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1. Simply generated trees and Galton–Watson trees

We suppose that we are given a fixed weight sequence w = (wk)k>0 of
non-negative real numbers. We then define the weight of a finite rooted and
ordered (a.k.a. plane) tree T by

w(T ) :=
∏
v∈T

wd+(v), (1.1)

taking the product over all nodes v in T , where d+(v) is the outdegree of
v. Trees with such weights are called simply generated trees and were intro-
duced by Meir and Moon [24]. We let Tn be the random simply generated
tree obtained by picking a tree with n nodes at random with probability
proportional to its weight. (To avoid trivialities, we assume that w0 > 0
and that there exists some k > 2 with wk > 0. We consider only n such
that there exists some tree with n vertices and positive weight.)

One particularly important case is when
∑∞

k=0wk = 1, so the weight
sequence (wk) is a probability distribution on Z>0. (We then say that (wk)
is a probability weight sequence.) In this case we let ξ be a random variable
with the corresponding distribution: P(ξ = k) = wk. It is easily seen that the
simply generated random tree Tn equals the conditioned Galton–Watson tree
with offspring distribution ξ, i.e., the random Galton–Watson tree defined
by ξ conditioned on having exactly n vertices.

One of the reasons for the interest in these trees is that many kinds
of random trees occuring in various applications (random ordered trees,
unordered trees, binary trees, . . . ) can be seen as simply generated random
trees and conditioned Galton–Watson trees, see e.g. Aldous [3, 4], Devroye
[9] and Drmota [10].

It is easily seen that if a, b > 0 and we change wk to

w̃k := abkwk, (1.2)
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then the distribution of Tn is not changed. In other words, the new weight
sequence (w̃k) defines the same simply generated random trees Tn as (wk).
(This is essentially due to Kennedy [19], who did not consider trees but
showed the corresponding result for Galton–Watson processes. See also Al-
dous [4].) We say that weight sequence (wk) and (w̃k) related by (1.2) (for
some a, b > 0) are equivalent.

In many cases it is possible to change the weight (wk) to an equivalent
probability weight sequence; in this case Tn can thus be seen as a conditioned
Galton–Watson tree. Moreover, in many cases this can be done such that the
resulting probability distribution has mean 1. In such cases it thus suffices
to consider the case of a probability weight sequence with mean E ξ = 1;
then Tn is a conditional critical Galton–Watson tree. It turns out that this
is a nice and natural setting, with many known results proved by many
different authors. We extend here some of these results to the general case,
including cases where no equivalent probability weight sequence exists.

2. Notation

We consider a fixed weight sequence w = (wk)k>0; we let

Φ(z) :=
∞∑
k=0

wkz
k (2.1)

be the generating function of the given weight sequence, and let ρ ∈ [0,∞]
be its radius of convergence.

We further define, for t such that Φ(t) <∞,

Ψ(t) :=
tΦ′(t)

Φ(t)
=

∑∞
k=0 kwkt

k∑∞
k=0wkt

k
; (2.2)

moreover, if Φ(ρ) =∞, we define Ψ(ρ) := limt↗ρ Ψ(t) 6∞.
We define

ν := Ψ(ρ). (2.3)

In particular, if Φ(ρ) <∞, then

ν =
ρΦ′(ρ)

Φ(ρ)
6∞. (2.4)

Then ν = 0 ⇐⇒ ρ = 0, and if ρ > 0, then

ν := Ψ(ρ) = lim
t↗ρ

Ψ(t) = sup
06t<ρ

Ψ(t) ∈ (0,∞]. (2.5)

If ρ > 0, then ν is the supremum of the means of all probability weight
sequences equivalent to (wk).

We define N0 = Z>0 := {0, 1, 2, . . . }, N1 = Z>0 := {1, 2, . . . }, N0 :=
N0 ∪ {∞} and N1 := N1 ∪ {∞}.
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3. Main result for simply generated random trees

Our main limit theorem for simply generated random trees is the follow-
ing. The case when ν > 1 and σ2 < ∞ was shown implicitly by Kennedy
[19] (who considered Galton–Watson processes and not trees), and explicitly
by Aldous and Pitman [5], see also Grimmett [14], Kolchin [21], Kesten [20]
and Aldous [4]. Special cases with 0 < ν < 1 and ν = 0 are given by Jonsson
and Stefánsson [18] and Janson, Jonsson and Stefánsson [17], respectively.

The limit (in distribution) in the theorem is for a topology where con-
vergence means convergence of outdegree for any fixed node; it thus really
means local convergence close to the root. (It is for this purpose convenient
to regard the trees as subtrees of the infinite Ulam–Harris tree.) See [16] for
details.

Theorem 3.1. Let w = (wk)k>0 be any weight sequence with w0 > 0 and
wk > 0 for some k > 2.

(i) If ν > 1, let τ be the unique number in [0, ρ] such that Ψ(τ) = 1.
(ii) If ν < 1, let τ := ρ.

In both cases, 0 6 τ <∞ and 0 < Φ(τ) <∞. Let

πk :=
τkwk
Φ(τ)

, k > 0; (3.1)

then (πk)k>0 is a probability distribution, with expectation

µ = Ψ(τ) = min(ν, 1) 6 1 (3.2)

and variance σ2 = τΨ′(τ) 6 ∞. Let T̂ be the infinite modified Galton–
Watson tree constructed in Section 4 below for the distribution (πk)k>0.

Then Tn
d−→ T̂ as n→∞.

Remark 3.2. In case (ii), there is no τ > 0 with Ψ(τ) = 1. Hence the
definition of τ can also be expressed as follows, recalling Ψ(t) := tΦ′(t)/Φ(t)
from (2.2): τ is the unique number in [0, ρ] such that

τΦ′(τ) = Φ(τ), (3.3)

if there exists any such τ ; otherwise τ := ρ. (Equation (3.3) is used in many
papers to define τ , in the case ν > 1.)

Remark 3.3. If 0 < t < ρ, then

d

dt

(
Φ(t)

t

)
=
tΦ′(t)− Φ(t)

t2
=

Φ(t)

t2
(
Ψ(t)− 1

)
.

Since Ψ(t) is increasing, it follows that Φ(t)/t decreases on [0, τ ] and in-
creases on [τ, ρ], so τ can, alternatively, be characterised as the (unique)
minimum point in [0, ρ] of the convex function Φ(t)/t, cf. e.g. Minami [26]
and Jonsson and Stefánsson [18]. Consequently,

Φ(τ)

τ
= inf

06t6ρ

Φ(t)

t
= inf

06t<∞

Φ(t)

t
. (3.4)
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(This holds also when ρ = 0, trivially, since then Φ(t)/t = ∞ for every
t > 0.)

Remark 3.4. If we replace (wk) by an equivalent weight sequence (w̃k), we
obtain the same distribution (πk).

Remark 3.5. If ρ > 0, then τ > 0 and the distribution (πk) is a probability
weight sequence equivalent to (wk). There are other equivalent probability
weight sequences, but Theorem 3.1 shows that (πk) has a special role and
therefore is a canonical choice of a weight sequence in its equivalence class.
Furthermore, (πk) is the unique probability distribution with mean 1 that
is equivalent to (wk), if any such distribution exists. If no such distribution
exists but ρ > 0, then (πk) is the probability distribution equivalent to (wk)
that has the maximal mean.

Remark 3.6. When ν > 1, the quantity σ2 is a natural parameter of the
weight sequence (wk), which frequently occurs in asymptotic results. In this
case a calculation yields also the formula [4]

σ2 = τΨ′(τ) =
τ2Φ′′(τ)

Φ(τ)
. (3.5)

4. The infinite limit tree

Let (πk)k>0 be a probability distribution on N0 and let ξ be a random
variable on N0 with distribution (πk)

∞
k=0:

P(ξ = k) = πk, k = 0, 1, 2, . . . (4.1)

We assume that the expectation µ := E ξ =
∑

k kπk 6 1 (the subcritical
or critical case). We then define (based on Kesten [20] and Jonsson and

Stefánsson [18]) a modified Galton–Watson tree T̂ as follows: There are two
types of nodes: normal and special, with the root being special. Normal
nodes have offspring (outdegree) according to independent copies of ξ, while

special nodes have offspring according to independent copies of ξ̂, where

P(ξ̂ = k) :=

{
kπk, k = 0, 1, 2, . . . ,

1− µ, k =∞.
(4.2)

(Note that this is a probability distribution on N1.) Moreover, all children
of a normal node are normal; when a special node gets an infinite number of
children, all are normal; when a special node gets a finite number of children,
one of its children is selected uniformly at random and is special, while all
other children are normal.

Since each special node has at most one special child, the special nodes

form a path from the root; we call this path the spine of T̂ . We distinguish
two different cases:
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(T1) If µ = 1 (the critical case), then ξ̂ < ∞ a.s. so each special node has
a special child and the spine is an infinite path. Each outdegree d+(v)

in T̂ is finite, so the tree is infinite but locally finite.

In this case, the distribution of ξ̂ in (4.2) is the size-biased distri-

bution of ξ, and T̂ is the size-biased Galton–Watson tree defined by
Kesten [20], see also Aldous [4], Aldous and Pitman [5] and Lyons,
Pemantle and Peres [23]. The underlying size-biased Galton–Watson
process is the same as the Q-process studied in Athreya and Ney [6,
Section I.14], which is an instance of Doob’s h-transform. (See Lyons,
Pemantle and Peres [23] for further related constructions in other con-
texts and Geiger and Kauffmann [13] for a generalization.)

An alternative construction of the random tree T̂ is to start with
the spine (an infinite path from the root) and then at each node in the
spine attach further branches; the number of branches at each node in

the spine is a copy of ξ̂ − 1 and each branch is a copy of the Galton–
Watson tree T with offspring distributed as ξ; furthermore, at a node
where k new branches are attached, the number of them attached to
the left of the spine is uniformly distributed on {0, . . . , k}. (All random
choices are independent.) Since the critical Galton–Watson tree T is

a.s. finite, it follows that T̂ a.s. has exactly one infinite path from the
root, viz. the spine.

(T2) If µ < 1 (the subcritical case), then a special node has with probability
1−µ no special child. Hence, the spine is a.s. finite and the number L
of nodes in the spine has a (shifted) geometric distribution Ge(1− µ),

P(L = `) = (1− µ)µ`−1, ` = 1, 2, . . . . (4.3)

The tree T̂ has a.s. exactly one node with infinite outdegree, viz. the

top of the spine. T̂ has a.s. no infinite path.

In this case, an alternative construction of T̂ is to start with a spine
of random length L, where L has the geometric distribution (4.3). We
attach as in (T1) further branches that are independent copies of the
Galton–Watson tree T ; at the top of the spine we attach an infinite
number of branches and at all other nodes in the spine the number

we attach is a copy of ξ∗ − 1 where ξ∗
d
= (ξ̂ | ξ̂ < ∞) has the size-

biased distribution P(ξ∗ = k) = kπk/µ. The spine thus ends with an
explosion producing an infinite number of branches, and this is the
only node with an infinite degree. This is the construction by Jonsson
and Stefánsson [18].

Example 4.1. In the extreme case µ = 0, or equivalently ξ = 0 a.s., i.e.,

π0 = 1 and πk = 0 for k > 1, (4.2) shows that ξ̂ = ∞ a.s. Hence, every
normal node has no child and is thus a leaf, while every special node has an
infinite number of children, all normal. Consequently, the root is the only
special node, the spine consists of the root only (i.e., its length L = 1), and
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the tree T̂ consists of the root with an infinite number of leaves attached to
it, i.e., T̂ is an infinite star. (This is also given directly by the alternative
construction in (T2) above.) In contrast, T consists of the root only, so

|T | = 1. In this case there is no randomness in T or T̂ .

Remark 4.2. In case (T1), if we remove the spine, we obtain a random
forest that can be regarded as coming from a Galton–Watson process with
immigration, where the immigration is described by an i.i.d. sequence of

random variables with the distribution of ξ̂ − 1, see Lyons, Pemantle and
Peres [23]. (In the Poisson case, Grimmett [14] gave a slightly different

description of T̂ using a Galton–Watson process with immigration.)
In case (T2), we can do the same, but now the immigration is different:

at a random (geometric) time, there is an infinite immigration, and after
that there is no more immigration at all.

Remark 4.3. Some related modifications of Galton–Watson trees having
a finite spine have been considered previously, see Sagitov and Serra [29],
Addario-Berry, Devroye and Janson [1], Geiger [12] and Aldous [2]. Kurtz,
Lyons, Pemantle and Peres [22] and Chassaing and Durhuus [8] have con-
structed related trees with infinite spines using multi-type Galton–Watson
processs.

Remark 4.4. In case (T1), the random variable ξ̂ is a.s. finite and has mean

E ξ̂ =

∞∑
k=0

k P(ξ̂ = k) =

∞∑
k=0

k2πk = E ξ2 = σ2 + 1, (4.4)

where σ2 := Var ξ 6 ∞. In case (T2), we have P(ξ̂ = ∞) > 0 and thus

E ξ̂ = ∞. This suggests that in results that are known in the critical case
(T1), and where σ2 appears as a parameter, the correct generalization of σ2

to the subcritical case (T2) is not Var ξ but E ξ̂ − 1 =∞.

5. Three different types of weights

Although Theorem 3.1 has only two cases, it makes sense to treat the case
ρ = 0 separately. We thus have the following three (mutually exclusive) cases
for the weight sequence (wk):

I. ν > 1. Then 0 < τ <∞ and τ 6 ρ 6∞. The weight sequence (wk)
is equivalent to (πk), which is a probability distribution with mean
µ = Ψ(τ) = 1 and probability generating function

∑∞
k=0 πkz

k with
radius of convergence ρ/τ > 1.

II. 0 < ν < 1. Then 0 < τ = ρ < ∞. The weight sequence (wk)
is equivalent to (πk), which is a probability distribution with mean
µ = Ψ(τ) = ν < 1 and probability generating function

∑∞
k=0 πkz

k

with radius of convergence ρ/τ = 1.
III. ν = 0. Then τ = ρ = 0, and (wk) is not equivalent to any probability

distribution.
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If we consider the modified Galton–Watson tree in Theorem 3.1, then III
is the case discussed in Example 4.1; excluding this case, I and II are the
same as (T1) and (T2) in Section 4.

We can reformulate the partition into three cases in more probabilistic
terms. We say that ξ, or the distribution (pk), has some finite exponential
moment if ERξ < ∞ for some R > 1, or equivalently, E erξ < ∞ for some
r > 0; this is equivalent to the probability generating function

∑∞
k=0 pkz

k

having radius of convergence strictly larger than 1. The cases I–III can then
be described as follows:

I. ν > 1. Then (wk) is equivalent to a probability distribution with
mean µ = 1 (with or without some exponential moment). Moreover,
(πk) in (3.1) is the unique such distribution.

II. 0 < ν < 1. Then (wk) is equivalent to a probability distribution
with mean µ < 1 and no finite exponential moment. Moreover, (πk)
in (3.1) is the unique such distribution.

III. ν = 0. Then (wk) is not equivalent to any probability distribution.

Case I may be further subdivided. From an analytic point of view, it is
natural to split I into two subcases:

Ia. ν > 1; equivalently, 0 < τ < ρ 6 ∞. The weight sequence (wk)
is equivalent to a probability distribution with mean µ = 1 and
some finite exponential moment. (Then (πk) is the unique such
distribution.) (This case is called generic in [11] and [18].)

Ib. ν = 1; then 0 < τ = ρ < ∞. The weight sequence (wk) is equiv-
alent to a probability distribution with mean µ = 1 and no finite
exponential moment. (Then (πk) is the unique such distribution.)

Case Ia is convenient when using analytic methods, since it says that the
point τ is strictly inside the domain of convergence of Φ, which is convenient
for methods involving contour integrations in the complex plane. (See e.g.
Drmota [10] for several such results of different types.) For that reason,
many papers using such methods consider only case Ia. However, it has
repeatedly turned out, for many different problems, that results proved by
such methods often hold assuming only that we are in case I with finite
variance of (πk). (In fact, as shown in [15], it is at least sometimes possible
to use complex analytic methods also in this case.) Consequently, it is often
more important to partition case I into the following two cases:

Iα. ν > 1 and (πk) has variance σ2 < ∞. In other words, (wk) is
equivalent to a probability distribution (πk) with mean µ = 1 and
finite variance σ2.

Iβ. ν = 1 and (πk) has variance σ2 = ∞. In other words, (wk) is
equivalent to a probability distribution with mean µ = 1 and infinite
variance.

Note that Ia is a subcase of Iα, since a finite exponential moment implies
that the second moment is finite.
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By Theorem 3.1 we have, if ν > 1, case Iα when Ψ′(τ) <∞ and Iβ when
Ψ′(τ) =∞; equivalently, by (3.5), Iα is the case ν > 1 and Φ′′(τ) <∞.

Remark 5.1. We have seen that except in case III, we may without loss of
generality assume that the weight (wk) is a probability weight sequence. If
this distribution is critical, i.e. has mean 1, we are in case I with πk = wk,
so we do not have to change the weights.

If the distribution (wk) is supercritical, then ν > 1 and we are in case Ia;
we can change to an equivalent critical probability weight. Hence we never
have to consider supercritical weights.

If the distribution (wk) is subcritical, we can only say that we are in case
I or II. We can often change to an equivalent critical probability weight, but
not always.

6. Node degrees

Theorem 3.1 implies the following result for the degree d+Tn(o) of the root
o.

Theorem 6.1. Let (wk)k>0 and (πk)k>0 be as in Theorem 3.1. Then, as
n→∞,

P(d+Tn(o) = d)→ dπd, d > 0. (6.1)

Consequently, regarding d+Tn(o) as a random number in N0,

d+Tn(o)
d−→ ξ̂, (6.2)

where ξ̂ is a random variable in N0 with the distribution given in (4.2).

Note that the sum
∑∞

0 dπd = µ of the limiting probabilities in (6.1) may
be less than 1; in that case we do not have convergence to a proper finite
random variable, which is why we regard d+Tn(o) as a random number in N0.

If we instead take a random node, we obtain a different limit distribution,
viz. (πk). (When ν > 1, this was proved by Otter [27], see also Minami [26].)

Theorem 6.2. Let (wk)k>0 and (πk)k>0 be as in Theorem 3.1, and let v be
a uniformly random node in Tn. Then, as n→∞,

P(d+Tn(v) = d)→ πd, d > 0. (6.3)

7. The maximum degree

Results for the maximum degree are more complicated, and we discuss
the different cases separately. We denote the maximum outdegree in the
tree Tn by Y(1).
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Case Ia: ν > 1. In this case 0 < τ < ρ 6 ∞, and we have a logarithmic
bound due to Meir and Moon [25]:

Y(1) 6
1

log(ρ/τ)
log n+ op(log n); (7.1)

if further w
1/k
k → 1/ρ as k →∞, then

Y(1)

log n

p−→ 1

log(ρ/τ)
. (7.2)

In particular, if ρ =∞, then Y(1) = op(log n).
Moreover, if wk+1/wk → a > 0 as k →∞, then Y(1) = k(n) + Op(1)

for some deterministic sequence k(n), so Y(1) is essentially concentrated in
an interval of length O(1). The distribution of Y(1) is asymptotically given
by a discretised Gumbel distribution, but different subsequences may have
different limits and no limit distribution exists.

Similarly, if wk+1/wk → 0, then Y(1) ∈ {k(n), k(n) + 1} so Y(1) is con-
centrated on at most two values, and often (but not always) on a single
value.

Case Iα: ν > 1 and σ2 <∞. The maximum outdegree Y(1) is asymptotically
distributed as the maximum ξ(1) of n i.i.d. copies of ξ; this holds in the

strong sense that the total variation distance tends to 0. Since E ξ2 < ∞,
this implies in particular

Y(1) = op(n1/2). (7.3)

Case Iβ: ν > 1 and σ2 =∞. We have

Y(1) = op(n), (7.4)

and this is (more or less) best possible.

Case II: 0 < ν < 1. In this case, if further (wk) satisfies an asymptotic
power-law wk ∼ ck−β as k →∞, then Jonsson and Stefánsson [18] showed
that

Y(1) = (1− ν)n+ op(n), (7.5)

while the second largest node degree Y(2) = op(n). However, if the weight
sequence is more irregular, this is no longer always true; it is possible (at least
along a subsequence) that Y(1) = op(n), which can be seen as incomplete
condensation; it is also possible (at least along a subsequence) that Y(2) too
is of order n, meaning condensation to two or more giant nodes.

Case III: ν = ρ = 0. This is similar to case II. In some regular cases we have
(7.5), which now says Y(1) = n + op(n), and then necessarily Y(2) = op(n),
but there are exceptions in other cases with an irregular weight sequence.
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8. Balls-in-boxes

The balls-in-boxes model is a model for random allocation of m (unla-
belled) balls in n (labelled) boxes. The set of possible allocations is thus

Bm,n :=
{

(y1, . . . , yn) ∈ Nn0 :

n∑
i=1

yi = m
}
, (8.1)

where yi counts the number of balls in box i. We suppose again that w =
(wk)

∞
k=0 is a fixed weight sequence, and we define the weight of an allocation

y = (y1, . . . , yn) as

w(y) :=
n∏
i=1

wyi . (8.2)

Given m and n, we choose a random allocation Bm,n with probability
proportional to its weight, see e.g. Bialas, Burda and Johnston [7]. We
can replace the weight sequence by an equivalent weight sequence for the
balls-in-boxes model just as we did for the random trees above.

Example 8.1 (probability weights). In the special case when (wk) is a
probability weight sequence, let ξ1, ξ2, . . . be i.i.d. random variables with
the distribution (wk). Then, Bm,n has the same distribution as (ξ1, . . . , ξn)
conditioned on

∑n
i=1 ξi = m. (This construction of a random allocationBm,n

is used by Kolchin [21] and there called the general scheme of allocation.)

The connection to random trees is that if T is a tree with |T | = n, then
its degree sequence (in depth-first order, say) is an allocation in Bn−1,n, with
the same weight as the tree. Moreover, a converse holds by the following
lemma, see e.g. Takács [30], Wendel [31], Pitman [28].

Lemma 8.2. If (d1, . . . , dn) ∈ Bn−1,n, then exactly one of the n cyclic shifts
of (d1, . . . , dn) is the degree sequence Λ(T ) of a tree T ∈ Tn.

Other examples of random allocations are different types of random forests
with a given number of components, with each component regarded as a box,
and each vertex as a ball, see [16].

Our main result for trees is a consequence of the following result for balls-
in-boxes, where ω := sup{i : wi > 0} 6 ∞ and Nk(Bm,n) is the number of
boxes with exactly k balls in the allocation Bm,n.

Theorem 8.3. Let w = (wk)k>0 be any weight sequence with w0 > 0 and
wk > 0 for some k > 1. Suppose that n→∞ and m = m(n) with m/n→ λ
with 0 6 λ < ω.

(i) If λ 6 ν, let τ be the unique number in [0, ρ] such that Ψ(τ) = λ.
(ii) If λ > ν, let τ := ρ.

In both cases, 0 6 τ <∞ and 0 < Φ(τ) <∞. Let

πk :=
wkτ

k

Φ(τ)
, k > 0. (8.3)
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Then (πk)k>0 is a probability distribution, with expectation

µ = Ψ(τ) = min(λ, ν) (8.4)

and variance σ2 = τΨ′(τ) 6∞. Moreover, for every k > 0,

Nk(Bm,n)/n
p−→ πk. (8.5)

If we regard the weight sequence w as fixed and vary λ (i.e., vary m(n)),
we see that if 0 < ν <∞, there is a phase transition at λ = ν.

Note that τ and πk in Theorem 3.1 are the same as in Theorem 8.3 with
λ = 1. (By Lemma 8.2, the random trees correspond to m = n− 1 and thus
λ = 1.)

9. Condensation

By (8.5), there are roughly nπk boxes with k balls in a random allocation
Bm,n. Summing this approximation over all k we would get n boxes (as
we should) with a total of n

∑∞
k=0 kπk = nµ balls. However, the total

number of balls is m ≈ nλ, so in the case λ > ν, (8.4) shows that about
n(λ− µ) = n(λ− ν) balls are missing. Where are they?

The explanation is that the sums
∑∞

k=0 kNk(Bm,n)/n = m are not uni-
formly summable, and we cannot take the limit inside the summation sign.
The “missing balls” appear in one or several boxes with very many balls, but
these “giant” boxes are not seen in the limit (8.5) for fixed k. In physical
terminology, this can be regarded as condensation of part of the mass (=
balls).

The simplest case is that there is a single giant box with ≈ (λ − ν)n
balls. This happens in the important case of a power-law weight sequence:
wk ∼ ck−β as k →∞ for some c > 0, as shown by Jonsson and Stefánsson
[18]; however, there are also other possibilities when the weight sequence is
less regular.

Recall that for simply generated random trees, which as said above cor-
respond to balls-in-boxes with λ = 1, Theorem 3.1 too shows a related form
of condensation when ν < λ = 1 (since then µ < 1 by (3.2)); in this case the
condensation appears as a node of infinite degree in the random limit tree

T̂ of type (T2).
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