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Abstract. Emergence of new diseases and elimination of existing diseases is a key public
health issue. In mathematical models of epidemics, such phenomena involve the process of
infections and recoveries passing through a critical threshold where the basic reproductive
ratio is 1.

In this paper, we study near-critical behaviour in the context of a susceptible-infective-
recovered (SIR) epidemic on a random (multi)graph on n vertices with a given degree
sequence. We concentrate on the regime just above the threshold for the emergence of
a large epidemic, where the basic reproductive ratio is 1 + ω(n)n−1/3, with ω(n) tending
to infinity slowly as the population size, n, tends to infinity. We determine the probability
that a large epidemic occurs, and the size of a large epidemic.

Our results require basic regularity conditions on the degree sequences, and the assump-
tion that the third moment of the degree of a random susceptible vertex stays uniformly
bounded as n → ∞. As a corollary, we determine the probability and size of a large near-
critical epidemic on a standard binomial random graph in the ‘sparse’ regime, where the
average degree is constant. As a further consequence of our method, we obtain an improved
result on the size of the giant component in a random graph with given degrees just above
the critical window, proving a conjecture by Janson and Luczak.

1. Introduction

Infectious diseases continue to pose a serious threat to individual and public health. Ac-
cordingly, health organisations are constantly seeking to analyse and assess events that may
present new challenges. These may include acts of bioterrorism, and other events indicating
emergence of new infections, which threaten to spread rapidly across the globe facilitated
by the efficiency of modern transportation. Likewise, a lot of effort is being directed into
suppressing outbreaks of established diseases such as influenza and measles, as well as into
eliminating certain endemic diseases, such as polio and rabies.

In an SIR epidemic model, an infectious disease spreads through a population where each
individual is either susceptible, infective or recovered. The population is represented by a
network (graph) of contacts, where the vertices of the network correspond to individuals
and the edges correspond to potential infectious contacts. Different individuals will have
different lifestyles and patterns of activity, leading to different numbers of contacts; for
simplicity, we assume that each person’s contacts are randomly chosen from among the rest
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of the population. The degree of a vertex is the number of contacts of the corresponding
individual.

We assume that infectious individuals become recovered at rate ρ > 0 and infect each
neighbour at rate β > 0. Then the basic reproductive ratio R0 (i.e. the average number of
secondary cases of infection arising from a single case) is given by the average size-biased
susceptible degree times the probability that a given infectious contact takes place before
the infective individual recovers.

Emergence and elimination of a disease involves the process of infectious transitions and
recoveries being pushed across a critical threshold, usually corresponding to the basic re-
productive ratio R0 equal to 1, see [3; 11; 31; 33]. For example, a pathogen mutation can
increase the transmission rate and make a previously ‘subcritical’ disease (i.e. not infectious
enough to cause a large outbreak) into a ‘supercritical’ one, where a large outbreak may
occur, see [3]. Moreover, after a major outbreak in the supercritical case, disease in the
surviving population is subcritical. However, subsequently, as people die and new individu-
als are born (i.e. immunity wanes), R0 will slowly increase, and, when it passes 1, another
major outbreak may occur. Equally, efforts at disease control may result in subcriticality
for a time, but then inattention may lead to an unnoticed parameter shift to supercritical-
ity. Thus, under certain conditions, one can expect most large outbreaks to occur close to
criticality, and so there is practical interest in theoretical understanding of the behaviour of
near-critical epidemics.

Critical SIR epidemics have been studied for populations with complete mixing, under
different assumptions, by [6; 13; 14; 24]; this is equivalent to studying epidemic processes on
the complete graph, or on the Erdős-Rényi graph G(n, p). In [6], near-criticality is discussed
using non-rigorous arguments. Martin-Löf [24] studies a generalized Reed-Frost epidemic
model, where the number of individuals that a given infective person infects has an essentially
arbitrary distribution. The binomial case is equivalent to studying the random graph G(n, p)
on n vertices with edge probability p. The author considers the regime where R0 − 1 =
an−1/3 and the initial number of infectives is bn1/3, for constant a, b. A limit distribution
is derived for the final size of the epidemic, observing bimodality for certain values of a
and b (corresponding to ‘small’ and ‘large’ epidemics). Further analytical properties of the
limit distribution are derived in [14]. In [13], a standard SIR epidemic for populations with
homogeneous mixing is studied, with vaccinations during the epidemic; a diffusion limit is
derived for the final size of a near-critical epidemic.

In the present paper, we address near-critical phenomena in the context of an epidemic
spreading in a population of a large size n, where the underlying graph (network) is a random
(multi)graph with given vertex degrees. In other words, we specify the number of contacts
for each individual, and consider a graph chosen uniformly at random from among all graphs
with the specified sequence of contact numbers. This random graph model allows for greater
inhomogeneity, with a rather arbitrary distribution of the number of contacts for different
persons. We study the regime just above the critical threshold for the emergence of a large
epidemic, where the basic reproductive ratio is 1 + ω(n)n−1/3, with ω(n) growing large as
the population size n grows. (For example, when the population size is about 1 million, we
could consider R0 of order about 1.01.)

From the theory of branching processes, at the start of an epidemic, each infective indi-
vidual leads to a large outbreak with probability of the order R0 − 1. Roughly, our results
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confirm the following, intuitively clear from the above observation, picture. If the size n of
the population is very large, with the initial total infectious degree XI,0 (i.e. total number
of potential infectious contacts at the beginning of the epidemic or total number of acquain-
tances of initially infectious individuals) much larger than (R0− 1)−1, then a large epidemic
will occur with high probability. If the initial total infectious degree is much smaller than
(R0 − 1)−1, then the outbreak will be contained with high probability. In the intermediate
case where XI,0 and (R0 − 1)−1 are of the same order of magnitude, a large epidemic can
occur with positive probability, of the order exp

(
−cXI,0(R0−1)

)
, for some positive constant

c. So, if the population size is about a million, and R0 about 1.01, then XI,0 much larger
than 100 will result in a large epidemic with high probability. On the other hand, if XI,0 is
less than 10, say, than the outbreak will be contained with high probability.

Furthermore, we determine the likely size of a large epidemic. Here, there are three possible
regimes, depending on the size of the initial total infectious degree relative to n(R0 − 1)2.
Broadly speaking, if XI,0 is much larger than n(R0 − 1)2, then the total number of people
infected will be proportional to (nXI,0)

1/2. On the other hand, if XI,0 is much smaller than
n(R0 − 1)2 then, in the event that there is a large epidemic, the total number of people
infected will be proportional to n(R0−1). The intermediate case where XI,0 and n(R0−1)2

are of the same order ‘connects’ the two extremal cases.
Note that, if XI,0 is of the same or larger order of magnitude than n(R0 − 1)2 (the first

and third case in the paragraph above), then XI,0(R0 − 1) is very large, so a large epidemic
does occur with high probability. This follows since, by our assumption, n(R0−1)3 = ω(n)3

is large for large n.
The above results are proven under fairly mild regularity assumptions on the shape of the

degree distribution. We allow a non-negligible proportion of the population to be initally
recovered, i.e. immune to the disease. (This also allows for the possibility that a part, not
necessarily random, of the population is vaccinated before the outbreak, since the vaccinated
individuals can be regarded as recovered.) We require that the third moment of the suscep-
tible degree be bounded; in particular, that implies that the maximum susceptible degree in
a population of size n is of the order no larger than n1/3. So in particular, in a population of
size 1 million, the super-spreaders (i.e. individuals with largest numbers of contacts) should
not be able to infect more than around 100 individuals.

To demonstrate this behaviour for a particular example, we used stochastic simulations
that make use of special Monte Carlo techniques that allow us to consider multiple initial
conditions within the same realisation of the process. The algorithm is described in Appen-
dix A. Figure 1 shows our results for the relationship between the epidemic final size Z
and the initial force of infection XI,0 for 20 realisations of the process, with each realisation
involving multiple different initial conditions, for population sizes n = 105, n = 106 and
n = 107. The model rate parameters are ρ = 1 and β = 1; and the network has Poisson de-
gree distribution with mean λ = 2.02 meaning that R0 = 1.01. (The network was generated
as an Erdős-Rényi random graph with edge probability λ/n.) These plots show the emer-
gence of the three epidemic sizes that our results predict as n increases, i.e. ‘small’ epidemics
of size O(1), ‘large’ epidemics of size proportional to (nXI,0)

1/2, and ‘large’ epidemics of size
comparable to n(R0 − 1).

Epidemics on graphs with given degrees have been considered in a number of recent stud-
ies, both within the mathematical biology and probability communities. A set of ordinary

3



differential equations approximating the time evolution of a large epidemic were obtained by
Volz [35], see also Miller [26], and also Miller, Slim, and Volz [28]. These papers consider the
case where the epidemic starts very small. Differential equations for an epidemic starting
with a large number of infectives appear in Miller [27]. Convergence of the random process
to these equations in the case where the second moment of the degree of a random vertex is
uniformly bounded (both starting with only few infectives and with a large number of infec-
tives) was proven in Janson, Luczak and Windridge [21]. (See also Decreusefond, Dhersin,
Moyal and Tran [12] and Bohman and Picollelli [7], where related results are proven in the
case where the fifth moment of the degree of a random vertex is uniformly bounded and
in the case of bounded vertex degrees respectively. See also [5] for results in the case of
bounded vertex degrees and general infection time distributions.)

However, we appear to be the first to study the ‘barely supercritical’ SIR epidemic on a
random graph with given degrees. As a corollary, we determine the probability and size of
a large near-critical epidemic on a sparse binomial (Erdős-Rényi) random graph, also to our
knowledge the first such results in the literature.

Our approach also enables us to prove the conjecture of Janson and Luczak in [20], es-
tablishing their Theorem 2.4 concerning the size of the largest component in the barely
supercritical random graph with given vertex degrees under weakened assumptions.

We proceed in the spirit of [21] and [20], evolving the epidemic process simultaneously
with constructing the random multigraph. The main technical difficulties involve delicate
concentration of measure estimates for quantities of interest, such as the current total degrees
of susceptible, recovered and infective vertices. Also, our proofs involve couplings of the
evolution of the total infective degree with suitable Brownian motions.

The remainder of the paper is organised as follows. In Section 2, we define our notation
and state our main results (Theorems 2.3 and 2.4). Section 3 is devoted to the proof of
Theorem 2.3; to this end, we define a time-changed version of the epidemic and use the
modified process to prove concentration of measure estimates for various quantities of inter-
est. In Section 4, we prove Theorem 2.4. In Appendix B, we state and prove a new result
concerning the size of the giant component in the supercritical random (multi)graph with a
given degree sequence.

2. Model, notation, assumptions and results

Let n ∈ N and let (di)
n
i=1 = (d

(n)
i )ni=1 be a given sequence of non-negative integers. Let

G = G(n, (di)
n
i=1) be a simple graph (no loops or multiple edges) with n vertices, chosen

uniformly at random subject to vertex i having degree di for i = 1, . . . , n, tacitly assuming
there is any such graph at all (

∑n
i=1 di must be even, at least). For each k ∈ Z

+, let nk
denote the total number of vertices with degree k.

Given the graph G, the epidemic evolves as a continuous-time Markov chain. Each vertex
is either susceptible, infective or recovered. Every infective vertex recovers at rate ρn > 0
and also infects each susceptible neighbour at rate βn > 0.

Let nS, nI, and nR denote the initial numbers of susceptible, infective and recovered
vertices, respectively. Further, let nS,k, nI,k and nR,k respectively, be the number of these
vertices with degree k > 0. Thus, nS + nI + nR = n and nS =

∑∞
k=0 nS,k, nI =

∑∞
k=0 nI,k,

nR =
∑∞

k=0 nR,k, and nk = nS,k + nI,k + nR,k. We assume that this information is given
with the degree sequence. Note that all these quantities (as well as many of the quantities
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introduced below) depend on n. To lighten the notation, we usually do not indicate the n
dependence explicitly.

Remark 2.1. We allow nR > 0, i.e., that some vertices are “recovered” (i.e., immune)
already when we start. It is often natural to take nR = 0, but one application of nR > 0 is
to study the effect of vaccination; this was done in a related situation in [21] and we leave
the corresponding corollaries of the results below to the reader. Note that initially recovered
vertices are not themselves affected by the epidemic, but they influence the structure of the
graph and thus the course of the epidemic, so we cannot just ignore them.

The basic reproductive ratio R0 is commonly used in the context of epidemic models, and
defines the average number of new cases created by a case of infection. In analogy with the
limiting case in [21, (2.23)], for the SIR epidemic on a random graph with a given degree
sequence, we define

R0 = R(n)
0 :=

βn
ρn + βn

∑∞
k=0(k − 1)knS,k∑∞

k=0 knk
. (2.1)

Here, the probability that an infective half-edge infects another half-edge before recovering
is βn

ρn+βn
, and the average increase in the number of infective half-edges due to such an

infection event is
∑

∞

k=0
(k−1)knS,k∑
∞

k=0
knk

, and these are approximately independent of one another,

and approximately independent for different half-edges.
Note that the basic reproductive ratio R0 determines the approximate geometric growth

rate of the disease during the early stages of the epidemic. The value R0 = 1 is therefore
the threshold for the epidemic to take off in the population, in the sense that, if R0 > 1,
then a macroscopic fraction of the susceptibles can be infected [2; 29; 35; 7; 21]. Here we
will consider the case where R0 = 1+ω(n)n−1/3, with ω(n) tending to infinity slowly (slower
than n1/3) as n→∞.

It turns out that, rather than working with the quantity R0 − 1, it is easier to work with
a quantity αn defined by

αn := −(1 + ρn/βn)
∞∑

k=0

knk/nS +
∞∑

k=0

k(k − 1)nS,k/nS. (2.2)

Note that

αn = (R0 − 1)
ρn + βn
βn

∑∞
k=0 knk
nS

. (2.3)

Our assumptions below imply that 1 6
ρn+βn
βn

= O(1) and that
∑

∞

k=0
knk

nS
is bounded and

bounded away from 0 as n → ∞, see Remark 2.8. Hence (R0 − 1)α−1
n is bounded and

bounded away from 0, and so αn is equivalent to R0 − 1 as a measure of distance from
criticality; see further (2.22). In particular, we could rephrase our assumptions and results
in terms of R0− 1 instead of αn, but it seems that the mathematics works out more cleanly
using αn. Also, we can expect an initial growth if and only if αn > 0.

We consider asymptotics as n → ∞, and all unspecified limits below are as n → ∞.
Throughout the paper we use the notation op in a standard way, as in [18]. That is, for
a sequence of random variables (Y (n))∞1 and real numbers (an)

∞
1 , ‘Y (n) = op(an)’ means

Y (n)/an
p−→ 0. Similarly, Y (n) = Op(1) means that, for every ε > 0, there exists Kε such
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that P(|Y (n)| > Kε) < ε for all n. Given a sequence of events (An)
∞
1 , An is said to hold

w.h.p. (with high probability) if P(An)→ 1.

Our assumptions are as follows. (See also the remarks below.) Let DS,n denote the degree
of a randomly chosen susceptible vertex, so P(DS,n = k) = nS,k/nS for each k > 0.

(D1) DS,n converges in distribution to a probability distribution (pk)
∞
k=0 with a finite and

positive mean λ :=
∑∞

k=0 kpk, i.e.

nS,k

nS
→ pk, k > 0. (2.4)

(D2) The third power DS,n is uniformly integrable as n→∞. That is, given ε > 0, there
exists M > 0 such that, for all n,

∑

k>M

k3nS,k

nS

< ε. (2.5)

(D3) The second moment of the degree of a randomly chosen vertex is uniformly bounded,
i.e.
∑∞

k=0 k
2nk = O(n).

(D4) As n→∞,

αn → 0 and nSα
3
n →∞. (2.6)

(D5) The total degree
∑∞

k=0 knI,k of initially infective vertices satisfies

∞∑

k=0

knI,k = o(n), (2.7)

and the limit

ν := lim
n→∞

1

nSα2
n

∞∑

k=0

knI,k ∈ [0,∞] (2.8)

exists (but may be 0 or ∞). Furthermore, either ν = 0 or

dI,∗ := max{k : nI,k > 1} = o
( ∞∑

k=0

knI,k

)
. (2.9)

(D6) We have p0 + p1 + p2 < 1.

(D7) lim infn→∞ nS/n > 0.

We will repeatedly use the fact that (D2) implies that there exists a constant c0 such that,
for all n,

∞∑

k=0

k3nS,k = nS ED
3
S,n 6 c0n. (2.10)

Remark 2.2. Assumption (D1) says DS,n
d−→ DS, where DS has distribution (pk)

∞
k=0. Given

(D1), assumption (D2) is equivalent to ED3
S,n → ED3

S < ∞. Furthermore, (D2) implies

uniform integrability of DS,n and D2
S,n, so EDS,n → EDS and ED2

S,n → ED2
S. Assumptions

(D2) and (D7) further imply that

dS,∗ := max{k : nS,k > 1} = o(n
1/3
S ). (2.11)
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Using the notation in Remark 2.2, λ = EDS. Furthermore, let

λ2 :=

∞∑

k=0

k(k − 1)pk = EDS(DS − 1), (2.12)

λ3 :=

∞∑

k=0

k(k − 1)(k − 2)pk = EDS(DS − 1)(DS − 2). (2.13)

Then, the uniform integrability (D2) of D3
S,n implies λ2, λ3 <∞ and furthermore

λ2 = lim
n→∞

EDS,n(DS,n − 1) = lim
n→∞

∞∑

k=0

k(k − 1)
nS,k

nS
, (2.14)

λ3 = lim
n→∞

EDS,n(DS,n − 1)(DS,n − 2) = lim
n→∞

∞∑

k=0

k(k − 1)(k − 2)
nS,k

nS
(2.15)

Also, λ, λ2, λ3 > 0 by (D6).

Let G∗ = G∗(n, (di)
n
1 ) be the random multigraph with given degree sequence (di)

n
1 defined

by the configuration model: we take a set of di half-edges for each vertex i and combine
half-edges into edges by a uniformly random matching (see e.g. [8]). Conditioned on the
multigraph being simple, we obtain G = G(n, (di)

n
1 ), the uniformly distributed random

graph with degree sequence (di)
n
1 . The configuration model has been used in the study of

epidemics in a number of earlier works, see, for example, [1; 4; 10; 12; 7]. As in many other
papers, including [21], we prove our results for the SIR epidemic on G∗, and, by conditioning
on G∗ being simple, we then deduce that these results also hold for the SIR epidemic on
G. The results below thus hold for both the random multigraph G∗ and the random simple
graph G.

This argument relies on the probability that G∗ is simple being bounded away from zero
as n → ∞; by the main theorem of [17] (see also [19]) this occurs provided condition (D3)
holds. Most of the results below are of the “w.h.p.’’ type (or can be expressed in this form);
then this transfer to the simple graph case is routine and will not be commented on further.
The exception is Theorem 2.4(iii), where we obtain a limiting probability strictly between 0
and 1, and we therefore need a more complicated argument, see Section 4; we also use an
extra assumption in this case.

We now state our main result, that, under the conditions above, the epidemic is either
very small, or of a size at least approximatively proportional to nαn (and thus to n(R0−1)).
As just said, the theorem holds for both the multigraph G∗ and the simple graph G.

Theorem 2.3. Suppose that (D1)–(D7) hold.
Let Z be the total number of susceptible vertices that ever get infected.

(i) If ν = 0, then there exists a sequence εn → 0 such that, for each n, w.h.p. one of the
following holds.
(a) Z/nSαn < εn (the epidemic is small and ends prematurely).
(b) |Z/nSαn − 2λ/λ3| < εn (the epidemic is large and its size is well concentrated).

(ii) If 0 < ν <∞, then Z/nSαn
p−→ λ(1 +

√
1 + 2νλ3)/λ3.
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(iii) If ν =∞, then

Z
(
nS

∑∞
k=0 knI,k

)1/2
p−→
√
2 λ√
λ3

(2.16)

Moreover, in cases (i)(b), (ii) and (iii), the following holds. Let Zk be the number of degree
k > 0 susceptible vertices that ever get infected. Then

∞∑

k=0

∣∣∣∣
Zk
Z −

kpk
λ

∣∣∣∣
p−→ 0. (2.17)

Thus, (2.17) says that, except in the case (i)(a), the total variation distance between the
degree distribution (Zk/Z) of the vertices that get infected and the size-biased distribution
(kpk/λ) converges to 0 in probability.

Note that case (i) of Theorem 2.3 says that, for a range of initial values of the number of
infective half-edges (viz. when ν = 0), if the epidemic takes off at all, then it has approx-
imately the size (2λ/λ3)nSαn. Hence, in this range, the size of the epidemic does (to the
first order) not depend on the initial number of infective half-edges (only the probability of
a large outbreak does), so this can be seen as the “natural” size of an epidemic. This also
means that in this range, most of the outbreak can be traced back to a single initial infective
half-edge.

However, when the initial number of infective half-edges number gets larger, the many
small outbreaks coming from the different initially infective half-edges will add up to a
substantial outbreak. So there is a threshold where this bulk of combined small outbreaks is
of about the same size as the “natural” size of a large outbreak. The value ν is, in the limit
as n → ∞, the ratio of the initial number divided by this threshold, so it shows, roughly,
whether the combined small outbreaks give a large contribution to the outbreak or not. Our
theorem then shows that, if the initial number of infective half-edges is larger (to be precise,
ν > 0), then they force a larger outbreak, with a size that is proportional to the square root
of the initial number of infective half-edges in the range ν =∞. (For 0 < ν <∞, there is a
smooth transition between the two extremal cases.)

The following result gives conditions for the occurrence of a large epidemic in Theo-
rem 2.3(i). In anticipation of later notation, let XI,0 :=

∑∞
k=0 knI,k be the total degree of

initially infective vertices (i.e. the total number of initially infective half-edges).

Theorem 2.4. Suppose that the assumptions of Theorem 2.3 are satisfied with ν = 0.

(i) If αnXI,0 → 0, then Z = op(α
−2
n ) = op(nSαn), and thus case (i)(a) in Theorem 2.3

occurs w.h.p.
(ii) If αnXI,0 →∞ then case (i)(b) in Theorem 2.3 occurs w.h.p.
(iii) Suppose that αnXI,0 is bounded above and below. In the simple graph case, assume also

that
∑

k>1 k
2nI,k = o(n) and

∑
k>α−1

n
k2nR,k = o(n). Then both cases (i)(a) and (i)(b)

in Theorem 2.3 occur with probabilities bounded away from 0 and 1. Furthermore, if
dI,∗ = o(XI,0), then the probability that case (i)(a) in Theorem 2.3 occurs is

exp
(
−λ2 + λ+

∑∞
k=0 knR,k/nS

λ2λ3
αnXI,0

)
+ o(1). (2.18)

Moreover, in the case the epidemic is small, Z = Op

(
α−2
n

)
.
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Note that
∑∞

k=0 knR,k/nS in (2.18) is bounded because of (D3) and (D7), and that (2.18)
holds in cases (i) and (ii) too. A more complicated formula extending (2.18) holds also in
the case when the condition dI,∗ = o(XI,0) fails, see (4.63) in Remark 4.4.

Remark 2.5. The quantity ν > 0 controls the initial number of infective contacts. If ν > 0,
so a large epidemic occurs by Theorem 2.3, then

αnXI,0 = αn

∞∑

k=0

knI,k = (nSα
3
n)

∑∞
k=0 knI,k

nSα2
n

→∞,

by (2.6) and (2.8); hence the condition in Theorem 2.4(ii) holds automatically when ν > 0.

Remark 2.6. The condition (2.7) that the total degree of initally infective vertices is o(n)
is, by (D3) and the Cauchy–Schwarz inequality, equivalent to nI = o(n), at least if we ignore
isolated infective vertices. Note that the opposite case, when nI/n has a strictly positive
limit, is treated in [21, Theorems 2.6 and 2.7] (under otherwise similar assumptions).

Remark 2.7. The assumption (2.9) (which is required only when ν > 0) says that no single
infective vertex has a significant fraction of the total infective degree.

Remark 2.8. Assuming (D1) and (D2), the assumption αn → 0 in (D4) is equivalent to
R0 → 1, as said above. To see this, note that (D1) and (D2) imply (see Remark 2.2)

∞∑

k=0

knk/nS >

∞∑

k=0

knS,k/nS = EDS,n → EDS = λ > 0. (2.19)

If αn → 0, then (2.19) and (2.3) imply that R0 → 1.
Conversely, still assuming (D1) and (D2), if R0 → 1, then it follows easily from (2.1) that

ρn/βn = O(1), (2.20)

and also that
∞∑

k=0

knk = O
( ∞∑

k=0

(k − 1)knS,k

)
= O(nS). (2.21)

Hence, (2.3) implies that αn → 0.
To be precise, (2.3) and (2.1) yield by (2.14) and R0 → 1,

αn =
R0 − 1

R0

∑∞
k=0(k − 1)knS,k

nS
=
(
1 + o(1)

)
λ2(R0 − 1). (2.22)

Note that by combining the two parts of the argument, we have shown that our assump-
tions (D1), (D2) and (D4) imply (2.20) and the complementary bounds (2.19) and (2.21).
(This can also easily be seen using (2.2).)

Remark 2.9. We saw in Remark 2.8 that (D1), (D2) and (D4) imply (2.21). Since n−n0 6∑∞
k=0 knk, it follows that n − n0 = O(nS). Hence, assumption (D7) is needed only to the

exclude the rather trivial case that almost all of the population consist of isolated infective
vertices, which cannot spread the epidemic. Note also that (D7) implies that it does not
matter whether we use nS or n in estimates such as (2.11).
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2.1. G(n, p) and G(n,m). The results above apply to the graphs G(n, p) and G(n,m) by
conditioning on the sequence of vertex degrees (which are now random), since given the
vertex degrees, both G(n, p) and G(n,m) are uniformly distributed over all (simple) graphs
with these vertex degrees. Moreover, if n→∞ and p ∼ λ/n, or m ∼ nλ/2, for some λ > 0,
then the degree distribution is asymptotically Poisson Po(λ). For G(n, p), this leads to the
following result.

Corollary 2.10. Suppose that βn > 0 and ρn > 0 for each n ∈ N. Let λ > 1, and assume
that βn+ρn

βn
→ λ as n→∞. Let ηn → 0, and consider the SIR epidemic on the random graph

G(n, λ(1+ηn)
n

) with infection rate βn and recovery rate ρn. Suppose that there are nI = o(n)
initially infective vertices chosen at random, and all the other vertices are susceptible. Let

γn := 1− βn + ρn
λβn

+ ηn − (1 + ηn)
nI

n
. (2.23)

Then γn → 0. Assume that nγ3n →∞, and that µ = lim nI

nγ2n
exists.

(i) If µ = 0, then there exists a sequence εn → 0 such that for each n, w.h.p. one of the
following holds.
(a) Z/(nγn) < εn.
(b) |Z/(nγn)− 2| < εn.
Moreover, the probability that (a) holds is

exp
(
−(1 + λ−1)γnnI

)
+ o(1). (2.24)

In particular, (a) holds w.h.p. if γnnI → 0 and (b) holds w.h.p. if γnnI →∞.

(ii) If 0 < µ <∞, then Z/nγn
p−→ 1 +

√
1 + 2µ.

(iii) If µ =∞, then

Z
(nSnI)1/2

p−→
√
2.

The same holds for G(n,m) with m = nλ(1 + ηn)/2.

Proof. As said above, we condition on the vertex degrees. We have nS,k/nS
p−→ pk :=

P(Po(λ) = k) for every k; for convenience, we use the Skorohod coupling theorem [22, Theo-
rem 4.30] so we may assume that this holds a.s. for each k; thus (2.4) holds a.s. Similarly we
may assume that

∑
k k

4nk/n converges a.s., and then (D2) and (D3) hold a.s. Furthermore,
αn is now random, and it is easy to see from (2.2) that

nS

n
αn = −βn + ρn

βn
(1 + ηn)λ+

(
(1 + ηn)λ

)2(
1− nI

n

)
+Op

(
n−1/2

)

= (1 + ηn)λ
2γn +Op

(
n−1/2

)
=
(
λ2 + op(1)

)
γn. (2.25)

Repeating the Skorohod trick, we may thus assume also that αn/γn → λ2. Similarly we may

assume XI,0 =
∑

k knI,k =
(
1 +O(n

−1/2
I )

)
λnI, and then (2.8) holds with ν = µ/λ3; it is also

easy to see that (2.9) may be assumed. Then all the conditions (D1)–(D7) hold a.s., and the
result follows as a consequence of Theorems 2.3 and 2.4, noting that DS ∼ Po(λ), and thus
λ2 = λ2 and λ3 = λ3. �
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3. Proof of Theorem 2.3

3.1. Simplifying assumptions. We assume for convenience that nI = o(n). In fact, we
may assume that nI,0 = 0 by deleting all initially infective vertices of degree 0, since these
are irrelevant; then nI = o(n) as a consequence of (2.7). Note that this will not affect R0,
αn, ν or the other constants and assumptions above.

Similarly, we assume that initially there are no recovered vertices, that is nR = 0. It is easy
to modify the proofs below to handle the case nR > 1. Alternatively, we may observe that
our results in the case nR = 0 imply the corresponding results for general nR by the following
argument. (See [16] for similar arguments in a related situation.) We replace each initially
recovered vertex of degree k by k separate susceptible vertices of degree 1, so there are a total
of XR,0 :=

∑∞
k=0 knR,k additional “fake” susceptible vertices of degree 1; this will not change

the course of the epidemic (in the multigraph case) except that some of these fake susceptible
vertices will be infected. (Note that they never can infect anyone else.) The alteration will
not affect R0, although αn and the asymptotic distribution (pk) will be modified. Note that
XR,0 = O(nS) by (D3) and (D7); by considering suitable subsequences we may thus assume
that XR,0/nS → r for some r ∈ [0,∞). It is easy see that the modified degree distribution
satisfies all the assumptions above and that, if we use a prime to indicate quantities after the
replacement, then n′

S = nS+XR,0 ∼ (1+ r)nS, α
′
n ∼ αn/(1+ r), n

′
Sα

′
n = nSαn, ν

′ = (1+ r)ν,
p′1 = (p1 + r)/(1 + r), p′k = pk/(1 + r) for k 6= 1, λ′ = (λ + r)/(1 + r), λ′2 = λ2/(1 + r),
λ′3 = λ3/(1 + r).

If case (i)(a) in Theorem 2.3 occurs for the modified process, it occurs for the original
process too, since Z 6 Z ′, and there is nothing more to prove.

In the other cases, we have Z ′ → ∞ w.h.p. We note that of the n′
S,1 = nS,1 + XR,0

susceptible vertices of degree 1, XR,0 are fake. Conditioned on the number Z ′
1 of susceptible

vertices of degree 1 that get infected, the number Z ′ − Z = Z ′
1 − Z1 of fake susceptible

vertices that get infected has a hypergeometric distribution, and, using e.g. Chebyshev’s
inequality, it follows that w.h.p. (leaving the simple modification when p1 = r = 0 to the
reader)

Z ′ − Z = Z ′
1 − Z1 =

XR,0

nS,1 +XR,0
Z ′

1 + o(Z ′) =
r

p1 + r
Z ′

1 + o(Z ′). (3.1)

By (2.17) and the relations above, this yields w.h.p.

Z ′ −Z =
r

p1 + r
Z ′

1 + o(Z ′) =
r

p1 + r

p′1
λ′
Z ′ + o(Z ′) =

r

λ+ r
Z ′ + o(Z ′). (3.2)

Consequently, w.h.p. Z/Z ′ = λ/(λ+ r) + o(1).
It is then easy to check that Theorem 2.3 and Theorem 2.4 for the original process both

follow from these results in the case with no initially recovered vertices.
We make these simplifying assumptions nI = o(n) and nR = 0 throughout this section

(and the following one), in addition to (D1)–(D7). In particular, nI + nR = o(n), and thus
(D7) is strengthened to

nS/n→ 1. (3.3)

We may also assume αn > 0, by ignoring some small n if necessary. Finally, recall that in
the proofs we first consider the random multigraph G∗.
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3.2. Time-changed epidemic on a random multigraph. We first study the epidemic
on the configuration model multigraph G∗, revealing its edges (i.e. pairing off the half-edges)
while the epidemic spreads, as in [21] (see other variants in [1; 4; 12; 7]). We call a half-edge
susceptible, infective or recovered according to the type of vertex it is attached to. Unpaired
half-edges are said to be free. Initially, each vertex i has di half-edges and all of them are
free.

Each free infective half-edge chooses a free half-edge at rate βn > 0, uniformly at random
from among all the other free half-edges. Together the pair form an edge, and are removed
from the set of free half-edges. If the chosen free half-edge belongs to a susceptible vertex
then that vertex becomes infective. Infective vertices recover at rate ρn > 0.

We stop the process when no infective free half-edges remain, which is the time when the
epidemic stops spreading. Some infective vertices may remain but they trivially recover at
i.i.d. exponential times. Some free susceptible and recovered half-edges may also remain.
These could be paired uniformly to reveal the remaining edges in G∗, if desired. However,
this step is irrelevant for the course of the epidemic.

In order to prove our results, we perform a time change in the process: when in a state
with xI > 1 free infective half-edges, and a total of x free half-edges of any type, we multiply
all transition rates by (x−1)/βnxI (this multiple is at least 1/(2βn), since xI > 1 implies that
x > 2). Then each free susceptible half-edge gets infected at rate 1, each infective vertex
recovers at rate ρn(x− 1)/βnxI, and each free infective half-edge pairs off at rate (x− 1)/xI.

In the time changed process, let St, It and Rt denote the numbers of susceptible, infective
and recovered vertices, respectively, at time t > 0. Let St(k) be the number of susceptible
vertices of degree k > 0 at time t. Then St =

∑∞
k=0 St(k) is decreasing and Rt is increasing

in t. Moreover, S0(k) = nS,k, I0 = nI and R0 = nR = 0.
Also, we let XS,t, XI,t and XR,t be the numbers of free susceptible, infective and recov-

ered half-edges, respectively, at time t. Then XS,t =
∑∞

k=0 kSt(k) is decreasing, XS,0 =∑∞
k=0 knS,k, XI,0 =

∑∞
k=0 knI,k and XR,0 = 0 (by our simplifying assumptions in Section 3.1).

We denote the duration of the time-changed epidemic by

T ∗ := inf{t > 0 : XI,t = 0}. (3.4)

At time T ∗, we simply stop, as said above. (The last infection may have occurred somewhat
earlier, since the last free infective half-edge may have recovered or paired of with an infective
or recovered half-edge. It follows e.g. from (3.10) below that the last actual infection w.h.p.
did not happen much earlier, but this is irrelevant for our results, and we use (3.4) as the
definition.)

3.3. Concentration of measure. We will show that St(k),XS,t,XI,t andXR,t are uniformly
close to certain deterministic functions. Let

hS,n(t) :=
∞∑

k=0

knS,ke
−kt, (3.5)

hR,n(t) :=
ρn
βn
e−t(1− e−t)

∞∑

k=0

knk, (3.6)

12



hI,n(t) := e−2t
∞∑

k=0

knk − hS,n(t)− hR,n(t). (3.7)

Theorem 3.1. Let α̃n be any numbers with αn 6 α̃n = o(1) such that

∞∑

k=0

k2nI,k = o
(
n2α̃4

n

)
. (3.8)

Then, for any fixed t0 <∞,
∞∑

k=0

sup
t6α̃nt0∧T ∗

|St(k)− nS,ke
−kt| = op(nα̃

2
n), (3.9)

sup
t6α̃nt0∧T ∗

|XS,t − hS,n(t)| = op(nα̃
2
n), (3.10)

sup
t6α̃nt0∧T ∗

|XR,t − hR,n(t)| = op(nα̃
2
n), (3.11)

sup
t6α̃nt0∧T ∗

|XI,t − hI,n(t)| = op(nα̃
2
n). (3.12)

The above result establishes concentration on time intervals of length O(α̃n). In Sec-
tion 3.4, we use it to show that, for a suitable choice of α̃n, the duration of the epidemic
satisfies T ∗ = O(α̃n) w.h.p. It follows that the theorem then holds also with t0 = ∞, see
Remark 3.6.

The remainder of this subsection contains the proof of Theorem 3.1. We first need two
lemmas concerning the evolution of the number of susceptible vertices and the total number
of free half-edges.

In the time-changed epidemic, each free susceptible half-edge gets infected at rate 1, until
T ∗. We further modify the process so that free susceptible half-edges continue to be infected
at rate 1 even when there are no more free infective half-edges. Let S̃t(k) be the number of

susceptible individuals of degree k in the modified process. Then (S̃t∧T ∗(k) : k ∈ Z
+, t > 0)

has the same distribution as (St∧T ∗(k) : k ∈ Z
+, t > 0), and so, to prove (3.9) and (3.10), it

suffices to prove that
∞∑

k=0

sup
t6α̃nt0

|S̃t(k)− nS,ke
−kt| = op(nα̃

2
n), (3.13)

and

sup
t6α̃nt0

|X̃S,t − hS,n(t)| = op(nα̃
2
n), (3.14)

where X̃S,t =
∑∞

k=0 kS̃t(k). For each t, let

Wt :=
∞∑

k=0

k2(S̃t(k)− nS,ke
−kt). (3.15)

Lemma 3.2. Fix t0 <∞ and assume αn 6 α̃n = o(1). Then E supt6α̃nt0 |Wt| = o(nα̃n), and
hence

E sup
t6α̃nt0∧T ∗

∣∣∣∣
∞∑

k=0

k2(St(k)− nS,ke
−kt)

∣∣∣∣ = o(nα̃n).
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Proof of Lemma 3.2. We enumerate the initially susceptible vertices as i = 1, 2, . . . , nS and
denote by dS,i the degree of initially susceptible vertex i. Let Li be the time at which
initially susceptible vertex i becomes infective (in the modified process). Then each Li has
exponential distribution with rate dS,i, and the Li (i = 1, 2, . . . , nS) are all independent of
one another. It follows that, for each fixed t, the random variables Fi,t := d2S,i(1Li>t−e−tdS,i)
each have mean zero and are all independent. Note that Wt =

∑nS

i=1 Fi,t.
Each |Fi,t| is bounded by d2S,∗, where, as in (2.11), dS,∗ = maxi dS,i. Hence, by Bernstein’s

inequality for sums of bounded independent centred random variables, see e.g. [25, Theorem
2.7] or [9, (2.10)], for each a > 0,

P(|Wt| > a) = P

(∣∣∣
nS∑

i=1

Fi,t

∣∣∣ > a

)
6 2 exp

(
− a2

2
∑nS

i=1 EF
2
i,t + 2ad2S,∗/3

)
. (3.16)

Now, for any t 6 α̃nt0, using (2.10),

2

nS∑

i=1

EF 2
i,t = 2

nS∑

i=1

d4S,iVar
(1Li>t

)
6 2

nS∑

i=1

d4S,i
(
1− e−tdS,i

)

6 2d2S,∗t

nS∑

i=1

d3S,i 6 2t0α̃nd
2
S,∗

∑

k

k3nS,k 6 2c0t0α̃nnd
2
S,∗. (3.17)

Furthermore, α̃nn
1/3 > αnn

1/3 →∞ and so by (2.11),

dS,∗ = o
(
n1/3

)
= o
(
(nα̃n)

1/2
)
. (3.18)

Thus, for n sufficiently large, dS,∗ 6 (nα̃n)
1/2, and then for any u > 2c0t0 and a =

u(nα̃n)
1/2dS,∗, by (3.17),

exp

(
− a2

2
∑nS

i=1 EF
2
i,t + 2ad2S,∗/3

)
6 exp

(
− u2

2c0t0 + 2udS,∗/3(nα̃n)1/2

)

6 exp

(
− u2

2c0t0 + u

)
6 exp (−u/2) .

Hence, by (3.16), for n sufficiently large and for each each t 6 t0α̃n and u > 2c0t0,

P(|Wt| > u(nα̃n)
1/2dS,∗) 6 2 exp (−u/2) . (3.19)

Note also that (nα̃n)
1/2dS,∗ = o(nα̃n) by (3.18). Let ωn be an integer valued function

such that ωn → ∞ and (nα̃n)
1/2dS,∗ωn = o(nα̃n). We divide the interval [0, t0α̃n] into

ωn subintervals [τl, τl+1], where τl = lt0α̃n/ωn for l = 0, . . . , ωn − 1.
Since S̃t(k) and e

−kt are both decreasing in t, each of the sums
∑∞

k=0 k
2S̃t(k) and

∑∞
k=0 k

2nS,ke
−kt

is also decreasing in t. Thus, for any 0 6 l < ωn,

sup
τl6t6τl+1

|Wt| 6
∣∣∣∣∣

∞∑

k=0

k2(S̃τl(k)− nS,ke
−kτl+1)

∣∣∣∣∣ +
∣∣∣∣∣

∞∑

k=0

k2(S̃τl+1
(k)− nS,ke

−kτl)

∣∣∣∣∣

6 |Wτl|+ |Wτl+1
|+ 2

∞∑

k=0

k2nS,k(e
−kτl − e−kτl+1)
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6 |Wτl|+ |Wτl+1
|+ 2

∞∑

k=0

k3nS,k(τl+1 − τl),

and so, since
∑∞

k=0 k
3nS,k 6 c0n and τl+1 − τl = t0α̃n/ωn = o(α̃n), noting W0 = 0,

sup
t6α̃nt0

|Wt| = max
l<ωn

sup
τl6t6τl+1

|Wt| 6 2 max
16l6ωn

|Wτl|+ o(nα̃n). (3.20)

Now, for n sufficiently large and u > 2c0t0, by (3.19),

P

(
max
16l6ωn

|Wτl| > u(nα̃n)
1/2dS,∗

)
6 2ωn exp(−u/2). (3.21)

For sufficiently large n, 2ωn > ec0t0 , and then (3.21) holds trivially for u < 2c0t0 too. Hence,
for large n,

E max
16l6ωn

|Wτl | = (nα̃n)
1/2dS,∗

∫ ∞

0

P

(
max
16l6ωn

|Wτl| > u(nα̃n)
1/2dS,∗

)
du

6 (nα̃n)
1/2dS,∗

∫ ∞

0

2ωne
−u/2du

= 4(nα̃n)
1/2dS,∗ωn = o(nα̃n), (3.22)

and hence also E supt6α̃nt0 |Wt| = o(nα̃n) by (3.20). �

We now prove a concentration of measure result for the total number Xt of free half-edges.

Lemma 3.3. For every fixed t0 > 0, and αn 6 α̃n = o(1),

sup
t6α̃nt0∧T ∗

∣∣∣Xt − e−2t

∞∑

k=0

knk

∣∣∣ = op(nα̃
2
n). (3.23)

Proof. When in a state with xI > 1 free infective half-edges, and thus x > 2 free half-edges
in total, each free infective half-edge pairs off at rate (x − 1)/xI, and so the number of free
half-edges decreases by 2 at rate x−1. We modify the process so that pairs of free half-edges
still disappear at rate x − 1 when there are no more free infective half-edges (as long as
x > 2). Let X̃t be the number of free half-edges at time t in the modified process. Then it
suffices to prove that

sup
t6α̃nt0

∣∣∣X̃t − e−2t

∞∑

k=0

knk

∣∣∣ = op(nα̃
2
n).

Now, X̃t − 1 is a linear death chain starting from
∑∞

k=0 knk − 1, and taking jumps from
state j to j − 2 at rate j. By [20, Lemma 6.1], with d = 2, γ = 1, and x =

∑∞
k=0 knk − 1,

E sup
t6α̃nt0

∣∣∣(X̃t − 1)− e−2t
( ∞∑

k=0

knk − 1
)∣∣∣

2

6 16(e2α̃nt0 − 1)
∞∑

k=0

knk + 32.

But
∑∞

k=0 knk = O(n) by (D3), α̃nt0 = o(1) and nα̃n > nαn → ∞ by (D4), so the right-

hand side is O(nα̃n), and so supt6α̃nt0

∣∣X̃t − e−2t
∑∞

k=0 knk
∣∣ = Op

(√
nα̃n

)
= op(nα̃

2
n), using

(D4). �
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Proof of Theorem 3.1. We start by proving (3.10), and, as remarked after the statement of
Theorem 3.1, it is enough to prove that

sup
t6α̃nt0

∣∣∣
∞∑

k=0

kS̃t(k)− hS,n(t)
∣∣∣ = op(nα̃

2
n). (3.24)

Now, for each k, (S̃t(k)) is a linear death chain starting from nS,k and decreasing by 1 at
rate kx when in state x, and so

S̃t(k) = nS,k − k
∫ t

0

S̃u(k)du+ M̃t(k), (3.25)

where M̃(k) = (M̃t(k)) is a zero-mean martingale. It follows that
∞∑

k=0

kS̃t(k)− hS,n(t) =
∞∑

k=0

k(S̃t(k)− nS,ke
−kt)

= −
∞∑

k=0

k2
∫ t

0

(S̃u(k)− nS,ke
−ku)du+ M̃t

= −
∫ t

0

Wudu+ M̃t, (3.26)

where M̃t =
∑

k kM̃t(k) defines a zero-mean martingale M̃ = (M̃t).

Since S̃t(k) and S̃t(j) with k 6= j never jump simultaneously, we have [M̃(k), M̃(j)] = 0,
where [·, ·] is the quadratic covariation, see e.g. [22, Theorem 26.6]. Since also each jump of
S̃t(k) is by −1, the quadratic variation [M̃ ]t := [M̃, M̃ ]t is

[M̃ ]t =
∞∑

k=0

k2[M(k)]t =
∞∑

k=0

k2
∑

u6t

(∆S̃u(k))
2

= −
∞∑

k=0

k2
∑

u6t

(∆S̃u(k)) =
∞∑

k=0

k2(nS,k − S̃t(k))

=
∞∑

k=0

k2(nS,ke
−kt − S̃t(k) + nS,k(1− e−kt))

6

∣∣∣
∞∑

k=0

k2(S̃t(k)− nS,ke
−kt)

∣∣∣+ t
∞∑

k=0

k3nS,k

= |Wt|+O(tn),

again using (2.10). By Lemma 3.2, E supt6α̃nt0 |Wt| = o(nα̃n), so

E[M̃ ]α̃nt0 = O(nα̃n), (3.27)

and so, using the Burkholder–Davis–Gundy inequalities [22, Theorem 26.12], supt6α̃nt0 |M̃t| =
Op(
√
nα̃n). Hence by (3.26) and Lemma 3.2, uniformly in t 6 α̃nt0,

∣∣∣
∞∑

k=0

k(S̃t(k)− nS,ke
−kt)

∣∣∣ 6
∣∣∣
∫ t

0

Wudu
∣∣∣+Op(

√
nα̃n)
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6 α̃nt0 sup
t6α̃nt0

|Wt|+Op(
√
nα̃n)

= op(nα̃
2
n),

using again (D4). This establishes (3.10).
Next we prove (3.9). By [20, Lemma 6.1] with d = 1 and γ = k and x = nS,k, for k 6 α̃−1

n ,

E sup
t6α̃nt0

|S̃t(k)− nS,ke
−kt|2 6 4(ekα̃nt0 − 1)nS,k 6 4kα̃nt0e

t0nS,k, (3.28)

where the last step uses the simple inequality ex − 1 6 xex for x > 0. For k > α̃−1
n , we

use the trivial bound |S̃t(k) − nS,ke
−kt| 6 nS,k. Using Jensen’s inequality and then the

Cauchy–Schwarz inequality, as well as (2.10) and (D4),

E

∞∑

k=0

sup
t6α̃nt0

|S̃t(k)− nS,ke
−kt| 6

∑

16k6α̃−1
n

(4kα̃nt0e
t0nS,k)

1/2 +
∑

k>α̃−1
n

nS,k

6 2(α̃nt0e
t0)1/2

(
∞∑

k=1

k−2
∞∑

k=1

k3nS,k

)1/2

+ α̃3
n

∞∑

k=1

k3nS,k

= O(
√
nα̃n) +O(nα̃3

n) = o(nα̃2
n),

which yields (3.13) and thus (3.9).

We now prove (3.11). The number of free recovered half-edges changes when either an
infective vertex recovers or a free infective half-edge pairs with a free recovered half-edge. In
the time-changed process, when in a state with xI free infective half-edges and x free half-
edges, infective vertices recover at rate ρn(x − 1)/βnxI. Also, each free recovered half-edge
is chosen to be paired at rate 1, and thus the number of recovered free half-edges decreases
by 1 at rate xR. Hence, for any t > 0,

XR,t∧T ∗ = XR,0 −
∫ t∧T ∗

0

XR,sds+
ρn
βn

∫ t∧T ∗

0

(Xs − 1)ds+MR,t∧T ∗ , (3.29)

where MR = (MR,t) is a zero-mean martingale.
On the other hand, differentiating (3.6) reveals that

h′R,n(t) = −hR,n(t) +
ρn
βn
e−2t

∞∑

k=0

knk. (3.30)

Hence, subtracting the integral of that expression from (3.29), and recalling that XR,0 = 0,

∣∣∣XR,t∧T ∗ − hR,n(t ∧ T ∗)
∣∣∣ 6

∫ t∧T ∗

0

|XR,s∧T ∗ − hR,n(s ∧ T ∗)|ds

+
ρn
βn

∫ t∧T ∗

0

∣∣∣Xs − 1− e−2s
∞∑

k=0

knk

∣∣∣ds+ |MR,t∧T ∗|.

Then Gronwall’s inequality yields

sup
t6α̃nt0∧T ∗

|XR,t − hR,n(t)| 6 eα̃nt0α̃nt0
ρn
βn

(
sup

t6α̃nt0∧T ∗

∣∣∣Xt − e−2t
∞∑

k=0

knk

∣∣∣+ 1

)
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+ eα̃nt0 sup
t6α̃nt0∧T ∗

|MR,t|. (3.31)

Since ρn/βn is bounded and α̃n → 0, the first term on the right-hand side is op(nα̃
2
n), by

(3.23). It remains to show that the same is true of the martingale term.
Note that XR,t jumps by −1 when a free recovered half-edge is paired with a free infective

half-edge, and it jumps by +k when an infective vertex with k free half-edges recovers. Also,
each recovered half-edge or vertex was either initially infective or was initially susceptible
and then became infected prior to recovery. Hence

E[MR]α̃nt0∧T ∗ = E[
∑

s6α̃nt0∧T ∗

(∆MR,s)
2]

6 E

∞∑

k=0

k
(
nI,k + nS,k − Sα̃nt0∧T ∗(k)

)
+ E

∞∑

k=0

k2
(
nI,k + nS,k − Sα̃nt0∧T ∗(k)

)

6 2

∞∑

k=0

k2nI,k + 2E

∞∑

k=0

k2
(
nS,k − Sα̃nt0∧T ∗(k)

)

= 2

∞∑

k=0

k2nI,k + 2E

∞∑

k=0

k2
(
nS,k(1− e−k(α̃nt0∧T ∗)) + nS,ke

−k(α̃nt0∧T ∗) − Sα̃nt0∧T ∗(k)
)

6 2
∞∑

k=0

k2nI,k + 2α̃nt0

∞∑

k=0

k3nS,k + 2E
∞∑

k=0

k2
(
nS,ke

−k(α̃nt0∧T ∗) − Sα̃nt0∧T ∗(k)
)

= o
(
n2α̃4

n

)
+O(nα̃n) + o(nα̃n) = o

(
n2α̃4

n

)

by (3.8), (2.10), Lemma 3.2 and nα̃3
n > nα3

n → ∞, see (D4). Then, by the Burkholder–
Davis–Gundy inequalities, supt6α̃nt0∧T ∗ |MR,t| = op(nα̃

2
n), and (3.11) follows by (3.31).

Finally, (3.12) follows from (3.10), (3.11), (3.23), and the fact that XI,t = Xt − XS,t −
XR,t. �

3.4. Duration of the time-changed epidemic. We stated Theorem 3.1 using a rather
arbitrary α̃n, but from now on we fix it as follows. We distinguish between the cases ν <∞
and ν =∞, and introduce some further notation:

If 0 6 ν <∞, define

α̃n := αn, (3.32)

f(t) := ν + t− λ3
2
t2, (3.33)

κ := (1 +
√

1 + 2νλ3)/λ3. (3.34)

If ν =∞, define instead

α̃n :=
( ∞∑

k=0

knI,k/n
)1/2

, (3.35)

f(t) := 1− λ3
2
t2, (3.36)

κ :=
√

2/λ3. (3.37)
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Note that in both cases, κ is the unique positive root of f , and that f(t) > 0 on (0,κ) and
f(t) < 0 on (κ,∞); we have f(0) = 0 if ν = 0 but f(0) > 0 if ν > 0. Note further that in
the case ν =∞, α̃n/αn →∞ by (2.8); in particular, α̃n > αn except possibly for some small
n that we will ignore. Moreover, α̃n → 0 by (D4) (ν <∞) or (D5) (ν =∞).

Next, if ν <∞, then, by (2.8),
∞∑

k=0

knI,k = O
(
nSα

2
n

)
= O

(
nα̃2

n

)
, (3.38)

and if ν =∞, then by (3.35),
∞∑

k=0

knI,k = nα̃2
n. (3.39)

Hence, in both cases,
∞∑

k=0

knI,k = O
(
nα̃2

n

)
. (3.40)

Furthermore, if ν = 0 then (2.8) yields
∑

k knI,k = o
(
nα2

n

)
and thus

∞∑

k=0

k2nI,k 6

( ∞∑

k=0

knI,k

)2
= o
(
n2α̃4

n

)
, (3.41)

and if 0 < ν 6∞ then (2.9) and (3.40) imply
∞∑

k=0

k2nI,k 6 dI,∗

∞∑

k=0

knI,k = o
( ∞∑

k=0

knI,k

)2
= o
(
n2α̃4

n

)
. (3.42)

Hence, (3.8) holds in all cases.
We have verified that our choice of α̃n satisfies the conditions of Theorem 3.1, so Theo-

rem 3.1 applies. We use this to show a more explicit limit result for XI,t.

Lemma 3.4. For any fixed t0,

sup
t6t0∧(T ∗/α̃n)

∣∣∣XI,α̃nt

nα̃2
n

− f(t)
∣∣∣ p−→ 0. (3.43)

Proof. The idea is to combine Theorem 3.1 with a Taylor expansion of hI,n(t) around zero.
The first three derivatives of hI,n(t) are

h′I,n(t) = −2e−2t
∞∑

k=0

knk +
∞∑

k=0

k2nS,ke
−kt +

ρn
βn
e−t(1− 2e−t)

∞∑

k=0

knk, (3.44)

h′′I,n(t) = 4e−2t

∞∑

k=0

knk −
∞∑

k=0

k3nS,ke
−kt − ρn

βn
e−t(1− 4e−t)

∞∑

k=0

knk, (3.45)

h′′′I,n(t) = −8e−2t

∞∑

k=0

knk +

∞∑

k=0

k4nS,ke
−kt +

ρn
βn
e−t(1− 8e−t)

∞∑

k=0

knk. (3.46)

Hence, using (2.2), (3.3), (3.40) and α̃n → 0,

h′I,n(0) = −2
∞∑

k=0

knk +
∞∑

k=0

k2nS,k −
ρn
βn

∞∑

k=0

knk = nSαn −
∞∑

k=0

knI,k = nαn + o(nα̃n), (3.47)
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and similarly, using also (2.15),

h′′I,n(0) = 4
∞∑

k=0

knk −
∞∑

k=0

k3nS,k + 3
ρn
βn

∞∑

k=0

knk

= 3(1 + ρn/βn)
∞∑

k=0

knk +
∞∑

k=0

knS,k −
∞∑

k=0

k3nS,k +
∞∑

k=0

knI,k

= 3(1 + ρn/βn)
∞∑

k=0

knk −
∞∑

k=0

k(k − 1)(k − 2 + 3)nS,k +
∞∑

k=0

knI,k

= −3nSαn −
∞∑

k=0

k(k − 1)(k − 2)nS,k +O(nα̃2
n) = −nλ3 + o(n). (3.48)

Also, for t > 0,

|h′′′I,n(t)| 6 (8 + 7ρn/βn)

∞∑

k=0

knk +

∞∑

k=0

k4nS,ke
−kt = O(n) +

∞∑

k=0

k4nS,ke
−kt.

Hence, for any M > 1,
∫ α̃nt0

0

|h′′′I,n(t)| dt 6 O(nα̃n) + α̃nt0
∑

k6M

M4nS,k +
∑

k>M

k3nS,k

(
1− e−kα̃nt0

)

6 O(M4nα̃n) +
∑

k>M

k3nS,k = o(n) +
∑

k>M

k3nS,k.

Letting M →∞ slowly (so that M4α̃n = o(1)), and using (D2), we obtain

lim
n→∞

1

n

∫ α̃nt0

0

|h′′′I,n(t)| dt = 0. (3.49)

Now, by a Taylor expansion, for t > 0,

hI,n(α̃nt) = hI,n(0) + h′I,n(0)α̃nt+
1
2
h′′I,n(0)(α̃nt)

2 + 1
2

∫ α̃nt

0

(α̃nt− u)2h′′′I,n(u) du, (3.50)

and hence, using hI,n(0) =
∑

k knI,k, (3.47), (3.48) and (3.49), uniformly in t 6 t0,

hI,n(α̃nt) =
∞∑

k=0

knI,k + nαnα̃nt− 1
2
α̃2
nt

2nλ3 + o(nα̃2
n). (3.51)

If ν <∞, then α̃n = αn, and (3.51) yields by (2.8) and (3.3)

hI,n(α̃nt)

nα̃2
n

= ν + t− 1
2
t2λ3 + o(1) = f(t) + o(1). (3.52)

If ν =∞, then (3.51) yields similarly by (3.35) and αn = o(α̃n),

hI,n(α̃nt)

nα̃2
n

= 1− 1
2
t2λ3 + o(1) = f(t) + o(1). (3.53)

Consequently, in both cases hI,n(α̃nt)/nα̃
2
n = f(t) + o(1), uniformly for 0 6 t 6 t0, and the

result follows by combining this and (3.12) from Theorem 3.1. �
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We can now find (asymptotically) the duration T ∗, except that when ν = 0, we cannot
yet say whether the epidemic is very small or rather large.

Lemma 3.5. (i) If 0 < ν 6∞, then T ∗/α̃n
p−→ κ.

(ii) If ν = 0, then for every ε > 0, w.h.p., either
(a) 0 6 T ∗/αn < ε, or
(b) |T ∗/αn − κ| < ε.

In particular, in both cases, w.h.p. T ∗ 6 2κα̃n.

Proof. Take t0 = 2κ. Then f(t0) < 0, so (3.43) implies that P(T ∗/α̃n > t0) → 0, i.e.,
T ∗ < t0α̃n w.h.p. Consequently, we may w.h.p. take t = T ∗/α̃n in (3.43) and conclude∣∣XI,T ∗/nα̃2

n − f(T ∗/α̃n)
∣∣ p−→ 0. Since XI,T ∗ = 0 by definition, this says f(T ∗/α̃n)

p−→ 0.
Consider f(t) for t ∈ [0,∞). If ν > 0, then f(t) has a unique zero at κ, and is bounded

away from 0 outside every neighbourhood of κ; hence T ∗/α̃n
p−→ κ follows. If ν = 0,

f(t) = 0 both for t = 0 and t = κ, and (ii) follows. �

Remark 3.6. Lemma 3.5 shows that taking t0 := 2κ in Theorem 3.1, we have w.h.p.
α̃nt0 ∧ T ∗ = T ∗, and thus, for α̃n as above, Theorem 3.1 holds also with the suprema taken
over all t 6 T ∗.

3.5. Final size.

Proof of Theorem 2.3. Recall that Zk := nS,k−ST ∗(k) is the number of susceptibles of degree
k that ever become infected, and Z =

∑
k Zk. For each k ∈ Z

+,
∣∣∣∣
Zk
nα̃n
− kpk

T ∗

α̃n

∣∣∣∣ 6
∣∣∣∣
nS,k(1− e−kT ∗

)

nα̃n
− kpk

T ∗

α̃n

∣∣∣∣+
∣∣∣∣
ST ∗(k)− nS,ke

−kT ∗

nα̃n

∣∣∣∣ . (3.54)

Since |1− e−y − y| 6 y2 for all y > 0, and using (D1), (D2) and (3.3),
∞∑

k=0

∣∣∣(1− e
−kα̃nt)nS,k

nα̃n
− kpkt

∣∣∣ 6 t

∞∑

k=0

k|pk − nS,k/n|+ α̃nt
2

∞∑

k=0

nS,kk
2

n
→ 0,

uniformly in t 6 t0 := 2κ. Since T ∗/α̃n 6 t0 w.h.p. by Lemma 3.5, it follows that
∞∑

k=0

∣∣∣∣
nS,k(1− e−kT ∗

)

nα̃n
− kpk

T ∗

α̃n

∣∣∣∣ = op(1).

Further, by (3.9) in Theorem 3.1 and Lemma 3.5, see Remark 3.6,
∞∑

k=0

∣∣∣∣
ST ∗(k)− nS,ke

−kT ∗

nα̃n

∣∣∣∣ = op(α̃n) = op(1).

It follows by (3.54) that
∞∑

k=0

∣∣∣∣
Zk
nα̃n
− kpk

T ∗

α̃n

∣∣∣∣ = op(1) (3.55)

and, in particular,
∣∣∣∣
Z
nα̃n
− λT

∗

α̃n

∣∣∣∣ =
∣∣∣∣∣

∞∑

k=0

( Zk
nα̃n
− kpk

T ∗

α̃n

)∣∣∣∣∣ = op(1). (3.56)
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The estimate (3.56) and Lemma 3.5 yield the conclusions (i)–(iii) by (3.3) and the definitions
of α̃n and κ in (3.32)–(3.37). For (i), when ν = 0, we first obtain that if εn = ε > 0 is fixed
but arbitrary, then the conclusion holds w.h.p., and it is easy to see that this implies the
same for some sequence εn → 0. (Note also that if ν = 0, then κ = 2/λ3.)

Furthermore, combining (3.55) and (3.56), we obtain

∞∑

k=0

∣∣∣∣
Zk
nα̃n
− kpk

λ

Z
nα̃n

∣∣∣∣ = op(1). (3.57)

We have shown that, except in the case (i)(a), there exists ε > 0 such that w.h.p. Z/nα̃n > ε;
then (2.17) follows from (3.57). �

4. Proof of Theorem 2.4

We continue to use the simplifying assumptions in Section 3.1. We consider the epidemic
in the original time scale and construct it from independent exponential random variables.
At time t = 0, we allocate each of the nI initially infective vertices an Exp(ρn) recovery
time. We also give each free infective half-edge at time 0 an Exp(βn) pairing time. If the
pairing time for a free infective half-edge is less than the recovery time of its parent vertex,
then we colour that free half-edge red. Otherwise, we colour it black. We now wait until the
first recovery or pairing time. At a recovery time, we change the status of the corresponding
vertex to recovered. At a pairing time of a red free half-edge, we choose another free half-
edge uniformly at random. If the chosen free half-edge belongs to a susceptible vertex then
that vertex becomes infective, is given an Exp(ρn) recovery time, and its remaining free
half-edges are given independent Exp(βn) pairing times. Then, as above, we colour red any
free half-edge with pairing time less than recovery time, and colour black all other free half-
edges at the chosen vertex. The process continues in this fashion until no red free half-edges
remain. Note that we do nothing at the pairing time of a black free half-edge, since it is no
longer infective, and so black free half-edges behave like recovered free half-edges. Also, a
red free half-edge will definitely initiate a pairing event at some point (provided it has not
been chosen by another red free half-edge first). However, ignoring the colourings we obtain
the same process as before.

Let Zt be the number of red free half-edges at time t > 0. Note that Zt changes only at
pairing events, but not at recovery times. (The point of the colouring is to anticipate the
recoveries, which then can be ignored.) Further, let Z̄m := ZTm , where Tm is the time of
the m:th pairing event (and T0 := 0), and let ζm := ∆Z̄m := Z̄m − Z̄m−1. (Note that our
processes are all right continuous, so Z̄m is the number of red free half-edges immediately
after the m-th pairing has occurred and we have coloured any new infective free half-edges.)
Thus the process stops at Tm∗

, where m∗ := min{m > 0 : Z̄m = 0}. (This is not exactly
the same stopping condition as used earlier, but the difference does not matter; there may
still be some infective half-edges, but they are black and will recover before infecting any
more vertex.) Let Fm = F(Tm) be the corresponding discrete-time filtration generated by
the coloured SIR process up to time Tm.

We keep the same notation as before for the free half-edge counts (so the total number of
free infective half-edges, whether red or black, is XI,t > Zt, for example), and write again
St(k) for the number of susceptible vertices with k free half-edges at time t > 0. Furthermore,
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define

πn :=
βn

βn + ρn
, (4.1)

the probability that a given free infective half-edge is coloured red. Note that c 6 πn 6 1
for some c > 0 by (2.20).

We begin by showing that a substantial fraction of the initially infective half-edges are
red. Recall that XI,0 =

∑∞
k=0 knI,k is the total degree of the initially infective vertices and

that dI,∗ is the maximum degree among these vertices.

Lemma 4.1. Suppose that XI,0 →∞.

(i) If dI,∗ = o(XI,0), then Z0 = πnXI,0

(
1 + op(1)

)
.

(ii) More generally, for any dI,∗, we have

lim
δ→0

lim sup
n→∞

P

(
Z0 6 δXI,0

)
= 0. (4.2)

Proof. We enumerate all initially infective vertices as i = 1, . . . , nI, and let dI,i be the degree
of vertex i, so that XI,0 =

∑nI

i=1 dI,i. We also let Z0,i be the number of red free half-edges
at vertex i, so Z0 =

∑nI

i=1 Z0,i, where the Z0,i are independent, with EZ0,i = dI,iπn and
Z0,i 6 dI,i. It follows that EZ0 =

∑nI

i=1 EZ0,i = πnXI,0 and

VarZ0 =

nI∑

i=1

VarZ0,i 6

nI∑

i=1

d2I,i 6 dI,∗XI,0. (4.3)

(i): If dI,∗ = o(XI,0), then (4.3) yields VarZ0 = o(X2
I,0) = o((EZ0)

2), and thus Chebyshev’s
inequality yields Z0 = EZ0(1 + op(1)).

(ii): Take any δ > 0 with δ < 1
2
minn πn.

We assume first that dI,∗ 6 δ1/2XI,0. Then (4.3) and Chebyshev’s inequality yield

P(Z0 6 δXI,0) 6
VarZ0

(EZ0 − δXI,0)2
6

dI,∗XI,0

(1
2
πnXI,0)2

6 4π−2
n δ1/2 = 4

(ρn + βn
βn

)2
δ1/2. (4.4)

Assume now instead that dI,∗ > δ1/2XI,0. Fix one initially infective vertex of degree dI,∗,
let Z0,∗ be the number of red free half-edges at that vertex, and let R⋆ be its recovery time.
Then Z0 > Z0,∗, and so Z0 6 δXI,0 implies that Z0,∗ 6 δ1/2dI,∗. We have

P(Z0,∗ 6 δ1/2dI,∗) = P(Z0,∗ 6 δ1/2dI,∗, R⋆ 6 4δ1/2/βn) + P(Z0,∗ 6 δ1/2dI,∗, R⋆ > 4δ1/2/βn)

6 P(R⋆ 6 4δ1/2/βn) + P
(
Z0,∗ 6 δ1/2dI,∗ | R⋆ > 4δ1/2/βn

)
. (4.5)

Now,

P(R⋆ 6 4δ1/2/βn) = 1− e−4δ1/2ρn/βn 6 4δ1/2ρn/βn. (4.6)

Also, conditional on R⋆ = r, Z0,∗ has a binomial distribution with parameters dI,∗ and
1 − e−βnr. It follows that, conditional on R⋆ > 4δ1/2/βn, Z0,∗ stochastically dominates a

Bin(dI,∗, 1 − e−4δ1/2) random variable. For δ small enough, 1 − e−4δ1/2 > 2δ1/2, and so, by
Chebyshev’s inequality,

P

(
Z0,∗ 6 δ1/2dI,∗ | R⋆ >

4δ1/2

βn

)
6 P

(
Bin(dI,∗, 2δ

1/2) 6 δ1/2dI,∗

)
6

2δ1/2dI,∗
δd2I,∗

6
2

δXI,0
. (4.7)
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Combining (4.4), (4.5), (4.6) and (4.7), we see that if δ is small, then in both cases

P
(
Z0 6 δXI,0

)
6 4
(ρn + βn

βn

)2
δ1/2 +

2

δXI,0
,

and (4.2) follows, since XI,0 →∞ and ρn/βn = O(1) by (2.20). �

Lemma 4.2. Let (Wm)
∞
m=0 be a process adapted to a filtration (Fm)∞m=0, with W0 = 0, and

let τ 6∞ be a stopping time. Suppose that the positive numbers v, w > 0 are such that

E[∆Wm+1 | Fm] > v a.s. on {m < τ}, (4.8)

E[(∆Wm+1)
2] 6 w (4.9)

for every m > 0. Then, for any b > 0,

P

(
inf

06m6τ
Wm 6 −b

)
6

8w

bv
. (4.10)

Proof. Consider the Doob decomposition

Wm =Mm + Am, (4.11)

where Am :=
∑m

l=1 E[∆Wl | Fl−1] is predictable and Mm := Wm − Am is a martingale with
respect to (Fm). By the assumption (4.8), Am > mv a.s. when m 6 τ . Furthermore,

E[∆M2
m] = E[(∆Wm − E[∆Wm | Fm−1])

2] = E[(∆Wm)
2]− E(E[∆Wm | Fm−1])

2 6 w.

Thus, by Doob’s inequality, for any N > 1,

P

(
inf

N6m6(2N)∧τ
Wm 6 −b

)
6 P

(
inf

N6m62N
Mm 6 −b−Nv

)
6

E[M2
2N ]

(b+Nv)2
6

2Nw

(b+Nv)2
.

(4.12)

Summing over all powers of 2, we obtain

P

(
inf

16m6τ
Wm 6 −b

)
6

∞∑

k=0

P

(
inf

2k6m62k+1∧τ
Wm 6 −b

)
6

∞∑

k=0

2k+1w

(b+ 2kv)2

6
∑

2k6b/v

2k+1w

b2
+
∑

2k>b/v

2k+1w

22kv2
6

4(b/v)w

b2
+

4(v/b)w

v2
=

8w

bv
. �

Proof of Theorem 2.4(ii). Let δ > 0 be a small positive number chosen later. Define the
discrete stopping time m∗∗ by

m∗∗ := min
{
m > 0 : Z̄m = 0 or

∞∑

k=0

k2(nS,k − STm(k)) > δnαn

}
. (4.13)

Note that for m < m∗∗, the total number of free half-edges at time Tm is

XTm >

∞∑

k=0

kSTm(k) >
∞∑

k=0

knS,k − δnαn >

∞∑

k=0

knk − δnαn − o(nαn), (4.14)

since
∑∞

k=0 knI,k = o(nSα
2
n) = o(nαn) by (2.8) and (2.6). Similarly, for m < m∗∗,

Z̄m = ZTm 6 Z0 +
∞∑

k=0

k(nS,k − STm(k)) 6 Z0 + δnαn 6 δnαn + o(nαn), (4.15)
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since Z0 is bounded above by
∑∞

k=0 knI,k = o(nSα
2
n) = o(nαn).

At a pairing m + 1 6 m∗∗, a red free half-edge pairs with a free susceptible half-edge, or
with another red free half-edge, or with a black half-edge. In the first case, if the susceptible
half-edge belongs to a vertex of degree k, we get on the average πn(k− 1) new red free half-
edges; in the second case we instead lose one red free half-edge, in addition to the pairing red
free half-edge that we always lose. The probability of pairing with a susceptible half-edge
belonging to a vertex of degree k is kSTm(k)/XTm and the probability of pairing with another
red free half-edge is Z̄m/XTm. Hence, for m + 1 6 m∗∗, using (4.13)–(4.15), (4.1) and the
definition (2.1) of R0,

E[∆Z̄m+1 | Fm] > −1 + πn

∑∞
k=0(k − 1)kSTm(k)∑∞

k=0 knk
− Z̄m∑∞

k=0 knk − (δ + o(1))nαn

> −1 + πn

∑∞
k=0(k − 1)knS,k − δnαn∑∞

k=0 knk
− (δ + o(1))nαn∑∞

k=0 knk − (δ + o(1))nαn

> −1 +R0 − O(δαn).

Since (R0− 1)α−1
n is bounded away from 0 by (2.3) and Remark 2.8, this shows that as long

as δ is chosen small enough there exists some c1 > 0 such that if n is large and m < m∗∗,
then

E[∆Z̄m+1 | Fm] > c1αn. (4.16)

Furthermore, noting that the number of red free half-edges may change by at most k at a
jump if a red free half-edge pairs with a free susceptible half-edge at a vertex of degree k,
the expected square of any jump satisfies, for m < m∗∗,

E[(∆Z̄m+1)
2 | Fm] 6 4 +

∑∞
k=0 k

3nS,k∑∞
k=0 knk − (δ + o(1))nαn

6 c2, (4.17)

for some c2 > 0, uniformly in all large n, by assumption (D2).
LetWm = Z̄m∧m∗∗

−Z0. It follows from (4.16)–(4.17) that Lemma 4.2 applies with τ = m∗∗,
v = c1αn and w = c2.

Let a = an > 0 satisfy an →∞ and an = o
(
αn
∑∞

k=0 knI,k

)
as n→ ∞. Then Lemma 4.2

with b = an/αn yields

P

(
inf

06m6m∗∗

Wm 6 −an/αn
)

6
8c2
c1an

= o(1) (4.18)

and thus Wm∗∗
> −an/αn w.h.p. On the other hand, Lemma 4.1(ii) implies that P(Z0 6

an/αn)→ 0. Consequently, Z̄m∗∗
= Wm∗∗

+Z0 > 0 w.h.p. By (4.13), this means that w.h.p.∑∞
k=0 k

2(nS,k − STm∗∗

(k)) > δnαn, and thus that, for some time t before the epidemic dies
out,

∑∞
k=0 k

2(nS,k − St(k)) > δnαn.
The latter statement does not depend on the time-scale, so it holds for the time-changed

epidemic in Section 3.2 too. Thus, using the notation there, by the monotonicity of the
number of susceptibles, w.h.p.

∞∑

k=0

k2(nS,k − ST ∗(k)) > δnαn. (4.19)
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On the other hand, Lemma 3.2 (with α̃n = αn) and (2.10) yield, for any ε > 0,

sup
06t6εαn∧T ∗

∞∑

k=0

k2(nS,k − St(k)) 6 sup
t6εαn∧T ∗

∣∣∣
∞∑

k=0

k2(St(k)− nS,ke
−kt)

∣∣∣+ εαn

∞∑

k=0

k3nS,k

6 op(nαn) + εc0nαn. (4.20)

Consequently, if we first choose δ > 0 so small that (4.19) holds, and then ε < δ/c0, then

(4.19)–(4.20) imply that w.h.p. T ∗ > εαn. It follows by Lemma 3.5 that T ∗/αn
p−→ κ = 2/λ3,

and thus the result follows by (3.56). �

To study the cases (i) and (iii), we analyse the number of red free half-edges more carefully.
Let the random variable Y (k) be the number of new red free half-edges when a vertex of
degree k is infected. Given the recovery time τ of the vertex, Y (k) ∼ Bin

(
k − 1, 1− e−βnτ

)
,

and, since τ ∼ Exp(ρn), the probability 1 − e−βnτ has the Beta distribution B(1, ρn/βn).
Consequently, Y (k) has the beta-binomial distribution with parameters (k − 1, 1, ρn/βn).
More generally, if D is a positive integer valued random variable, then Y (D) denotes a
random variable that conditioned on D = k has the distribution Y (k). We have the following
elementary result, recalling the notation (4.1).

Lemma 4.3. For any positive integer valued random variable D,

EY (D) = πn(ED − 1), (4.21)

EY (D)2 =
π2
n E(D − 1)(2D − 3) + πn E(D − 1)

1 + πn
. (4.22)

Proof. For each k > 1, we obtain by conditioning on the recovery time τ ,

EY (k) = (k − 1)
1

1 + ρn/βn
= (k − 1)πn, (4.23)

EY (k)2 =
(k − 1)(2k − 2 + ρn/βn)

(1 + ρn/βn)(2 + ρn/βn)
=

(k − 1)(2k − 3)π2
n + (k − 1)πn

1 + πn
(4.24)

and (4.21)–(4.22) follows by conditioning on D. �

Let A be a constant, and consider onlym 6M := ⌊Aα−2
n ⌋. At pairing event m form 6M ,

the number of free half-edges is at least
∑

k knk−2Aα−2
n >

∑
k knk · (1−A1n

−1α−2
n ) for some

constant A1. Thus, the probability that a susceptible vertex with ℓ half-edges is infected is
at most, for A2 := 2A1 and large n,

ℓnS,ℓ∑
k knk · (1− A1n−1α−2

n )
6
(
1 + A2n

−1α−2
n

) ℓnS,ℓ∑
k knk

. (4.25)

Let D+ > 1 be a random variable with the distribution

P(D+ > j) := min

((
1 + A2n

−1α−2
n

)∑k>j knS,k∑
k knk

, 1

)
, j > 2, (4.26)

and let ζ+ := Y (D+)− 1. (Note that D+ and ζ+ depend on n, although we omit this from
the notation.) Then ζm := ∆Z̄m, conditioned on what has happened earlier, is stochastically
dominated by ζ+. Hence, there exist independent copies (ζ+m)

∞
1 of ζ+ such that ζm 6 ζ+m

for all m 6 M such that the epidemic has not yet stopped; furthermore, (ζ+m)
∞
1 are also

independent of Z0. If the epidemic stops at m∗ < M (because Zm∗
= 0 so there are no more
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pairing events), then we for convenience extend the definition of ζm and Z̄m to all m 6 M
by defining ζm := ζ+m for m > m∗, and still requiring ζm = ∆Z̄m. Consequently, ζm 6 ζ+m for
all m 6 M and thus the (possibly extended) sequence (Z̄m)

M
0 is dominated by the random

walk (Z̄+
m)

M
0 with Z̄+

m := Z0 +
∑m

i=1 ζ
+
i .

Next, observe that (4.26) implies

ED+ − 1 =

∞∑

j=2

P(D+ > j) >

∞∑

j=2

∑
k>j knS,k∑
k knk

=

∑
k(k − 1)knS,k∑

k knk
(4.27)

and also, since nα3
n →∞,

∞∑

j=2

P(D+ > j) 6

∞∑

j=2

(
1 + A2n

−1α−2
n

)∑k>j knS,k∑
k knk

=
(
1 + o(αn)

)∑
k(k − 1)knS,k∑

k knk
. (4.28)

It thus follows that

ED+ − 1 =
∞∑

j=2

P(D+ > j) =
(
1 + o(αn)

)∑
k(k − 1)knS,k∑

k knk
. (4.29)

Hence, using (4.21), (4.1), (2.1) and (2.22),

E ζ+ =
βn

βn + ρn
E(D+ − 1)− 1 =

(
1 + o(αn)

) βn
βn + ρn

∑
k(k − 1)knS,k∑

k knk
− 1

=
(
1 + o(αn)

)
R0 − 1 = R0 − 1 + o(αn) = λ−1

2 αn + o(αn). (4.30)

Note also that (4.26), using (2.4), (2.6), (2.7), shows that as n→∞, D+ d−→ D̂S, where D̂S

has the size-biased distribution P(D̂S = k) = kpk/λ. Moreover, it follows easily from (D2)
and (4.26) that D+ is uniformly square integrable as n→∞, and thus

E(D+)2 → E(D̂S)
2 =

∑∞
k=0 k

3pk∑∞
k=0 kpk

=
ED3

S

EDS

(4.31)

and similarly

ED+ → E D̂S =
ED2

S

EDS
. (4.32)

By (4.30) and αn → 0 we have E ζ+ → 0, and thus πn(ED
+ − 1)→ 1. Hence, by (4.32) (or

directly from (2.1)),

πn =
βn

βn + ρn
→ EDS

EDS(DS − 1)
=

λ

λ2
. (4.33)
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Since |ζ+| 6 D+, it follows that also ζ+ is uniformly square integrable as n→∞. Fur-
thermore, EY (D+) = 1 + E ζ+ = 1 + o(1) and thus, using (4.22) and (4.31)–(4.33),

Var ζ+ = Var(Y (D+)) = E(Y (D+)2)−
(
1 + o(1)

)2

=
π2
n

1 + πn
E(D+ − 1)(2D+ − 3) +

πn
1 + πn

E(D+ − 1)− 1 + o(1)

→ λ2

λ2(λ2 + λ)

EDS(DS − 1)(2DS − 3)

EDS
+

λ

λ2 + λ

EDS(DS − 1)

EDS
− 1

=
λ(2λ3 + λ2)

λ2(λ2 + λ)
+

λ2
λ2 + λ

− 1

=
2λλ3

λ2(λ2 + λ)
=: σ2. (4.34)

Now consider αn(Z̄
+
M − Z0 − M E ζ+) = αn

∑⌊Aα−2
n ⌋

i=1 (ζ+i − E ζ+). The summands are
i.i.d. with mean 0, and the uniform square integrability of ζ+ implies that the Lindeberg
condition holds; thus the central limit theorem [22, Theorem 5.12] applies and yields, using

(4.34), αn(Z̄
+
M − Z0 −M E ζ+)

d−→ N(0, Aσ2) as n→∞. Moreover, normal convergence of
the endpoint of a random walk implies Donsker-type convergence of the entire random walk
to a Brownian motion, see [22, Theorem 14.20]; hence,

αn

(
Z̄+

tα−2
n
− Z0 − tα−2

n E ζ+
)
→ σBt, (4.35)

where Bt is a standard Brownian motion and we have defined Z̄+
t also for non-integer t by

Z̄+
t := Z̄+

⌊t⌋. (We define Z̄t and Z̄−
t below in the same way.) Here the convergence is in

distribution in the Skorohod space D[0, A], but we may by the Skorohod coupling theorem
[22, Theorem 4.30] assume that the processes for different n are coupled such that a.s. (4.35)
holds uniformly on [0, A].

Moreover, α−1
n E ζ+ → λ−1

2 by (4.30), and thus (4.35) implies

αn

(
Z̄+

tα−2
n
− Z0

)
→ σBt + λ−1

2 t. (4.36)

Proof of Theorem 2.4(i). In this case, αnXI,0 → 0, and, since 0 6 Z0 6 XI,0, it follows
from (4.36) that αnZ̄

+

tα−2
n
→ σBt + λ−1

2 t, where (as said above) we may assume that the

convergence holds uniformly on [0, A] a.s. For any fixed δ > 0, the right-hand side is a.s.
negative for some t ∈ [0, δ], and thus w.h.p. αnZ̄

+

tα−2
n
< 0 for some t ∈ [0, δ]. Since Zm 6 Z̄m

it follows that w.h.p. m∗ 6 δα−2
n , i.e. the epidemic stops with Zm = 0 after at most δα−2

n

infections. Hence, w.h.p.
Z 6 m∗ 6 δα−2

n = o
(
nαn

)
. (4.37)

Since δ is arbitrary, this moreover shows Z = op
(
α−2
n

)
. �

Proof of Theorem 2.4(iii) in the multigraph case. We combine the upper bound Z̄+
m above

with a matching lower bound. Let x1, x2, . . . be an i.i.d. sequence of random half-edges,
constructed before we run the epidemic by drawing with replacement from the set of all
half-edges. Then, at the m:th pairing event, when we are to pair an infective red half-edge
ym, if xm still is free and xm 6= ym, we pair ym with xm; otherwise we resample and pair ym
with a uniformly chosen free half-edge 6= ym. Furthermore, we let ζ−m := −1 if xm is initially
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infective, and if xm belongs to an initially susceptible vertex of degree k, we let ζ−m be a copy
of Y (k)− 1 (independent of the history); if xm still is susceptible at the m:th pairing event
(and thus free, so we pair with xm), we may assume that ζ−m := ζm, the number of new red
free half-edges minus 1. Note that (ζ−m)m>1 is an i.i.d. sequence of random variables with the
distribution Y (D−)− 1, where D− has the distribution obtained by taking A2 = 0 in (4.26);
furthermore, (ζ−m)

∞
1 are independent of Z0. Let Z̄

−
m := Z0+

∑m
i=1 ζ

−
i . Note that (4.27)–(4.34)

hold for D− and ζ−m too (with some simplifications), and thus, in analogy with (4.36),

αn

(
Z̄−

tα−2
n
− Z0

)
→ σB−

t + λ−1
2 t, (4.38)

for some Brownian motion B−
t . We next verify that we can take the same Brownian motion

in (4.36) and (4.38).
Let ζ ′m := ζ−m − ζm. Thus ζ ′m = 0 if xm is susceptible at time Tm. If xm was initially

susceptible, with degree k, but has been infected, then ζ ′m 6 ζ−m + 2 6 k. If xm was initially
infected, then ζ−m = −1 and thus ζ ′m 6 ζ−m + 2 6 1.

Consider as above only m 6M := ⌊Aα−2
n ⌋, for some (large) constant A > 0. For m > m∗,

when the epidemic has stopped, we have defined ζm = ζ+m. Since ζ
±
m

d
= Y (D±)− 1 and D− is

stochastically dominated by D+, we may in this case assume that ζm = ζ+m > ζ−m, and thus
ζ ′m 6 0.

For m 6 M , the number of initially susceptible half-edges that have been infected is at
most, using (2.11) and (2.6), mdS,∗ = O

(
α−2
n dS,∗

)
= o
(
α−2
n n1/3

)
= o(n). Hence the number

of free half-edges at Tm is at least
∑

k knS,k − mdS,∗ = λn − o(n) > c3n for c3 := λ/2 if n
is large enough. It follows that the probability that a given initially susceptible vertex of
degree k has been infected before Tm is at most mk/(c3n), and the probability that one of
its half-edges is chosen as xm is at most k/(c3n) for every m 6M . Similarly, the probability
that xm is initially infective is at most XI,0/(c3n).

Hence it follows from the comments above, using (2.10) and the assumption αnXI,0 = O(1)
in (iii), that (ζ ′m)+ := max(ζ ′m, 0) has expectation

E(ζ ′m)+ 6

∞∑

k=0

nk
k

c3n
· mk
c3n
· k + XI,0

c3n
= O

(m
n

)
+ O

(α−1
n

n

)
= O

( 1

α2
nn

)
= o(αn). (4.39)

Let Z̄ ′ :=
∑M

1 (ζ ′m)+. Then, by (4.39),

E Z̄ ′ = o(Mαn) = o
(
α−1
n

)
. (4.40)

Furthermore, for m 6M ,

Z̄−
m = Z̄m +

m∑

j=1

ζ ′j 6 Z̄m + Z̄ ′ 6 Z̄+
m + Z̄ ′. (4.41)

Since (4.36) and (4.38) hold (in distribution), the sequence
(
αn
(
Z̄−

tα−2
n
− Z0

)
, αn
(
Z̄+

tα−2
n
−

Z0

))
, n > 1, is tight in D[0, A]×D[0, A]. Moreover, every subsequential limit in distribution

must be of the form
(
σB−

t + λ−1
2 t, σB+

t + λ−1
2 t
)
for some Brownian motions B−

t and B+
t .

Since αnZ̄
′ p−→ 0 by (4.40), it then follows from (4.41) that for any fixed t ∈ [0, A], B−

t 6 B+
t

a.s. Since B−
t and B+

t have the same distribution, this implies B−
t = B+

t a.s. for every fixed
t, and thus by continuity a.s. for all t ∈ [0, A].
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Since all subsequential limits thus are the same, this shows that (4.36) and (4.38) hold
jointly (in distribution) with B−

t = Bt. Finally, by (4.41) and (4.40), this implies

αn
(
Z̄tα−2

n
− Z0

) d−→ σBt + λ−1
2 t, in D[0, A]. (4.42)

Since the infimum is a continuous functional on D[0, A], it follows that

αn

(
inf
t6A

Z̄tα−2
n
− Z0

)
d−→ inf

t6A

(
σBt + λ−1

2 t
)
. (4.43)

For convenience, denote the left- and right-hand sides of (4.43) by Yn and Y . Since the
random variable Y has a continuous distribution, (4.43) implies that, uniformly in x ∈ R,

P
(
Yn 6 x

)
= P(Y 6 x) + o(1). (4.44)

The Brownian motion Bt in (4.42)–(4.43) is arbitrary, so we may and shall assume that Bt

is independent of everything else.
We have defined m∗ := min{m > 0 : Z̄m = 0} and M := ⌊Aα−2

n ⌋, and thus

P
(
m∗ 6M

)
= P

(
inf
t6A

Z̄tα−2
n

6 0
)
= P

(
Yn 6 −αnZ0

)
. (4.45)

Recall that ζ+m and ζ−m above are independent of Z0. Hence, if we fix two real numbers a
and b, and condition on the event Ea,bn := {a 6 αnZ0 < b}, then for every subsequence such
that lim infn→∞ P(Ea,bn ) > 0, the arguments above leading to (4.36), (4.38) and (4.42)–(4.44)
still hold. (We need lim infn→∞ P(Ea,bn ) > 0 in order to get a conditional version of (4.40).)
Consequently, P

(
Yn 6 x | Ea,bn

)
= P(Y 6 x)+o(1), and thus, recalling that Bt is independent

of Z0,

P
(
Yn 6 x and Ea,bn

)
= P(Y 6 x)P(Ea,bn ) + o(1) = P(Y 6 x and Ea,bn ) + o(1). (4.46)

On the other hand, (4.46) holds trivially if P(Ea,bn )→ 0. Every subsequence has a subsubse-
quence such that either lim infn→∞ P(Ea,bn ) > 0 or P(Ea,bn )→ 0, and in any case (4.46) holds
along the subsubsequence; it follows that (4.46) holds for the full sequence.

In particular, for any a and b,

P
(
Yn 6 −αnZ0 and Ea,bn

)
6 P

(
Yn 6 −a and Ea,bn

)
= P

(
Y 6 −a and Ea,bn

)
+ o(1)

6 P
(
Y 6 −αnZ0 + b− a and Ea,bn

)
+ o(1). (4.47)

By assumption, αnXI,0 is bounded, say αnXI,0 6 C for some constant C; thus 0 6 αnZ0 6

αnXI,0 6 C. Let δ > 0 and divide the interval [0, C] into a finite number of subintervals
[aj , bj ] with lengths bj − aj < δ. By summing (4.47) for these intervals, we obtain

P
(
Yn 6 −αnZ0

)
6 P

(
Y 6 −αnZ0 + δ

)
+ o(1). (4.48)

Since δ > 0 is arbitrary, this implies

P
(
Yn 6 −αnZ0

)
6 P

(
Y 6 −αnZ0

)
+ o(1). (4.49)

Similarly, we obtain P
(
Yn 6 −αnZ0

)
> P

(
Y 6 −αnZ0 − δ

)
+ o(1) and P

(
Yn 6 −αnZ0

)
>

P
(
Y 6 −αnZ0

)
+ o(1). Consequently,

P
(
Yn 6 −αnZ0

)
= P

(
Y 6 −αnZ0

)
+ o(1). (4.50)
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In other words, using (4.45) and recalling the meaning of Y from (4.43),

P
(
m∗ 6 M

)
= P

(
inf
t6A

(
σBt + λ−1

2 t
)
6 −αnZ0

)
+ o(1). (4.51)

If m∗ 6M = ⌊Aα−2
n ⌋, then, similarly as (4.37) in the proof of case (i),

Z 6 m∗ 6 Aα−2
n = o

(
nαn

)
(4.52)

so we are in case (a) in Theorem 2.3(i).
If m∗ > M , consider again m∗∗ defined by (4.13) (but taking minimum over m >M), for

a sufficiently small δ > 0. Note that, as in the proof of (ii), if Z̄m∗∗
> 0, then (4.19) holds

and w.h.p. T ∗ > εαn for some small ε > 0, and thus w.h.p. (b) in Theorem 2.3(i) holds.
In other words, for some small ε > 0, if m∗ 6 M , then Z < εnαn, and if m∗ > M and
Z̄m∗∗

> 0, then Z > εnαn w.h.p.
We next show that the probability that neither of these happens is small. We condition

on Z̄M and argue as in the proof of case (ii), using Lemma 4.2 on Z̄(M+m)∧m∗∗
− Z̄M , and

find

P
(
m∗ > M and Z̄m∗∗

= 0 | Z̄M
)
6

8c2
c1αnZ̄M

. (4.53)

Hence, using also (4.42),

P
(
m∗ > M and Z̄m∗∗

= 0
)
6 P(αnZ̄M < 1

2
λ−1
2 A) +O(1/A)

6 P
(
σBA + λ−1

2 A < 1
2
λ−1
2 A

)
+ o(1) +O(1/A)

= O(1/A) + o(1). (4.54)

Using (4.51) and the comments above, it follows that, if ε > 0 is small enough, then

P(Z < εαnn) = P
(
m∗ 6M

)
+O(1/A) + o(1)

= P

(
inf
t6A

(
σBt + λ−1

2 t
)
6 −αnZ0

)
+O(1/A) + o(1). (4.55)

This holds for every fixed A > 0, and we can then let A→∞ and conclude that

P(Z < εαnn) = P

(
inf

06t<∞

(
σBt + λ−1

2 t
)
6 −αnZ0

)
+ o(1). (4.56)

It is well-known that − inft>0

(
σBt + λ−1

2 t
)
has an exponential distribution with parameter

2λ−1
2 /σ2, see e.g. [32, Exercise II.(3.12)]. Consequently, since Z0 and (Bt) are independent,

P(Z < εαnn) = E exp
(
−2λ−1

2 σ−2αnZ0

)
+ o(1). (4.57)

Since we assume that αnXI,0 is bounded above and below, Z0 6 XI,0 and Lemma 4.1(ii) imply
that the expectation in (4.57) stays away from 0 and 1 as n→∞. Moreover, if dI,∗ = o(XI,0),
then Lemma 4.1(i) and (4.57) yield, using (4.33),

P(Z < εαnn) = exp
(
−2λ−1

2 σ−2αnπnXI,0

)
+ o(1) = exp

(
−2λλ−2

2 σ−2αnXI,0

)
+ o(1), (4.58)

which yields (2.18) by the definition of σ2 in (4.34).
Finally, (4.52) and the argument above, in particular (4.54), shows that

P
(
the epidemic is small but Z > Aα−2

n

)
= O(1/A) + o(1), (4.59)

which implies the final claim. �
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Proof of Theorem 2.4(iii) in the simple graph case. As said in Section 2, this result for the
random simple graph G does not follow immediately from the multigraph case (as the other
results in this paper do). We use here instead the argument for the corresponding result in
[21, Section 6], with minor modifications as follows. We continue to work with the random
multigraph G∗. Also, we now allow initially recovered vertices, since our trick in Section 3.1
to eliminate them does not work for the simple graph case.

Fix a sequence εn → 0 such that Theorem 2.3(i) holds, and let L be the event that there

are less than ε
1/2
n nSαn pairing events; note that if L occurs, then Z < ε

1/2
n nSαn, while if L

does not occur, w.h.p. Z > εnnSαn by a simple argument (using e.g. Chebyshev’s inequality);
hence L says w.h.p. that the epidemic is small.

Furthermore, let W be the number of loops and pairs of parallel edges in G∗; thus G∗

is simple if and only if W = 0, and we are interested in the conditional probability P(L |
W = 0). By [19] (at least if we consider suitable subsequences), W

d−→ Ŵ for some random

variable Ŵ , with convergence of all moments.
We write W = W1 + W2, where W2 is the number of loops and pairs of parallel edges

that include either an initially infective vertex (as in [21]), or a vertex with degree at least
d := 1/αn. Then, by the assumptions

EW2 = O



( ∞∑

k=0

k2nI,k +
∑

k>d

k2(nS,k + nR,k)

)(
1

n
+

∑∞
k=0 k

2nk
n2

)
 = o(1) (4.60)

and thus it suffices to consider W1. Note also that if we fix a vertex v that is not initially
infected and has degree less than d, then the probability that the infection will reach v within

less than ε
1/2
n nSαn pairing events is O

(
dε

1/2
n nαn/n

)
= o(1), so w.h.p. v is not infected before

it is determined whether L occurs or not.
The rest of the proof is exactly as in [21], to which we refer for details. �

Remark 4.4. The formula (2.18) for the asymptotic probability that the epidemic is small
holds only under the assumption dI,∗ = o(XI,0), i.e., that among the initially infective vertices,
no vertex has a significant fraction of all their half-edges. Even if this assumption does not
hold, the asymptotic probability can be found from (4.57), since as in the proof of Lemma 4.1,

Z0 =
∑

i Z0,i where the Z0,i are independent and, using the notation in Lemma 4.3, Z0,i
d
=

Y (dI,i + 1), where dI,i is the degree of the i-th initially infective vertex. Hence, letting χ
denote the fraction in (2.18), so χ ∼ 2λ−1

2 σ−2πn, the probability is
∏

i

E exp
(
−χπ−1

n αnY (dI,i + 1)
)
+ o(1) =

∏

k

(
E exp

(
−χπ−1

n αnY (k + 1)
))nI,k + o(1). (4.61)

A calculation, see Appendix C, shows that if we define

ψn(k) := log

∫ 1

0

exp
(
kαnχπ

−1
n

(
xβn/ρn − ρn

βn+ρn

))
dx, (4.62)

interpreted as 0 when ρn = 0, then this probability is

exp
(
−χαnXI,0 +

∑

k

nI,kψn(k)
)
+ o(1), (4.63)
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thus generalizing (2.18). It is easily seen that ψn(k) = O
(
k2α2

n

)
and thus

∑
k nI,kψn(k) =

O
(
αndI,∗

∑
k nI,kkαn

)
= O

(
αndI,∗

)
under our assumption αnXI,0 = O(1), which explains why

the extra term in (4.63) disappears in (2.18).
Note also that ψn(k) > 0 by Jensen’s inequality; thus an extremely uneven distribution of

the degrees of the initially infective vertices will increase the probability of a small outbreak.

Appendix A. The Sellke construction for network epidemics

House et al. [15] introduced a method to simulate the final size of a network epidemic that
drew on the constructions of Sellke [34] and Ludwig [23] (the latter in its most general sense
as described by Pellis et al. [30]). This approach allows us to make a realisation by drawing
three sets of random numbers, and then we can consider multiple initial conditions and the
final sizes they produce without drawing further random numbers.

Let individuals be labelled i, j, . . . ∈ {1, . . . , n}. Let them be connected by a general
network with adjacency matrix with elements Gij , and let Zi be an indicator variable taking
the value 1 if individual i is eventually infected during the epidemic and 0 otherwise. Our
algorithm then proceeds as follows.

First, for each individual i pick an infectious period Ti ∼ Exp(ρ). Secondly, for each
individual i pick a threshold Qi ∼ Exp(1). This represents the individual’s resistance to
infection. Thirdly, a random permulation P of the integers {1, . . . , n} is chosen. The first
m elements of this permutation are then taken to be the indices of the initially infectious
individuals, i.e. we initialise Zi ← 1 if i ∈ P and Zi ← 0 otherwise. Then to arrive at the
correct final values we iteratively search for each individual i that has Zi = 0 and set Zi ← 1
if

Qi < β
∑

j

GijTjZj . (A.1)

This procedure is continued until no changes occur on a given iteration, giving the final size
for that value of m. We can then increase m and continue the iterative procedure, allowing
simulations that are both computationally efficient, and for which the total final size Z is
monotone non-decreasing in the initial number infected m.

Appendix B. Critical behaviour of G(n, (di)
n
i=1)

In this appendix, we show how the methods in this paper yield an improvement of [20,
Theorem 2.4] on the size of the largest component in G(n, (di)

n
i=1) near criticality, replacing

the moment condition used in [20]
∞∑

k=0

k4+ηnk = O(n) (B.1)

for some η > 0, by the uniform summability of
∑∞

k=0 k
3nk in assumption (ii) below, cf. (D2).

This is more or less best possible, since if the limiting vertex degree distribution does not
have a finite third moment, then (at least in typical cases), the size of the largest component
is op(nαn), see van der Hofstad, Janson and Luczak (in preparation).

Theorem B.1. Suppose that the degree sequences (di)
n
i=1 satisfy the following conditions.

(i) There is a probability distribution (pk)
∞
k=0 such that nk/n→ pk for each k > 0.

(ii) For all ε > 0, there exists M such that, for all n,
∑∞

k=M k3nk < εn.
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(iii) p1 > 0.
(iv)

∑∞
k=0 k(k − 2)pk = 0.

(v) αn :=
∑∞

k=0 k(k − 2)nk/n satisfies n1/3αn →∞.

Define the positive constants λ :=
∑∞

k=0 kpk and γ :=
∑∞

k=0 k(k − 1)(k − 2)pk.
Let C1 and C2 denote the largest and second largest components of G(n, (di)

n
i=1). Then the

number of vertices in C1 is

v(C1) =
2λ

γ
nαn + op(nαn), (B.2)

the number of vertices in C1 with degree k > 0 is

vk(C1) =
2kpk
γ

nαn + op(nαn), (B.3)

and the number of edges in C1 is

e(C1) =
2λ

γ
nαn + op(nαn). (B.4)

In contrast, C2 has only v(C2) = op(nαn) vertices and e(C2) = op(nαn) edges.

Remark B.2. If
∑

k k(k− 2)pk = 0 then p1 > 0 is equivalent to p0 + p1 + p2 < 1 (condition
(D6)). As a consequence, γ > 0.

Sketch of proof. We will explain how to modify the argument of [20]. The latter is similar in
spirit (and actually inspired) our proof of Theorem 2.3 in Section 3. Indeed, the algorithm
used in [20] to construct the multigraph G∗(n, (di)

n
i=1) and explore its components is closely

related to the time-changed epidemic with zero recovery rate, i.e. ρn = 0. In more detail,
we begin with all vertices susceptible (or sleeping in the terminology of [20]). We choose a
single vertex at random and declare it infective (or active in [20]). The infection eventually
spreads through the whole connected component containing the chosen vertex because ρn =
0. The connected component thus comprises the susceptible (sleeping) vertices that were
infected (activated) during this time, together with the initially infective (active) vertex.
The procedure can be repeated until all the connected components have been explored.

In particular, each susceptible (sleeping) vertex of degree k > 0 is still infected (activated)
at rate k in the algorithm of [20]; in addition one vertex is activated at the start of each
new component. The number of vertices that would be sleeping if we ignore the latter
type of activations (denoted Ṽk(t) in [20]) thus evolves as the Markov death chain S̃t(k)
considered in the proof of Theorem 3.1 but with S̃0(k) = nk. One can prove concentration

of measure for S̃t(k),
∑∞

k=0 S̃t(k) and
∑∞

k=0 kS̃t(k), as in Theorem 3.1. The analogous result
in [20] is Lemma 6.3 and its proof involves a non-trivial use of assumption (B.1). So we
must replace [20, Lemma 6.3] with Theorem 3.1. Note that the former result achieves an

Op(n
1/2α

1/2
n +nα3

n) bound on the error, versus the op(nα
2
n) bound of Theorem 3.1. However,

it can be checked that the op(nα
2
n) bound is sufficient for the rest of the proof.

There is only one other place where [20] uses assumption (B.1) non-trivially; that is
to control the Taylor expansion remainder term in the analogue of (3.51) (immediately
preceding equation (6.7) on page 212). But we may obtain an adequate bound with the
argument leading to (3.49).

All of the other modifications are trivial. �
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Appendix C. Proof of (4.63)

Let cn := χπ−1
n and note that cn = O(1) by (4.1) and (2.20). If ρn > 0, then by the

definition of Yn(k) before Lemma 4.3, and the substitution x = e−ρnτ ,

E e−cnαnY (k+1) =

∫ ∞

0

(
1 +

(
1− e−βnτ

)(
e−cnαn − 1

))k
ρne

−ρnτ dτ

=

∫ 1

0

(
1−

(
1− xβn/ρn

)(
1− e−cnαn

))k
dx

=

∫ 1

0

(
1−

(
1− xβn/ρn

)(
cnαn(1 +O(αn))

))k
dx

=

∫ 1

0

exp
(
−k
(
1− xβn/ρn

)(
cnαn +O(α2

n)
))
dx

= eO(kα2
n)

∫ 1

0

exp
(
cnαnk

(
xβn/ρn − 1

))
dx

= e−cnπnαnk+O(kα2
n)

∫ 1

0

exp
(
cnαnk

(
xβn/ρn − ρn

βn+ρn

))
dx

= e−χαnk+ψn(k)+O(kα2
n). (C.1)

If ρn = 0, then πn = 1 and Y (k + 1) = k, and (C.1) is trivial.
We obtain (4.63) by using (C.1) in (4.61).
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Figure 1. The relationship between epidemic final size and initial force of
infection for 20 realisations of the network Sellke construction for n = 105

(top), n = 106 (middle) and n = 107 (bottom), ρ = 1, β = 1, and Poisson
degree distribution with mean λ = 2.02 leading to R0 = 1.01.
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