ K, Λz(θ) be a monic polynomial
in θ of degree r, with coefficients that are bounded functions of z. Moreover,
let φz(ζ) be an analytic function of ζ in the unit disc for every z ∈ K, and let
Ψz(ζ) be a formal power series that solves the differential equation

Λz(ϑ)Ψz(ζ) = φz(ζ). (A.3)

We denote the roots of Λz(λ) = 0 (counted with multiplicities) by λj(z), j =
1, . . . , r, arranged in decreasing order of the real parts: <λ1(z) ≥ <λ2(z) ≥ . . . .

(i) Assume that, for each z ∈ K, φz(ζ) extends to an analytic function in a
fixed ∆-domain ∆ = ∆(R, δ), and that for some constants α ∈ (−∞,∞),
d ≥ 0 and η ∈ (0, 1/2), uniformly in all z ∈ K and ζ ∈ ∆,

φz(ζ) =

{
O(1), |1− ζ| ≥ η,

O
(
|1− ζ|−α

∣∣log |1− ζ|
∣∣d), |1− ζ| ≤ η,

(A.4)
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and that, again uniformly in z ∈ K,

∂k

∂ζk
Ψz(0) = O(1), k = 0, . . . , r − 1. (A.5)

Then, each Ψz(ζ) converges in the unit disc and extends to an analytic
function in ∆ such that, uniformly in all z ∈ K and ζ ∈ ∆,

Ψz(ζ) =

{
O(1), |1− ζ| ≥ η,

O
(
|1− ζ|−(α∨<λ1(z))

∣∣log |1− ζ|
∣∣d+r

)
, |1− ζ| ≤ η.

(ii) Assume further that ε > ε1 > 0 and that, for all z ∈ K, <λ2(z) ≤
<λ1(z) − ε and α ≤ <λ1(z) − ε. (The first assumption is void if r = 1.)
Then, for some function c(z), uniformly in all z ∈ K and ζ ∈ ∆,

Ψz(ζ) = c(z)(1− ζ)−λ1(z) +O
(
|1− ζ|ε1−<λ1(z)

)
.

In particular, this holds for some ε1 > 0 if K is a compact topological
space, the coefficients of Λz are continuous functions of z, and <λ1(z) >
<λ2(z) and <λ1(z) > α for each z ∈ K.

Proof. We have Λz(ϑ) =
∏r

i=1(ϑ − λ1(z)). The roots λi(z) are not always
continuous functions of the coefficients of Λz (because of ambiguity in labelling
the roots), but maxi |λi(z)| is, and since the coefficients are bounded it follows
that sup{|λi(z)| : z ∈ K, i = 1, . . . , r} < ∞. We may thus treat the factors
ϑ− λi(z) one by one, and by induction it suffices to prove part (i) for the case
r = 1, Λz(ϑ) = ϑ − λ(z), where λ(z) is bounded, provided we show that the
bounds also are uniform in α ∈ A, for any bounded set A.

In this case, see [9, Lemma 1], it is easily seen that for each y there is a
unique power series Ψz satisfying (A.3) with Ψz(0) = y; moreover, the solution
Ψz is given by the analytic function

Ψz(ζ) = Ψz(0)(1− ζ)−λ(z) + (1− ζ)−λ(z)

∫ ζ

0

(1− w)λ(z)−1φz(w) dw. (A.6)

Clearly, (A.6) defines Ψz as an analytic function in ∆, because φz is.
For (i), it only remains to estimate this solution for ζ ∈ ∆, with α = O(1)

and λ = λ(z) = O(1). We note first that the value of η is immaterial, so we
may for convenience assume that η < R − 1. For |1 − ζ| ≥ η, we can choose
an integration path in (A.6) of bounded length and contained in the region
|1− w| ≥ η, and it follows that Ψz(ζ) = O(1).

Assume now ζ ∈ ∆ and |1− ζ| ≤ η. Let γ := arg(1− ζ) and ζ ′ := 1− ηeiγ .
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Then∫ ζ

0

(1− w)λ−1φz(w) dw =
∫ ζ′

0

(1− w)λ−1φz(w) dw +
∫ ζ

ζ′
(1− w)λ−1φz(w) dw

. 1 +
∫ η

|1−ζ|
x<λ−1x−α| log x|d dx

.
∣∣log |1− ζ|

∣∣d ∫ 1

|1−ζ|
x−(α−<λ)−1 dx.

For any real β 6= 0 and 0 < y < 1, by the mean value property for t 7→ et log(1/y),∫ 1

y

x−β−1 dx =
1− y−β

−β
=
eβ log(1/y) − 1

β
≤ | log y| e(β∨0) log(1/y) = | log y| y−(β∨0).

This is evidently true for β = 0 too, and thus∫ ζ

0

(1− w)λ−1φz(w) dw .
∣∣log |1− ζ|

∣∣d+1|1− ζ|−((α−<λ)∨0).

Consequently (A.6) yields, recalling |1− ζ| ≤ η ≤ 1/2,

|Ψz(ζ)| .
(
1 +

∣∣log |1− ζ|
∣∣d+1|1− ζ|−((α−<λ)∨0)

) ∣∣(1− ζ)−λ
∣∣

.
∣∣log |1− ζ|

∣∣d+1|1− ζ|−(α∨<λ).

For part (ii) we factorize Λz(ϑ) = Λ∗z(ϑ)(ϑ − λ1(z)) and let Ψ∗
z(ζ) = (ϑ −

λ1(z))Ψz(ζ); thus Λ∗z(ϑ)Ψ∗
z(ζ) = φz(ζ). By (i) applied to Λ∗z (or directly if

r = 1), for |1− ζ| ≤ η,

Ψ∗
z(ζ) = O

(
|1− ζ|−(α∨<λ2(z))

∣∣log |1− ζ|
∣∣d+r−1

)
= O

(
|1− ζ|−<λ1(z)+ε1

)
.

(A.7)

We now use (A.6), with λ(z) = λ1(z) and φz replaced by Ψ∗
z. By (A.7), the

integral c1(z) :=
∫ 1

0
(1− w)λ1(z)−1Ψ∗

z(w) dw converges, and if we define c(z) :=
Ψz(0) + c1(z), then, using (A.7) again,

Ψz(ζ)− c(z)(1− ζ)−λ1(z) = −(1− ζ)−λ1(z)

∫ 1

ζ

(1− w)λ1(z)−1Ψ∗
z(w) dw

. |1− ζ|−<λ1(z)

∫ |1−ζ|

0

x<λ1(z)−1−<λ1(z)+ε1 dx

. |1− ζ|−<λ1(z)+ε1 ,

provided |1−ζ| ≤ η. The case |1−ζ| ≥ η follows immediately from Ψz(ζ) = O(1).
The final statement follows because under these assumptions, <λ1(z) and

<λ2(z) are continuous functions of z ∈ K, so the compactness of K yields the
existence of an ε > 0 so that <λ1(z) − <λ2(z) ≥ ε and <λ1(z) − α ≥ ε for all
z ∈ K.
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Proof of Lemma 8.2. We use Theorem A.1 with Λz(ζ) = Λ(ζ; z), Ψz(ζ) =
Ψ(ζ; z) and φz(ζ) = φ(ζ; z) as above. (By (A.2), φz(ζ) actually is indepen-
dent of z.) We see from (A.2) that (A.4) holds with α = 1 and d = 0. Hence
Theorem A.1(i) yields, for z ∈ K, ζ ∈ ∆,

Ψ(ζ; z) =

{
O(1), |1− ζ| ≥ η,

O
(
|1− ζ|−(<λ1(z)∨1)

∣∣log |1− ζ|
∣∣r), |1− ζ| ≤ η,

and Lemma 8.2(ii) follows by standard singularity analysis, see e.g. [14, Chapter
6].

Similarly, Lemma 8.2(i) follows easily from Theorem A.1(ii); the constant
E(z) is necessarily the same as in Lemma 3.1.

Proof of Lemma 8.4. This time we use (8.10). Let an(z) := E |Wn(z)|2 and
let bn(z) be the O term in (8.10). Then (8.10) implies that the analogue of
(A.1) holds for the generating functions of an and bn, with Λ(ζ, z) replaced by
Λ(ζ, |z|2). However, it is not clear that these generating functions extend to a
∆-domain. Therefore we instead take gz(ζ) := Ch(ζ), where

h(ζ) := (1− ζ)−max{2<(λ1(z))−1, 1}(− log(1− ζ)/ζ)2D

and C is a constant chosen so large that |bn(z)| ≤ [ζn]g(ζ) for all z ∈ K and
n ≥ 0; this is possible because [ζn]h(ζ) = Θ

(
nmax{2<(λ1(z))−2, 0}(log n)2D

)
. We

then let Λz(ζ) := Λ(ζ, |z|2) and define Ψz(ζ) to be the solution of (A.3) with
initial conditions [ζn]Ψz(ζ) = E |Wn(z)|2 for n < r. It now follows from (8.10)
and induction that E |Wn(z)|2 ≤ [ζn]Ψz(ζ) for all n, so it suffices to estimate
[ζn]Ψz(ζ).

Clearly, (A.4) is satisfied with α = max{2<(λ1(z)) − 1, 1} and d = 2D.
Theorem A.1(i) thus yields, uniformly for z ∈ K,

Ψz(ζ) =

{
O(1), |1− ζ| ≥ η,

O
(
|1− ζ|−max{λ1(|z|2), 2<(λ1(z))−1, 1}

∣∣log |1− ζ|
∣∣2D+r

)
, |1− ζ| ≤ η.

Standard singularity analysis then yields

[ζn]Ψz(ζ) = O
(
nmax{λ1(|z|2)−1, 2<(λ1(z))−2, 0}(log n)2D+r

)
and (8.8) follows.

References

[1] V. Yu. Bentkus and A. Rachkauskas, Estimates for the distance between
sums of independent random elements in Banach spaces. (Russian.) Teor.
Veroyatnost. i Primenen. 29 (1984), no. 1, 49–64. English transl. Theory
Probab. Appl. 29 (1984), no. 1, 50–65

42



[2] P. Billingsley, Convergence of Probability Measures. Wiley, New York, 1968.

[3] M. Bousquet-Mélou and S. Janson, The density of the ISE and local limit
laws for embedded trees. Ann. Appl. Probab., 16 (2006), no. 3, to appear.

[4] B. Chauvin, M. Drmota and J. Jabbour-Hattab, The profile of binary
search trees. Ann. Appl. Probab. 11 (2001), no. 4, 1042–1062.

[5] B. Chauvin and M. Drmota, The random multisection problem, travelling
waves, and the distribution of the height of m-ary search trees. Algorith-
mica, to appear.

[6] B. Chauvin, T. Klein, J.-F. Marckert and A. Rouault, Martingales and
profile of binary search trees. Electron. J. Probab. 10 (2005), no. 12, 420–
435.

[7] B. Chauvin and A. Rouault, Connecting yule process, bisection and binary
search trees via martingales. J. Iranian Statistical Society, 3 (2004), no. 2,
89–116.

[8] H.-H. Chern and H.-K. Hwang, Transitional behaviors of the average cost
of Quicksort with median-of-(2t+ 1). Algorithmica 29 (2001), 44–69.

[9] H.-H. Chern, H.-K. Hwang and T.-H. Tsai, An asymptotic theory for
Cauchy–Euler differential equations with applications to the analysis of
algorithms. J. Algorithms 44 (2002), 177–225.

[10] L. Devroye and H.-K. Hwang, Width and mode of the profile for some
random trees of logarithmic height, Ann. Appl. Probab., to appear.

[11] M. Drmota and H.-K. Hwang, Profiles of random trees: correlation and
width of random recursive trees and binary search trees, Adv. Appl. Probab.
37 (2005), no. 2, 321–341.

[12] M. Drmota and H.-K. Hwang, Bimodality and phase transitions in the
profile variance of random binary search trees, SIAM J. Discrete Math. 19
(2005), no. 1, 19–45.

[13] P. Flajolet and A. Odlyzko, Singularity analysis of generating functions.
SIAM J. Discrete Math. 3 (1990), no. 2, 216–240.

[14] P. Flajolet and R. Sedgewick, Analytic Combinatorics. In preparation.
Draft available at
http://algo.inria.fr/flajolet/Publications/books.html

[15] M. Fuchs, H.-K. Hwang and R. Neininger, Profiles of random trees: Limit
theorems for random recursive trees and binary search trees, Algorithmica,
to appear.
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