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We give a unified analysis of linear probing hashing with a general bucket size. We use both a combinatorial approach,
giving exact formulas for generating functions, and a probabilistic approach, giving simple derivations of asymptotic
results. Both approaches complement nicely, and give a good insight in the relation between linear probing and
random walks. A key methodological contribution, at the core of Analytic Combinatorics, is the use of the symbolic
method (based on q-calculus) to directly derive the generating functions to analyze.
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1 Motivation
Linear probing hashing, defined below, is certainly the simplest “in place” hashing algorithm [10].

A table of length m, T [1 . .m], with buckets of size b is set up, as well as a hash function h that
maps keys from some domain to the interval [1 . .m] of table addresses. A collection of n elements
with n 6 bm are entered sequentially into the table according to the following rule: Each element
x is placed at the first bucket that is not full starting from h(x) in cyclic order, namely the first of
h(x), h(x) + 1, . . . ,m, 1, 2, . . . , h(x)− 1.

In [9] Knuth motivates his paper in the following way: “The purpose of this note is to exhibit a surpris-
ingly simple solution to a problem that appears in a recent book by Sedgewick and Flajolet [12]:

Exercise 8.39 Use the symbolic method to derive the EGF of the number of probes required by linear
probing in a successful search, for fixed M.”

Moreover, at the end of the paper in his personal remarks he declares: “None of the methods available in
1962 were powerful enough to deduce the expected square displacement, much less the higher moments,
so it is an even greater pleasure to be able to derive such results today from other work that has enriched
the field of combinatorial mathematics during a period of 35 years.” In this sense, he is talking about the
powerful methods based on Analytic Combinatorics that has been developed for the last decades, and are
presented in [6].

In this paper we present in a unified way the analysis of several random variables related with linear
probing hashing with buckets, giving explicit and exact trivariate generating functions in the combinatorial
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model, together with generating functions in the asymptotic Poisson model that provide limit results, and
relations between the two types of results. Linear probing has been shown to have strong connections with
several important problems (see [9; 5; 2] and the references therein). The derivations in the asymptotic
Poisson model are probabilistic and use heavily the relation between random walks and the profile of
the table. Moreover, the derivations in the combinatorial model are based in combinatorial specifications
that directly translate into multivariate generating functions. As far as we know, this is the first unified
presentation of the analysis of linear probing hashing with buckets based on Analytic Combinatorics (“if
you can specify it, you can analyze it”).

We will see that results can easily be translated between the exact combinatorial model and the asymp-
totic Poisson model. Nevertheless, we feel that it is important to present independently derivations for the
two models, since the methodologies complement very nicely. Moreover, they heavily rely in the deep
relations between linear probing and other combinatorial problems like random walks, and the power of
Analytic Combinatorics.

The derivations based on Analytic Combinatorics heavily rely on a lecture presented by Flajolet whose
notes can be accessed in [4]. Since these ideas have only been partially published in the context of
the analysis of hashing in [6], we briefly present here some constructions that lead to q-analogs of their
corresponding exponential generating functions. Proofs will be given in the full version [8] of this paper.

1.1 Some notation
We study tables with m buckets of size b and n elements, where b > 1 is a constant. We often consider
limits as m,n → ∞ with n/bm → α with α ∈ (0, 1). We consider also the Poisson model with
n ∼ Po(αbm), and thus Po(bα) elements hashed to each bucket; in this model we can also take m =∞
which gives a natural limit object, see Section 4 and Lemma 5.1.

A cluster or block is a (maximal) sequence of full buckets ended by a non-full one. The tree function
is T (z) :=

∑∞
n=1

nn−1

n! zn, which converges for |z| 6 e−1. Let ω = ωb := e2πi/b be a primitive b:th unit
root.

2 Combinatorial characterization of linear probing
As a combinatorial object, a non-full linear probing hash table is a sequence of almost full tables (or
clusters) [9; 5; 13]. As a consequence, any random variable related with the table itself (like block lengths,
or the overflow in the parking problem) or with a random element (like its search cost) can be studied in
a cluster (that we may assume to be the last one in the sequence), and then use the sequence construction.
Figure 1 presents an example of such a decomposition.

We briefly recall here some of the definitions presented in [13]. Let Fbi+d be the number of ways to
construct an almost full table of length i+ 1 and size bi+ d (that is, there are b− d empty slots in the last
bucket). Define also

Fd(u) :=
∑
i≥0

Fbi+d
ubi+d

(bi+ d)!
, Nd(z, w) :=

b−1−d∑
s=0

wb−sFs(zw), 0 ≤ d ≤ b− 1. (2.1)

In this setting Nd(z, w) is the generating function for the number of almost full tables with more than d
empty locations in the last bucket. More specificallyN0(z, w) is the generating function for all the almost



A unified approach to linear probing hashing 3

j j j j jj j j j j........ ........ j j j j jj j j........ ........ j j j j jj........ ........

�
�
�
�	

@
@
@
@R

n

bi+ dn− bi− d

m− i− 1 i+ 1
� -� -

Fig. 1: A decomposition for b = 3 and d = 2.

full tables. We borrow from [13] the following identities:

b−1∑
d=0

Fd(bz)x
d = xb −

b−1∏
j=0

(
x− T (ωjz)

z

)
, (2.2)

N0(bz, w) = 1−
b−1∏
j=0

(
1− T (ωjzw)

z

)
, (2.3)

b−1∑
d=0

Nd(bz, w)xd =

∏b−1
j=0

(
1− xT (ωjzw)

z

)
−
∏b−1
j=0

(
1− T (ωjzw)

z

)
1− x

. (2.4)

Let also Qm,n,d be the number of ways of inserting n elements into a table with m buckets of size b, so
that a given (say the last) bucket of the table contains more than d empty slots. In this setting, by a direct
application of the sequence construction as presented in [6] we derive a result presented in [1]:

Λ0(z, w) :=
∑
m≥0

∑
n≥0

Qm,n,0
zn

n!
wbm =

1

1−N0(z, w)
. (2.5)

Then, Λ0(z, w) is the generating function for the number of ways to construct hash tables such that their
last bucket is not full.

Consider a hash table of lengthm and n keys, where collisions are resolved by linear probing. Let P be
a property (e.g. cost of a successful search or block length), related with the last cluster of the sequence,
or with a random element inside it. Let pbi+d(q) be the probability generating function of P calculated in
the cluster of length i+ 1 and with bi+ d elements. We may express pm,n(q), the generating function of
P for a table of length m and n elements with at least one empty spot in the last bucket, as the sum of the
conditional probabilities:

pm,n(q) =

b−1∑
d=0

∑
i>0

#{tables where last cluster has size i+ 1 and bi+ d elements} pbi+d(q). (2.6)

There areQm−i−1,n−bi−d,0 ways to insert n−bi−d elements in the leftmost hash table of lengthm−i−1,
leaving their rightmost bucket not full. Moreover, there are Fbi+d ways to insert bi + d elements in the
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almost full table of length i+ 1. Furthermore, there are
(
n

bi+d

)
ways to choose which bi+ d elements go

to the last cluster. Therefore,

pm,n(q) =

b−1∑
d=0

∑
i≥0

(
n

bi+ d

)
Qm−i−1,n−bi−d,0 Fbi+dpbi+d(q). (2.7)

Then, the trivariate generating function for pm,n(q) is

P (z, w, q) :=
∑
m,n≥0

pm,n(q) wbm
zn

n!
=

N̂0(z, w, q)

1−N0(z, w)
, with (2.8)

N̂0(z, w, q) :=

b−1∑
d=0

wb−d
∑
i≥0

Fbi+d
(zw)bi+d

(bi+ d)!
pbi+d(q), (2.9)

which could be directly derived with the sequence construction [6]. Notice that, as expected, N̂0(z, w, 1) =
N0(z, w) andP (z, w, 1) = Λ0(z, w)−1, since we consider onlym ≥ 1 (we have a last, non-filled bucket).

Moreover the Poisson Transform of pm,n(q)/mn is, with Qm,d(u) :=
∑
n>0Qm,n,du

n/n!,

Pm[pm,n(q)/mn; bα] := e−mbα
∑
n≥0

pm,n(q)
(mbα)n

mnn!

=

b−1∑
d=0

e−(b−d)α
∑
i≥0

Fbi+d
(bαe−α)bi+d

(bi+ d)!
pbi+d(q) e

−(m−i−1)bα Qm−i−1,0(bα). (2.10)

Furthermore,Qm−i−1,0(bα) = [T0(bα) e(m−i−1)bα]b(m−i−1)−1 where T0(bα) is, in the asymptotic Pois-
son model, the probability that a given bucket is not full [13]. It is proven in [1; 13] that

lim
m→∞

Pm[Qm,n,0/m
n; bα] = lim

m→∞
e−mbαQm,0(bα) = T0(bα) =

b(1− α)∏b−1
j=1

(
1− T (ωjαe−α)

α

) . (2.11)

As a consequence, (2.10) and (2.9) yield

lim
m→∞

Pm[pm,n(q)/mn; bα] = T0(bα)N̂0(bα, e−α, q). (2.12)

Note that if 0 < α < 1 is a fixed constant, then w = e−α is the dominant singularity of P (bα,w, q) (a
root of 1−N0(bα,w), for j = 0 in (2.3), cf. (2.8)), so the relation (2.12) can also be derived by standard
asymptotic methods as in [6]. As a consequence, all the results found for exact m,n can easily been
translated in the Poisson model.

3 A q-calculus to specify hashing random variables
All the generating functions in this paper are exponential in n and ordinary inm. As a consequence all the
labelled constructions in [6] and their respective translation into EGF can be used. However, to specify
the combinatorial properties related with the analysis of linear probing hashing, new constructions have to
be added. These ideas have been presented by Flajolet in [4], but they do not seem to have been published
in the context of hashing. As a consequence, we briefly summarize them in this section.
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Adding an element 7→
∫

Cn = An−1
C = Add(A) C(z) =

∫ z
0
A(w)dw

Choosing a position 7→ ∂ Cn = (n+ 1)An
C = Pos(A) C(z) = ∂

∂z (zA(z))

Averaging 7→ 1
Z

∫
Cn = An

n+1

C = Ave(A) C(z) = 1
z

∫ z
0
A(w)dw

Adding a bucket 7→ exp Cn = 1

C = Bucket(Z) C(z) = exp(z)

We present a list of combinatorial constructions used in hashing and their corresponding translation into
EGF, where Z is an atomic class comprising a single element of size 1. Moreover, to keep track of the
distribution of random variables (e.g. the displacement of a new inserted element), we need translations
that belong to the area of q-calculus. Equations (3.1), (3.2) and (3.3) present some of these translations.

n 7→ [n] = 1 + q + q2 + . . .+ qn−1 =
1− qn

1− q
(3.1)∑

(n+ 1)fnz
n 7→

∑
[n+ 1]fnz

n (3.2)

∂

∂z
(zA(z)) 7→ H[f(z)] =

F (z)− qF (qz)

1− q
(3.3)

Moments result from using the operators ∂q (differentiation w.r.t. q) and U (setting q = 1).

4 Probabilistic method: finite and infinite hash tables
In general, consider a hash table, with locations (“buckets”) each having capacity b; we suppose that the
buckets are labelled by i ∈ T, for a suitable index set T. Let for each bucket i ∈ T, Xi be the number
of elements that have hash address i, and thus first try bucket i. Moreover, let Hi be the total number of
elements that try bucket i and let Qi be the overflow from bucket i, i.e., the number of elements that try
bucket i but fail to find room and thus are transferred to the next bucket. We thus have the equations

Hi = Xi +Qi−1, Qi = (Hi − b)+. (4.1)

The final number of elements stored in bucket i is Yi := Hi ∧ b := min(Hi, b); in particular, the bucket
is full if and only if Hi > b.

Standard hashing is when the index set T is the cyclic group Zm. Another standard case, called the
parking problem, is when T is an interval {1, . . . ,m} for some integer m; in this case the Qm elements
that try the last bucket but fail to find room there are lost (overflow), and (4.1) uses the initial value
Q0 := 0.

In the analysis, we will mainly study infinite hash tables, either one-sided with T = N := {1, 2, 3, . . . },
or two-sided with T = Z; as we shall see, these occur naturally as limits of finite hash tables. In the
one-sided case, we again define Q0 := 0, and then, given (Xi)

∞
1 , Hi and Qi are uniquely determined

recursively for all i > 1 by (4.1). In the doubly-infinite case, it is not obvious that the equations (4.1)
really have a solution; we return to this question in Lemma 4.1 below.

In the case T = Zm, we allow (with a minor abuse of notation) also the index i in these quantities to be
an arbitrary integer with the obvious interpretation; then Xi, Hi and so on are periodic sequences defined
for i ∈ Z.
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We can express Hi and Qi in Xi by the following lemma, which generalizes (and extends to infinite
hashing) the case b = 1 treated in [10, Exercise 6.4-32], [3, Proposition 5.3], [7, Lemma 2.1].

Lemma 4.1 Let Xi, i ∈ T, be given non-negative integers.

(i) If T = {1, . . . ,m} or N, then the equations (4.1), for all i ∈ T, have a unique solution given by,
considering j > 0,

Hi = max
j<i

i∑
k=j+1

(Xk − b) + b, Qi = max
j6i

i∑
k=j+1

(Xk − b) (4.2)

(ii) If T = Zm, and moreover n =
∑m

1 Xi < bm, then the equations (4.1), for all i ∈ T, have a unique
solution given by (4.2), now with j ∈ Z. Furthermore, there exists i0 ∈ T such that Hi0 < b and
thus Qi0 = 0.

(iii) If T = Z, assume that
N−1∑
i=0

(b−X−i)→∞ as N →∞. (4.3)

Then the equations (4.1), for all i ∈ T, have a solution given by (4.2), with j ∈ Z, and this is the
minimal solution. Furthermore, for each i ∈ T there exists i0 < i such that Hi0 < b and thus
Qi0 = 0. Conversely, this is the only solution such that for every i there exists i0 < i with Qi0 = 0.

In the sequel, we will always use this solution of (4.1) for hashing on Z (assuming that (4.3) holds); we
can regard this as a definition of hashing on Z.

5 Convergence to an infinite hash table
We are interested in hashing on Zm with n elements having independent uniformly random hash ad-
dresses, thus X1, . . . , Xm have a multinomial distribution with parameters n and (1/m, . . . , 1/m). (We
denote these Xi by Xm,n;i.) We denote the profile of this hash table by Hm,n;i, where as above i ∈ Zm
but we also can allow i ∈ Z in the obvious way.

We consider a limit with m,n→∞ and n/bm→ α ∈ (0, 1). The appropriate limit object turns out to
be an infinite hash table on Z with Xi = Xα;i that are independent and identically distributed (i.i.d.) with
the Poisson distribution Xi ∼ Po(αb); this is the asymptotic Poisson model mentioned earlier. Note that
EXi = αb < b, so E(b−Xi) > 0 and (4.3) holds almost surely by the law of large numbers; hence this
infinite hash table is well-defined. We denote the profile of this hash table by Hα;i.

We claim that the profile (Hm,n;i)
∞
i=−∞, regarded as a random element of the product space ZZ, con-

verges in distribution to the (Hα;i)
∞
i=−∞. (By the definition of the product topology, this is equivalent to

convergence in distribution of any finite vector (Hm,n;i)
N
−M to (Hα;i)

N
−M .)

Lemma 5.1 Let m,n → ∞ with n/bm → α for some α with 0 < α < 1. Then (Hm,n;i)
∞
i=−∞

d−→
(Hα;i)

∞
i=−∞.

Remark 5.2 Note that the convergence of the profile implies convergence of all other quantities that we
study here. Thus the theorems in the sections below for hashing on Z contain (and are equivalent to) limit
theorems for finite hashing as m,n→∞ with n/bm→ α.
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6 The profile and overflow (parking problem)
In the combinatorial approach, let Ω(z, w, q) be the generating function for the number of elements that
overflow from a hash table (i.e., the number of cars that cannot find a place in the parking problem)

Ω(z, w, q) :=
∑
m>0

∑
n>0

∑
k>0

Nm,n,kw
bm z

n

n!
qk, (6.1)

where Nm,n,k is the number of hash tables of length m with n elements and overflow k. (We include an
empty hash table with m = n = k = 0 in the sum (6.1).) Thus w marks the number of places in the
table, z the number of elements and q the number of elements that overflow. The following result has
been independently presented by Panholzer in [11].

Theorem 6.1

Ω(bz, w, q) =
1

qb − wbeqbz
·

∏b−1
j=0

(
q − T (ωjzw)

z

)
∏b−1
j=0

(
1− T (ωjzw)

z

) . (6.2)

Proof: [Sketch] The number of elements that overflow from the table with m > 1 are the ones that
overflow from a table of size m − 1 plus the number of elements that hash into position m minus b
(giving the factor wbezq

qb
, corresponding to adding a last bucket, marking the elements that hash into this

last bucket, and leaving b elements in it). However, we have to include a correction factor in case that the
total number of elements that probe position m is less than b. As a consequence

Ω(z, w, q) = 1 + Ω(z, w, q)
wbezq

qb
+

b−1∑
s=0

(1− qs−b)Os(z, w),

where Os(z, w) is the generating function for the number of hash tables that have s elements in bucket m.
From [13] we know that

Os(z, w) =
Fs(zw)wb−s

1−N0(z, w)
,

and the result follows. 2

For the probabilistic version, we use Lemma 5.1 and study in the sequel infinite hashing on Z, with
Xi = Xα;i i.i.d. random Poisson variables with Xi ∼ Po(αb), where 0 < α < 1. Thus Xi has the
probability generating function

ψX(z) := E zXi = eαb(z−1). (6.3)

We begin by finding the distributions of Hi and Qi. Let ψH(z) := E zHi and ψQ(z) := E zQi denote the
probability generating functions of Hi and Qi (which obviously do not depend on i ∈ Z), defined at least
for |z| 6 1.
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Theorem 6.2 Let 0 < α < 1. The probability generating functions ψH(z) and ψQ(z) extend to mero-
morphic functions given by

ψH(z) =
b(1− α)(z − 1)

zbeαb(1−z) − 1

∏b−1
`=1

(
z − T

(
ω`αe−α

)
/α
)∏b−1

`=1

(
1− T

(
ω`αe−α

)
/α
) , (6.4)

ψQ(z) =
b(1− α)(z − 1)

zb − eαb(z−1)

∏b−1
`=1

(
z − T

(
ω`αe−α

)
/α
)∏b−1

`=1

(
1− T

(
ω`αe−α

)
/α
) . (6.5)

The formula (6.5), which easily implies (6.4), was shown by the combinatorial method in [13, Theorem
9]. It can also be obtained from Theorem 6.1; we omit the details.

Corollary 6.3 For k = 0, . . . , b− 1,

Pr(Yi = k) = Pr(Hi = k) = −b(1− α)
[zk]

∏b−1
`=0

(
z − T

(
ω`αe−α

)
/α
)∏b−1

`=1

(
1− T

(
ω`αe−α

)
/α
) . (6.6)

Furthermore, the probability that a bucket is not full is given by

Pr(Yi < b) = Pr(Hi < b) = T0(bα) =
b(1− α)∏b−1

`=1

(
1− T

(
ω`αe−α

)
/α
) (6.7)

and thus
Pr(Yi = b) = Pr(Hi > b) = 1− T0(bα). (6.8)

The generating functions Td(u) defined in [13] for 0 6 d 6 b − 1 have the property [13, p. 318] that
Td(bα) is the limit of the probability that a given bucket contains more than d empty slots, when m→∞
and n ∼ Po(αbm). By Lemma 5.1, this limit equals the probability that a given bucket in the infinite
hashing has more than d empty slots. This gives the following relation.

Theorem 6.4 For d = 0, . . . , b− 1,

Td(bα) = Pr(Yi < b− d) = Pr(Hi < b− d) =

b−d−1∑
s=0

Pr(Yi = s), (6.9)

It is easy to verify that the formula (6.6) is equivalent to [13, Theorem 8].

7 Robin Hood displacement
In Robin Hood, if ties are broken in a consistent way (e.g. by hash value) then the final table is the same,
independently from the sequence of insertions. As a consequence, the last inserted element, has the same
distribution as any other key. Let DRH be the displacement of a given element x; we may assume that
x hashes to bucket 0. We first study the number CRH of elements that win over x in the competition for
slots in the buckets; then DRH = bCRH/bc. As in [13], we note that CRH is the sum of the number Q−1
of elements that overflow into 0 plus the number V of elements that hash to 0 that win over x; if there
are k other elements hashing to 0, then V is by symmetry uniformly distributed in {0, . . . , k}, and has
probability generating function 1

k+1

∑k
r=0 q

r.
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In the combinatorial model, the generating function CRH(z, w, q) of CRH thus factors as Ω(z, w, q)
times the generating function for V . The latter, as presented in Section 3, is given by the specification
Ave(Pos(Bucket)). We then arrive at

CRH(bz, w, q) = Ω(bz, w, q) Ave(Pos(Bucket(bz, w, q)))

= Ω(bz, w, q)wb
ebz − eqbz

bz(1− q)
=

(wez)b(1− ebz(q−1))
bz(1− q)(qb − weqz)

∏b−1
j=0

(
q − T (ωjzw)

z

)
∏b−1
j=0

(
1− T (ωjzw)

z

) .
The probabilistic argument for the infinite Poisson model is very similar. Again we have CRH =

Q−1 + V , where Q−1 and V are independent, and a simple calculation shows that V has probability
generating function ψV (q) =

(
1− ebα(q−1)

)
/bα(1− q). Using (6.5), this yields

ψC(q) = ψQ(q)ψV (q) =
1− α
α

1− ebα(q−1)

ebα(q−1) − qb

∏b−1
`=1

(
q − T

(
ω`αe−α

)
/α
)∏b−1

`=1

(
1− T

(
ω`αe−α

)
/α
) . (7.1)

The probability generating function for the displacement DRH = bCRH/bc then equals, cf. [13],

ψRH(q) =
1

b

b−1∑
j=0

ψC
(
ωjq1/b

) 1− q−1

1− ω−jq−1/b
. (7.2)

8 Block length
In an almost full table the length of the block is marked by w in N0(bz, w). Then, in the combinatorial
model, the generating function B(z, w, q) for the block length is

B(bz, w, q) = Λ0(bz, w)N0(bz, wq1/b) =
1−

∏b−1
j=0

(
1− T (ωjzwq1/b)

z

)
∏b−1
j=0

(
1− T (ωjzw)

z

) .

For the probabilistic version, we consider one-sided infinite hashing on T = N, with Xi ∼ Po(αb)
i.i.d. as above. Let B be the length of the first block, i.e.,

B := min{i > 1 : Yi < b} = min{i > 1 : Hi < b}. (8.1)

Hence, B is the first positive index i such that the number of elements Si = X1 + · · ·+Xi hashed to the
i first buckets is less than the capacity bi of these buckets, i.e.,

B = min{i > 1 : Si < bi}. (8.2)

(This also follows from Lemma 4.1.) In other words, if we consider the random walk

S′n := Sn − bn =

n∑
i=1

(Xi − b), (8.3)
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the block length B is the first time this random walk becomes negative. Since E(Xi − b) = αb− b < 0,
it follows from the law of large numbers that almost surely S′n → −∞ as n→∞, and thus B <∞.

Note also that S′B−1 > 0, and thus 0 > S′B > −b. In fact, the number of elements hash to the first B
buckets is SB = S′B + bB, and since all buckets before B are full and thus take (B − 1)b elements, the
number of elements in the final bucket of the block is

YB = HB = SB − (B − 1)b = S′B + b ∈ {0, . . . , b− 1}. (8.4)

Theorem 8.1 The probability generating function ψB(z) := E zB of B is given by

ψB(z) = 1−
b−1∏
`=0

(
1− T

(
ω`αe−αz1/b

)
/α
)
. (8.5)

More generally,

E
(
zBtYB

)
= E

(
zBtHB

)
= tb −

b−1∏
`=0

(
t− T

(
ω`αe−αz1/b

)
/α
)
. (8.6)

9 Unsuccessful search
In a cluster with n keys, the number of visited buckets in a unsuccessful search, is the same as the one
needed to insert the (n + 1)st element. As a consequence, in the combinatorial model, the specification
Pos(N0) leads, from equation (3.3), to

U(bz, w, q) = Λ0(bz, w)
N0(bz, w)−N0(bz, wq1/b)

1− q
=

∏b−1
j=0

(
1− T (ωjzwq1/b)

z

)
−
∏b−1
j=0

(
1− T (ωjzw)

z

)
(1− q)

∏b−1
j=0

(
1− T (ωjzw)

z

) .

This result is also derived in [1, Lemma 4.2].
In the probabilistic model, for an unsuccessful search for an element that does not exist in the hash

table, let Ui > 0 denote the number of full buckets that we search, when we start with bucket i. Thus
Ui = k − i where k is the index of the bucket that ends the block containing i. In the probabilistic
version, we consider again hashing on Z, with Xi ∼ Po(αb) independent. Obviously, all Ui have the
same distribution, so we may take i = 0.

Theorem 9.1 The probability generating function ψU (z) := E zUi of Ui is given by

ψU (z) =
T0(bα)

1− z

b−1∏
`=0

(
1− T

(
ω`αe−αz1/b

)
/α
)
. (9.1)

10 FCFS displacement
In the combinatorial model, from section 9, U(bz, w, q) =

∑
m≥1 w

bm
∑
n≥0

(bmz)n

n! Pm,n(q), where
Pm,n(q) is the probability generating function for the displacement of the (n+ 1)st inserted element. The
generating function for the displacement of a random element when having n+ 1 elements in the table is
FCm,n(q) :=

∑n
i=0 Pm,i(q)

n+1 . We need then a transform wbm (bmz)n

n! Pm,n(q) 7→ wbmzn
∑n
i=0 Pm,i(q)

n+1 .
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In this regard, the Laplace transform leads to the ordinary generating function∫ ∞
0

U(byt, we−t, q) dt =
∑
m≥1

wbm

bm

∑
n≥0

ynPm,n(q).

As a consequence we have the ordinary generating function

FCFS(bz, w, q) =
∑
m≥1

wbm
∑
n≥0

FCm,n(q)zn =
w∂w
z

∫ z

0

(∫ ∞
0

U(byt, we−t, q) dt

)
dy

1− y
. (10.1)

In the probabilistic model, when inserting a new element in the hash table with the FCFS rule, we
do exactly as in an unsuccessful search, except that at the end we insert the new element. Hence the
displacement of a new element has the same distribution as Ui in Section 9. However (unlike the RH
rule), the elements are never moved once they are inserted, and when studying the displacement of an
element already in the table, we have to consider Ui at the time the element was added.

We consider again infinite hashing on Z, and add a time dimension by letting the elements arrive to the
buckets by independent Poisson process with intensity 1. At time t > 0, we thus have Xi ∼ Po(t), so at
time αb we have the same model as before, but with each element given an arrival time, with the arrival
times being i.i.d. and uniformly distributed on [0, bα]. (We cannot proceed beyond time t = b; at this time
the table becomes full and an infinite number of elements overflow to +∞; however, we consider only
t < b.)

Consider the table at time αb, containing all element with arrival times in [0, αb]. We are interested in
the FCFS displacement of a “randomly chosen element”. Since there is an infinite number of elements,
this is not well-defined, but we can interpret it as follows (which gives the correct limit of finite hash
tables): By a basic property of Poisson processes, if we condition on the existence of an element, x say,
that arrives to a given bucket i at a given time t, then all other elements form a Poisson process with the
same distribution as the original process. Hence the FCFS displacement of x has the same distribution as
Ui, computed with the load factor α replaced by β := t/b. Furthermore, as said above, the arrival times of
the elements are uniformly distributed in [0, αb], so β is uniformly distributed in [0, α]. Hence, the FCFS
displacement DFC of a random element is (formally by definition) a random variable with the distribution

Pr(DFC = k) =
1

α

∫ α

0

Pr
(
Ui(β) = k

)
dβ, (10.2)

where Ui(β) means Ui with the load α replaced by β. This leads to the following, where we now write α
as an explicit parameter of all quantities that depend on it.

Theorem 10.1 The probability generating function ψFC(z) := E zDFC
i of DFC

i is given by

ψFC(z;α) =
1

α

∫ α

0

ψU (z;β) dβ =
1

α

∫ α

0

τ(β)

1− z

b−1∏
`=0

(
1− ζ`(z;β)

)
dβ

=
1

α

∫ α

0

b(1− β)
∏b−1
`=0

(
1− ζ`(z;β)

)
(1− z)

∏b−1
`=1(1− ζ`(1;β))

dβ.

(10.3)
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