
TREE LIMITS AND LIMITS OF RANDOM TREES

SVANTE JANSON

Abstract. We explore the tree limits recently defined by Elek and
Tardos. In particular, we find tree limits for many classes of random
trees. We give general theorems for three classes of conditional Galton–
Watson trees and simply generated trees, for split trees and generalized
split trees (as defined here), and for trees defined by a continuous-time
branching process. These general results include, for example, random
labelled trees, ordered trees, random recursive trees, preferential attach-
ment trees, and binary search trees.

1. Introduction

Elek and Tardos [20] have recently introduced a theory of tree limits,
in analogy with the theory of graph limits [39] and other similar limits of
various combinatorial objects (e.g. hypergraphs, permutations, . . . ). Their
idea is to regard a tree as a metric space with a probability measure; the
metric is the usual graph distance, suitably rescaled, and the probability
measure is the uniform measure on the vertices. Then, for each integer r,
consider the random matrix (d(ξi, ξj))

r
i,j=1 of distances between r random

vertices ξ1, . . . , ξr. A sequence of trees is said to converge if, for each r > 1,
the resulting random r × r matrices converge in distribution. (This type
of convergence for metric spaces with a measure goes back to Gromov [22,
Chapter 31

2 ].) See Section 3 for details of this and of other topics mentioned
below.

Elek and Tardos [20] choose to normalize the metrics of the trees by divid-
ing the graph distance by the diameter; hence the trees become metric spaces
with diameter 1. One reason for this normalization is that this embeds the
trees in a compact space, and thus every sequence of trees has a convergent
subsequence. However, the theory developed in [20] treats also more general
real trees, and include trees with a different normalization. We will in gen-
eral not use the Elek–Tardos normalization, since other scalings often seem
more natural, in particular for random trees, see e.g. Examples 7.2 and 7.3,
and Sections 9 and 10.

The main results by Elek and Tardos [20] are that there exists a set of limit
objects called dendrons such that each convergent sequence of finite trees
(with their normalization) converges to a unique dendron. The dendrons
can be regarded as real trees equipped with probability measures, but the
precise definition is slightly different. The dendrons are defined as special
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cases of long dendrons; dendrons are long dendrons with diameter at most
1. This is tied to the Elek–Tardos normalization, and in the present paper,
the main limit objects are the long dendrons.

In some cases, the (long) dendrons can be identified with real trees, and
the tree limits then coincide with limits in the Gromov–Prohorov metric
(see Remark 3.6). Such limits have been studied earlier (also in the stronger
Gromov–Hausdorff–Prohorov metric); one much studied example going back
to Aldous [5, 6, 7] is provided by conditioned Galton–Watson trees, see
Section 9. However the Elek–Tardos limits are more general, and include
also other types of limits; one example is provided by a different class of
conditioned Galton–Watson trees (where condensation appears in the limit),
see Section 10.

The tree limits by Elek and Tardos [20] thus seem to be very interesting,
and promising for future research. The purpose of the present paper is
to further develop the theory of tree limits. We give some general results
in Sections 3–6. In particular, we show how the set of all tree limits, or
equivalently the set of all long dendrons, can be regarded as a metric (and
Polish) space; this makes it possible to define and study random tree limits
and limits of random trees in a convenient way. Moreover, we characterize
relative compactness of a sequence (or set) of rescaled trees (Theorem 6.1
and Corollary 6.3).

The second, and perhaps main, part of the paper applies the general
theory to several classes of random trees and finds tree limits for them.
As a preparation, we give in Section 7 some simple examples of limits of
deterministic trees. A few general results on limits of random trees are
given in Section 8.

The following sections study first different classes of conditioned Galton–
Watson tree and simply generated trees (Sections 9–11), and then different
classes of random trees with logarithmic height (Sections 12–14), in partic-
ular split trees (Section 13) and trees defined by continuous time branching
processes (Section 14). We find tree limits in all these cases, as the size
n→∞; in some cases with convergence in distribution to a random tree
limit, and in others with convergence in probability to a fixed tree limit.

The found limits are of different types. In particular, for a class of con-
ditioned Galton–Watson trees including many standard classes of random
trees with height of order

√
n (Section 9), the well-known limit theorem by

Aldous [7] gives convergence to a random real tree known as the the Brow-
nian continuum random tree; this tree can be regarded as a (random) long
dendron, and Aldous’s result holds in the present sense too.

On the other hand, many standard classes of random trees with height of
order log n are covered by the general results in Sections 12–14 and have tree
limits of a quite different type; these limits are long dendrons of a very simple
type (but distinct from real trees), which is equivalent to the fact that in
these trees, almost all pairs of vertices have almost the same distance. (This
is shown more generally in Theorem 8.2.)

Remark 1.1. The tree limits by Elek and Tardos [20] studied in the present
paper are global limits, in general quite different from local limits studied
in e.g. [29]. Nevertheless, there are cases (see for example Section 10) where



TREE LIMITS AND LIMITS OF RANDOM TREES 3

the trees are such that there is a strong relation between the tree limits and
local limits. �

2. Some notation

Probability measures. Recall that a Polish space is a separable com-
pletely metrizable topological space. In other words, it can be regarded as a
complete separable metric space, but we ignore the metric. (When necessary
or convenient, we can choose a metric, but there is no distinguished one.)
A Polish space is often regarded as a measurable space, equipped with its
Borel σ-field.

If X = (X,F) is a measurable space, then P(X) is the space of probability
measures on X. In particular, if X is a metric space, then P(X) is the space
of Borel probability measures on X, and in this case we equip P(X) with
the standard weak topology, see e.g. [11]. If X is a Polish space, then so is
P(X), see [11, Appendix III] or [12, Theorem 8.9.5].

The Dirac measure (unit point mass) at a point x is denoted δx.
If µ is a probability measure on a space X, then ξ ∼ µ and µ = L(ξ) both

denote that ξ is a random element of X with distribution µ.
If X = (X,F) and Y = (Y,G) are measurable spaces, ϕ : X → Y is a

measurable map, and µ ∈ P(X), then the push-forward ϕ(µ) ∈ P(Y ) of µ
is defined by

ϕ(µ)(A) := µ
(
ϕ−1(A)

)
, A ∈ G. (2.1)

(This is often denoted µ ◦ ϕ−1 or ϕ∗(µ).) Equivalently, if ξ is a random
element of X then

ξ ∼ µ =⇒ ϕ(ξ) ∼ ϕ(µ). (2.2)

Limits. Unspecified limits are as n→∞.
As usual, w.h.p. (with high probability) means with probability tending

to 1 as a parameter (here always n) tends to ∞.

If Z,Zn are random elements of a metric space X, then Zn
d−→ Z,

Zn
p−→ Z, and Zn

a.s.−→ Z denote convergence in distribution, in proba-

bility and almost surely (a.s.), respectively. Note that Zn
d−→ Z is the same

as convergence in P(X) of the distributions, i.e., L(Zn)→ L(Z).
If (an)n is a sequence of positive numbers, then op(an) denotes a se-

quence of random variables Zn such that Zn/an
p−→ 0; this is equivalent to

|Zn|/an < ε w.h.p. for every ε > 0.

Miscellaneous. If T is a tree, we abuse notation and write T for its vertex
set V (T ). The number of vertices is denoted by |T |. If T is a rooted tree,
then the root is denoted by o.

If x, y ∈ R, then x ∧ y := min{x, y}. On the other hand, if v and w are
vertices in a rooted tree, then v ∧ w denotes their last common ancestor.

For a sequence of random variables, i.i.d. means independent and identi-
cally distributed.

N := {1, 2, . . . } and N0 := {0, 1, 2, . . . }.
C and c denote positive constants; these may vary from one occurrence

to another. (We sometimes distinguish them by subscripts.)
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3. Convergence of trees and long dendrons

We give here a summary of the main definitions and results of [20], to-
gether with some further notation.

3.1. Convergence of trees. For r > 1, let Mr be the space of real r × r
matrices; note that Mr = Rr2 is a Polish space, and thus P(Mr) is a Polish
space.

For a setX with a given function d : X2 → R, and r > 1, let ρr : Xr →Mr

be the map given by the entries

ρr(x1, . . . , xr)ij = ρr(x1, . . . , xr;X, d)ij :=

{
d(xi, xj), i 6= j,

0, i = j.
(3.1)

We often consider ρr when d is a metric on X; then the special definition in
(3.1) when i = j is redundant. However, for the long dendrons defined below,
we typically have d(x, x) > 0, and then the definition (3.1) is important. See
also Remark 3.10.

A metric measure space is a triple (X, d, µ), where X is a measurable
space (so X = (X,F) with F hidden in the notation), µ ∈ P(X), and
d : X2 → R is a measurable metric on X.

Suppose, more generally, that X = (X,F , µ) is a probability space and
that d : X2 → R is a measurable function. For r > 1, define the sampling
measure

τr(X) = τr(X, d, µ) := ρr(µ
r) ∈ P(Mr), (3.2)

the push-forward of the measure µr ∈ P(Xr) along ρr. In other words, if
ξ1, . . . , ξr are i.i.d. random points in X with ξi ∼ µ, then

τr(X) := L
(
ρr(ξ1, . . . , ξr;X)

)
, (3.3)

the distribution of the random matrix ρr(ξ1, . . . , ξr) ∈Mr.
A finite tree T is regarded as a metric space (T, dT ), where dT is the

graph distance. Furthermore, if c > 0, we let cT denote the metric space
(T, cdT ), where all distances are rescaled by c. We regard cT as a metric
probability space by equipping it with the uniform measure µT defined by
µT {x} = 1/|T | for x ∈ T . Then τr(cT ) ∈ P(Mr) is defined by (3.2).

Definition 3.1. Let (Tn)∞1 be a sequence of finite trees and (cn)∞1 a se-
quence of positive numbers. Then the sequence (cnTn)∞1 converges if the
sampling measures converge for every fixed r, i.e., if there exist λr ∈ P(Mr)
such that, as n→∞,

τr(cnTn) = τr
(
Tn, cndTn , µTn

)
→ λr in P(Mr), r > 1. (3.4)

By (3.3), the condition (3.4) is equivalent to convergence in distribution

of the random matrices ρr(ξ
(n)
1 , . . . , ξ

(n)
r ; cnTn), where for each n, (ξ

(n)
i )i are

i.i.d. uniform random vertices of Tn.

Remark 3.2. As said in the introduction, Elek and Tardos [20] consider
only the normalization cn = 1/ diam(Tn), but we will not assume this. �

A real tree is a complete non-empty metric space (T, d) such that for
any pair of distinct points x, y ∈ T , there exists a unique isometric map
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α : [0, d(x, y)] → T with α(0) = x and α(d(x, y)) = y, and furthermore, for
every s ∈ (0, d(x, y)), x and y are in different components of T \ {α(s)}.
(There are several different but equivalent versions of the definition; see e.g.
[17; 18; 36; 37].)

Remark 3.3. Note that we define the trees as complete (as do [20]); this
is often not required. For our purposes completeness is convenient and no
real loss of generality; if T is an incomplete real tree (defined as above
without completeness), then the completion T is also a real tree (see e.g.
[17, Theorem 8]), and in the limit theory below we can use T instead of T .
�

If T = (T, d) is a real tree and c > 0, let cT := (T, cd). Then cT is also a
real tree.

A measured real tree is a real tree T = (T, d) equipped with a probability
measure µ. We will only consider separable trees T and Borel measures
µ, and then (T, d, µ) is always a metric measure space. (For non-separable
measured real trees, see [20], where they e.g. are used in the proofs; then µ
might be defined on a smaller σ-field than the Borel one, and the condition
that d has to be measurable is added. See also Remark 3.10.)

Example 3.4. If T is any finite tree (in the usual combinatorial sense), let

T̂ denote the real tree obtained by regarding each edge in T as an interval of
length 1. Then T̂ is a compact real tree, and T is isometrically embedded as
a subset of T̂ . Hence, we can regard µT as a probability measure on T̂ , and
(T̂ , µT ) = (T̂ , d, µT ) is a measured real tree. Obviously, τr(T ) = τr(T̂ , µT ).

More generally, cT is isometrically embedded in cT̂ for any c > 0, and

τr(cT ) = τr(cT̂ , µT ). (3.5)

We can therefore sometimes identify T̂ and T ; see Section 5. �

Consequently, we can regard Definition 3.1 as a special case of the follow-
ing definition.

Definition 3.5. Let (Tn)∞1 = (Tn, dn, µn)∞1 be a sequence of measured real
trees. Then the sequence (Tn)∞1 converges if the sampling measures converge
for every fixed r, i.e., if there exist λr ∈ P(Mr) such that, as n→∞,

τr(Tn)→ λr in P(Mr), r > 1. (3.6)

Again, (3.6) is equivalent to convergence in distribution of the random ma-

trices ρr(ξ
(n)
1 , . . . , ξ

(n)
r ;Tn), where, for each n, (ξ

(n)
i )i are i.i.d. random points

in Tn with ξ
(n)
i ∼ µn.

Remark 3.6. Gromov [22, Chapter 31
2 ] studied general complete separable

metric measure spaces (with a finite Borel measure, which we may normalize
to be a probability measure as above). He defined the Gromov–Prohorov
metric (see Villani [50, p. 762] for another version, and Löhr [38] for the
equivalence), and he also considered convergence in the sense above, i.e.,
τr(Xn) → τr(X) for every r, where Xn and X are metric measure spaces;
it turns out that this is equivalent to convergence in the Gromov–Prohorov
metric, see Greven, Pfaffelhuber and Winter [21]; see also [31]. Gromov [22,
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31
2 .14 and 31

2 .18] noted also that it is possible that τr(Xn) converges for
every r to some limit measure, but that there is no metric measure space
X that is the limit. (One of Gromov’s examples is the sequence of unit
spheres Sn with uniform measure, which behave as in Theorem 3.13 below
with almost all distances being almost equal; a metric measure space limit
would have to have almost all distances equal to some positive constant,
which is impossible for separable spaces.) The new idea by Elek and Tardos
[20] is to define another type of limit object (long dendrons) that works in
general when Xn are trees. �

3.2. Long dendrons. Elek and Tardos [20] defined limit objects as follows.
Note that a real tree T is locally connected (and locally pathwise connected);
thus, if p ∈ T , then T \ {p} is the disjoint union of one or several (possibly
infinitely many) open connected components; these are called p-branches. A
branch of T is a p-branch for some p ∈ T .

Definition 3.7. A long dendron D = (T, d, ν) is a real tree (T, d) together
with a (Borel) probability measure ν on AD := T × [0,∞) satisfying ν(B ×
[0,∞)) > 0 for every branch B of T . We define dD : A2

D → [0,∞) by

dD
(
(x, a), (y, b)

)
:= d(x, y) + a+ b. (3.7)

An isomorphism between two long dendrons D = (T, d, ν) and D′ =
(T ′, d′, ν ′) is an isometry f from (T, d) onto (T ′, d′) such that the mapping
f̄ := (p, a) 7→ (f(p), a) is measure-preserving (AD, ν)→ (AD′ , ν

′).

We call the real tree T the base of the long dendron D; we may identify
T with T × {0} ⊂ AD. It is shown in [20, Lemma 6.2] that the base T of a
dendron necessarily is separable; thus T and AD are Polish spaces.

Remark 3.8. Elek and Tardos [20] also define a dendron as a long dendron
such that if ξ1, ξ2 ∈ AD are i.i.d. random points with distribution ν, then
dD(ξ1, ξ2) 6 1 a.s. These are the limit objects for real trees with diameter
6 1, and thus for trees with the Elek–Tardos normalization in Remark 3.2,
but they have no special importance in the present paper. We may call them
short dendrons. (For consistency with [20], we keep the name long dendron,
although for our purposes it would be more natural to change notation and
call them dendrons.) �

For a long dendron D = (T, d, ν), we use again (3.2)–(3.3) and define the
sampling measure

τr(D) := τr(AD, dD, ν) ∈ P(Mr), (3.8)

i.e., the distribution of the random matrix ρr(ξ1, . . . , ξr;AD, dD) ∈ Mr if
ξ1, . . . , ξr are i.i.d. random points in AD with ξi ∼ ν.

Convergence of finite or real trees to a long dendron is defined by adding
to Definitions 3.1 and 3.5 that the limits of the sampling measures are the
sampling measures for the limit:

Definition 3.9. Let (Tn)∞1 be a sequence of finite trees and (cn)∞1 a se-
quence of positive numbers, and let D be a long dendron. Then the sequence
(cnTn)∞1 converges to D if, as n→∞,

τr(cnTn)→ τr(D) in P(Mr), r > 1. (3.9)
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Similarly, if (Tn)∞1 is a sequence of real trees and D a long dendron, then
Tn converges to D if, as n→∞,

τr(Tn)→ τr(D) in P(Mr), r > 1. (3.10)

Again, (3.9) and (3.10) are equivalent to convergence in distribution of

the random matrices ρr(ξ
(n)
1 , . . . , ξ

(n)
r ), where (ξ

(n)
i )i are i.i.d. as above.

Remark 3.10. As discussed in [20, Remark 4], the long dendrons could
be replaced by real trees as follows. (We might think of long dendrons as
proxies for some measured real trees.) Let D = (T, d, ν) be a long dendron.
First, if ν({t} × [0,∞)) = 0 for every t ∈ T , consider AD = T × [0,∞) as a
real tree T ′ consisting of T = T × {0} with a half-line {t} × [0,∞) attached
at each t ∈ T . In general, we have to attach a continuum of half-lines at
each point t (so that each half-line has measure 0), for example by defining
T ′ := T × C regarded as T with the half-lines {(t, reiθ) : r > 0} attached,
for every t ∈ T and θ ∈ [0, 2π), and with the measure ν ′ on T ′ equal to the
push-forward by the map (t, r, θ) 7→ (t, reiθ) of the measure ν×dθ/2π. Note
that then τk(T

′) = τk(D) for every k > 1. (Note how the special definition
for i = j in (3.1) interacts with (3.7) to give the desired result.)

However, we agree with Elek and Tardos [20] that it is more convenient
to use long dendrons as limit objects. One reason is that the trees just
constructed are nonseparable, and that the measures are not Borel measures
on T ′. (There are plenty of nonmeasurable open sets.) Another reason is
that long dendrons provide uniqueness of the limits in a simple way. �

3.3. Two examples. The following examples of long dendrons are rather
simple, and extreme in the sense that the measure ν on AD = T × [0,∞) is
supported on a ’one-dimensional’ set with one of the coordinates fixed. Nev-
ertheless, these two examples will play the main role in our limit theorems
for random trees.

Example 3.11. Let T = (T, d, µ) be a measured real tree such that every
branch has positive measure. Identify T × {0} with T , and define ν as µ
regarded as a measure on T × {0} ⊂ AD := T × [0,∞). (More formally, ν
is the push-forward of µ under x 7→ (x, 0) ∈ AD.) Then (T, d, ν) is a long
dendron.

Note that if ξ ∼ µ, then (ξ, 0) ∼ ν. Since (3.7) implies that dD equals d
on T ×{0} = T , it follows that τr(D) = τr(T ) for every r > 1. We may thus
identify the long dendron D with the measured real tree T .

By Remark 3.6, convergence of a sequence of (real) trees to D as in
Definition 3.9 is equivalent to convergence to T in the Gromov–Prohorov
metric. �

Example 3.12. Let T = {•} be the real tree consisting of a single point.
Then the metric d = 0, and we let µ = δ• (the only probability measure on
T , so there is no choice).

We may identify AD = {•} × [0,∞) with [0,∞). Thus every probability
measure ν on [0,∞) defines a long dendron Υν := (T, d, ν).

By (3.1) and (3.7),

ρr(ξ1, . . . , ξr; Υν) =
(
(ξi + ξj)1{i 6= j}

)r
i,j=1

, (3.11)
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and thus τr(Υν) is the distribution of the matrix (3.11) when (ξi)i are i.i.d.
with ξi ∼ ν.

A particularly simple, and important, case is when ν = δa for some a > 0.
In this case we denote the long dendron by Υa, and note that ξi = a is non-
random, and thus (3.11) shows that ρr(ξ1, . . . ξr) is the constant matrix

ρr(ξ1, . . . , ξr; Υa) =
(
2a1{i 6= j}

)r
i,j=1

. (3.12)

This leads to the following simple characterization of convergence to the
long dendron Υa. �

Theorem 3.13. Let (cnTn)n be a sequence of rescaled trees, and a > 0.
Then cnTn → Υa if and only if

cndn(ξ
(n)
1 , ξ

(n)
2 )

p−→ 2a, (3.13)

where dn is the graph distance in Tn and (ξ
(n)
i )i are i.i.d. uniformly random

vertices in Tn.
The same holds, mutatis mutandis, for a sequence (Tn, dn, µn) of measured

real trees.

In the terminology of Gromov [22, p. 142], (3.13) says that cnTn have
(asymptotic) characteristic size 2a.

Proof. Convergence in distribution to a constant is the same as convergence
in probability. Thus, (3.3), (3.1) and (3.12) show that Definition 3.9 now
yields

cnTn → Υa

⇐⇒
(
cndn(ξ

(n)
i , ξ

(n)
j )1{i 6= j}

)r
i,j=1

p−→
(
2a1{i 6= j}

)r
i,j=1

, r > 1,

⇐⇒ cndn(ξ
(n)
i , ξ

(n)
j )1{i 6= j} p−→ 2a1{i 6= j}, i, j > 1. (3.14)

By symmetry, it suffices to consider the case i = 1, j = 2. �

Remark 3.14. The (long) dendron Υ0 is trivial, with dD(ξ1, ξ2) = 0 a.s.
if ξi ∼ ν = δ0. Note that Υ0 equals the equally trivial real tree T = {•}
consisting of a single point, regarded as a long dendron as in Example 3.11.

The trivial long dendron Υ0 is by Theorem 3.13 the limit of cnTn when

cndn(ξ
(n)
1 , ξ

(n)
2 )

p−→ 0, (3.15)

which typically means that we have chosen the wrong rescaling. �

3.4. Limit theorems. Some of the main results of Elek and Tardos [20]
are the following, here somewhat reformulated.

Theorem 3.15 ([20, partly Theorems 1 and 4]). Any convergent sequence
of rescaled finite trees converges to some long dendron. The same holds for
any convergent sequence of measured real trees.

This is not stated in quite this generality in [20]; we show in Section 15
how it follows from other results in [20]. (We postpone this proof until the
end of the paper because it uses arguments from [20] quite different from
the other arguments in the present paper.)
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Theorem 3.16 ([20, Theorem 2, Lemmas 7.1 and 7.2]). Any long dendron
is the limit of a convergent sequence (cnTn)∞1 of rescaled finite trees. �

Again, this is not stated in quite this form in [20], but it is a simple
consequence of [20, Lemmas 7.1 and 7.2]; we omit the details.

Theorem 3.17 ([20, Theorem 3]). Two long dendrons D and D′ are iso-
morphic if and only if τr(D) = τr(D

′) for every r > 1. Consequently, the
limit of a sequence of real trees (or rescaled finite trees) is unique (up to
isomorphism) if it exists. �

4. Infinite matrices

We extend the definitions in Section 3 to the case r = ∞, i.e. to infinite
matrices. Let M∞ be the space of infinite real matrices (aij)

∞
i,j=1. Define

ρr and τr by (3.1) and (3.2)–(3.3) also for r = ∞; thus τ∞(X, d, µ) is the
distribution of the infinite random matrix

(
d(ξi, ξj)1{i 6= j}

)
i,j>1

where ξi
are i.i.d. with ξi ∼ µ.

Given any A = (aij)
s
i,j=1 ∈Ms, with r 6 s 6∞, define the restriction

Πr(A) = (aij)
r
i,j=1 ∈Mr, (4.1)

i.e., the r × r top left corner of A. Furthermore, if A ∈ Ms is a random
matrix with distribution ν ∈ P(Ms), we denote the distribution of Πr(A) by
Πr(ν) ∈ P(Mr). (This is the push-forward of ν, see (2.1).) In other words,
Πr(ν) is the marginal distribution of the r × r top left corner.

Say that a sequence λr ∈ P(Mr), 1 6 r <∞, is consistent if Πr(λs) = λr
when r 6 s.

If λ ∈ P(M∞), then the sequence λr := Πr(λ) is obviously consistent.
Conversely, every consistent sequence arises in this way for a unique λ ∈
P(M∞); the corresponding statement for distributions of random vectors
in R∞ is well-known [34, Theorem 6.14], and the result for M∞ follows
immediately by reading the entries of the matrices in a suitable fixed order.
Furthermore, if λ, λn ∈M∞, then

λn → λ in P(M∞) ⇐⇒ Πr(λn)→ Πr(λ) in P(Mr) for each r > 1. (4.2)

Again, this follows immediately from the corresponding well-known fact for
R∞ [11, p. 19].

A sequence τr(X), r > 1, given by (3.3) is obviously consistent; fur-
thermore, τr(X) = Πr(τ∞(X)) for every r. Consequently, (4.2) implies the
following.

Theorem 4.1. Let (Tn)∞1 = (Tn, dn, µn)∞1 be a sequence of measured real
trees, and let D = (T, d, ν) be a long dendron.

(i) The sequence (Tn)∞1 converges if and only if there exists λ ∈ P(M∞)
such that, as n→∞,

τ∞(Tn)→ λ in P(M∞), (4.3)

i.e., if and only if the infinite random matrices ρ∞(ξ
(n)
1 , ξ

(n)
2 , . . . ;Tn)

converge in distribution, where ξ
(n)
i are i.i.d. random points in Tn with

ξ
(n)
i ∼ µn.
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(ii) The sequence (Tn)∞1 converges to D if and only if as n→∞,

τ∞(Tn)→ τ∞(D) in P(M∞), (4.4)

i.e., if and only if the infinite random matrices ρ∞(ξ
(n)
1 , ξ

(n)
2 , . . . ;Tn)

converge in distribution to ρ∞(ξ1, ξ2, . . . ;D), where ξ
(n)
i are as in (i)

and ξi are i.i.d. with ξi ∼ ν.

In particular, the same results holds for a sequence (cnTn)∞1 of rescaled finite
trees.

Proof. This follows from the remarks before the theorem. Note that if (3.6)
holds for every r > 1, then (λr)r is a consistent sequence, since (τr(Tn))r is
for every n. �

5. Abstract tree limits

Based on the preceding section, we can define tree limits in an abstract
way as follows, using only (part of) the definitions and elementary consider-
ations above and none of the deep results of [20]. (Cf. [15] for graph limits.)

Let Tf be the set of all rescaled finite trees cT (with arbitrary c > 0).
Then τ∞ : Tf → P(M∞). Let Tf := τ∞(Tf) ⊆ P(M∞) and

T := Tf = τ∞(T ) ⊆ P(M∞). (5.1)

This defines T as a closed subset of the Polish space P(M∞); thus T is a
Polish space. Hence, we can regard T as a (complete and separable) metric
space whenever convenient; if necessary we can define a metric of T e.g. as
the Prohorov metric on P(M∞) [11, Appendix III], [12, Theorem 8.3.2], but
we have in the present paper no need for a specific choice of metric.

We can identify a rescaled finite tree cT with its image τ∞(cT ) ∈ T
(temporarily ignoring the question whether this is a one-to-one map). Then
convergence as in Definition 3.1 is, by Theorem 4.1, the same as convergence
in the metric space T. Furthermore, T is the set of all possible limits of
convergent sequences; thus it is natural to say that T is the set of tree
limits.

We have thus defined a set of tree limits; moreover, this set has turned
out to be a Polish space.

Similarly, a measured real tree T defines an element τ∞(T ) ∈ P(M∞). We
define Tr as the set of all measured real trees and Tr := τ∞(Tr) ⊂ P(M∞).
(We ignore the set-theoretic difficulty of defining the ”set of all measurable
real trees”; formally we either consider trees that are subsets of some huge
universe, or suitable equivalence classes under isomorphisms.) Then the
following holds.

Theorem 5.1. With notations as above,

Tf ⊆ Tr ⊆ T = Tf = Tr. (5.2)

We postpone the proof. It follows that convergence of measured real
trees as in Definition 3.5 also is the same as convergence in T. From now on,
whenever convenient, we identify finite trees and measured real trees with
their images in T.
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Returning to the deep results by Elek and Tardos [20] in Theorems 3.15–
3.17, we first note that, similarly, each long dendron D defines an element
τ∞(D) ∈ P(M∞). Theorem 3.17 and the remarks in Section 4 show that
τ∞(D) = τ∞(D′) if and only if D and D′ are isomorphic. Thus, letting D
be the set of all equivalence classes of long dendrons modulo isomorphism,
τ∞ : D→ P(M∞) is injective.

Theorem 5.2. τ∞(D) = T, and the mapping τ∞ : D→ T is a bijection.

Proof. If D is a long dendron, then by Theorem 3.16, there exists a conver-
gent sequence of rescaled finite trees (cnTn)n that converges to D. In other

words, τ∞(cnTn)→ τ∞(D). Thus τ∞(D) ∈ τ∞(Tf) = T.
Conversely, if µ ∈ T, then there exists a sequence cnTn ∈ Tf such that

τ∞(cnTn) → µ. Thus the sequence cnTn is convergent, and by Theo-
rem 3.15, there exists a long dendron D such that cnTn → D, which means
τ∞(cnTn)→ τ∞(D). Consequently, µ = τ∞(D).

Hence, τ∞(D) = T, and we have already remarked that τ∞ is injective on
D by Theorem 3.17. �

Consequently, we can identify D and T, and regard also D as the set of
all tree limits. (As done by Elek and Tardos [20].) Note that this defines a
topology on D, making D into a Polish space.

We ignore the taking of equivalence classes, and regard D as the set of all
long dendrons. Thus, the topology on D gives a notion of convergence for
long dendrons.

Theorem 5.3. Let D = (T, d, ν) and Dn = (Tn, dn, νn), n > 1 be long
dendrons. Then the following are equivalent.

(i) Dn → D in D.
(ii) τ∞(Dn)→ τ∞(D) in P(M∞).

(iii) The infinite random matrices ρ∞(ξ
(n)
1 , ξ

(n)
2 , . . . ;Dn) converge in distri-

bution to ρ∞(ξ1, ξ2, . . . ;D), where ξ
(n)
i are i.i.d. random points in ADn

with ξ
(n)
i ∼ µn and ξi are i.i.d. random points in AD with ξi ∼ ν.

(iv) τr(Dn)→ τr(D) in P(Mr), for every r > 1.

(v) The finite random matrices ρr(ξ
(n)
1 , ξ

(n)
2 , . . . ;Dn) converge in distribu-

tion to ρr(ξ1, ξ2, . . . ;D) for every r > 1, where ξ
(n)
i and ξi are as in

(iii).

Proof. Immediate by the definitions and comments before the theorem to-
gether with (4.2). �

Summarizing, we may thus regard finite trees, real trees, and long den-
drons as elements of the Polish space T ⊂ P(M∞). This gives a unified
meaning to convergence of trees and real trees to a long dendron, and also
a notion of convergence of long dendrons.

We turn to the question whether τ∞ is injective (up to obvious isomor-
phisms) on the sets Tf of finite trees and Tr of measured real trees; recall
that for long dendrons, this is answered (positively) by Theorem 3.17. Gro-
mov [22, 31

2 .5 and 31
2 .7] studied a more general setting and proved that

if X1 = (X1, d1, µ1) and X2 = (X2, d2, µ2) are two separable and com-
plete metric measure spaces such that the measures have full support, and
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τ∞(X1) = τ∞(X2), then X1 and X2 are isomorphic. This applies immedi-
ately to rescaled finite trees, and it follows that if c1T1 and c2T2 are rescaled
trees with τ∞(c1T1) = τ∞(c2T2), then T1

∼= T2 as metric spaces, and thus as
trees, and c1 = c2. (Except in the trivial case |T1| = |T2| = 1, when c1 and c2

are arbitrary.) In other words, τ∞ : Tf → T is injective up to isomorphism.
For measured real trees (T, d, µ), this is not quite true, since it may hap-

pen that µ is concentrated on a subtree T ′ ⊂ T , and then τ∞(T, d, µ) =
τ∞(T ′, d, µ). However, if Tc is the set of measured real trees such that every
branch has positive measure, then τ∞ is injective on Tc (up to isomorphism).
One way to see that is to note that every T = (T, d, µ) ∈ Tc may be regarded
as a long dendron as in Example 3.12, and then use Theorem 3.17.

In general, given a measured real tree T , we may prune branches of mea-
sure 0 and obtain a subtree T ′ ∈ Tc; this is called the core of T in [20],
where a detailed definition is given. We see that the mapping τ∞ does not
distinguish between a measured real tree T and its core T ′.

In other words, our identification of measured real trees with tree limits
in T means that we ignore branches of measure 0, and thus identify a tree
with its core, but trees with different cores are distinguished. With some
care, we may thus also regard measured real trees as elements of T.

One important consequence of regarding trees, measured real trees and
long dendrons as elements of the Polish space T is that then standard theory
(e.g. [11]) defines for us random trees, random measured real trees and
random long dendrons, as well as convergence in probability or distribution
of such random objects. This will be a central topic in the remainder of the
paper.

First, however, it remains to prove Theorem 5.1.

Proof of Theorem 5.1. First, as explained in Example 3.4, a rescaled finite
tree cT ∈ Tf can be embedded in a measured real tree cT̂ ∈ Tr such that
(3.5) holds for all finite r, and thus also for r =∞. This proves Tf ⊆ Tr.

Recalling (5.1), it remains only to show Tr ⊆ T.
We give first a short proof using the results of [20]. If T is a measured real

tree, then the constant sequence T, T, . . . trivially is convergent, and thus
Theorem 3.15 shows that there exists a long dendron D such that T → D,
which by Theorem 5.3 means τ∞(T ) = τ∞(D). Hence, by Theorem 5.2,

τ∞(T ) = τ∞(D) ∈ τ∞(D) = T. (5.3)

We give also an alternative, elementary proof. We do this in several steps.
We consider for simplicity, as said earlier, only separable trees.

Step 1. As in [20], say that a measured real tree is a finite real tree if it
can be obtained from a finite tree by regarding each edge as an interval of
some positive length (not necessarily the same for all edges), and adding a
probability measure on the (finite) set of vertices. Note that a finite real
tree has finite diameter. [20, Lemma 7.2] shows that every finite real tree T
of diameter 6 1 is a limit of rescaled finite trees, i.e., T ∈ T. By rescaling,
the same holds for every finite real tree.

Step 2. Suppose that T = (T, d, µ) is a measured real tree such that µ is
concentrated on a finite set of points {x1, . . . , xm}. Let T ′ :=

⋃m
i=1[x1, xi]
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be the subtree spanned by {x1, . . . , xm}. Then (T ′, d, µ) is a finite real tree.
Furthermore, τ∞(T ) = τ∞(T ′, d, µ) ∈ T, using Step 1.

Step 3. Suppose that T = (T, d, µ) is a measured real tree such that µ is
concentrated on a countable set of points {x1, x2, . . . }. Let

µn :=
n∑
k=1

µ{xk}δxk +
( ∞∑
k=n+1

µ{xk}
)
δx1 , (5.4)

where δx is the point mass at x. Let ξi be i.i.d. with ξi ∼ µ, and let

ξ
(n)
i :=

{
ξi if ξi ∈ {x1, . . . , xn},
x1 otherwise.

(5.5)

Then (ξ
(n)
i )i are i.i.d. random points in T with ξ

(n)
i ∼ µn. Furthermore,

P(ξ
(n)
i 6= ξi)→ 0 as n→∞, and thus ρr(ξ

(n)
1 , . . . , ξ

(n)
r )

p−→ ρr(ξ1, . . . , ξr) for
each r > 1. Hence, τr(T, d, µn)→ τr(T, d, µ) for every finite r, and thus also
τ∞(T, d, µn)→ τ∞(T, d, µ). Since τ∞(T, d, µn) ∈ T by Step 2, it follows that
τ∞(T, d, µ) ∈ T.

Step 4. Let T = (T, d, µ) be any separable tree. There exists a countable
dense subset A := {x1, x2, . . . }.

For each n > 1, define a measurable function fn : T → A such that
d(x, fn(x)) < 1/n for all x. (For example, let fn(x) := xi for the smallest i
such that d(x, xi) < 1/n.) Let ξi be i.i.d. random points in T with ξi ∼ µ,

and let ξ
(n)
i := fn(ξi). Then (ξ

(n)
i )i are i.i.d. with ξ

(n)
i ∼ µn := fn(µ), which

is concentrated on the countable set A. By Step 3, τ∞(T, d, µn) ∈ T for
every n. Furthermore,∣∣d(ξ

(n)
i , ξ

(n)
j )− d(ξi, ξj)

∣∣ 6 d(ξ
(n)
i , ξi) + d(ξ

(n)
j , ξj) < 2/n (5.6)

for every i and j, and and thus ρr(ξ
(n)
1 , . . . , ξ

(n)
r )

a.s.−→ ρr(ξ1, . . . , ξr) as n→∞
for each r > 1. Hence, τr(T, d, µn)→ τr(T, d, µ) for every finite r, and thus
also τ∞(T, d, µn)→ τ∞(T, d, µ). Consequently, τ∞(T, d, µ) ∈ T. �

6. Compactness

.
Recall that a set S in a metric space X is relatively compact if every

sequence in S has a convergent subsequence. (This is equivalent to S being
compact.)

Recall also that a family {Zα : α ∈ A} of random variables in a metric
space X is tight if for every ε > 0 there exists a compact set Kε ⊆ X such
that P(Zα /∈ Kε) < ε for every α ∈ A. In this case we also say that the
family of distributions {L(Zα)} is tight.

Prohorov’s theorem [11, Section 6] says that for a Polish space X, the set
of distributions {L(Zα)} is relatively compact in P(X) if and only if {Zα}
is tight. In particular, this leads to the following characterization of relative
compactness in T.

Theorem 6.1. Let A = {cαTα : α ∈ A} be a set of rescaled trees. Then the

following are equivalent, where (ξ
(α)
i )i are i.i.d. uniformly random vertices

in Tα and dα is the graph distance in Tα.
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(i) A is relatively compact.
(ii) The set of measures {τ∞(cαTα) : α ∈ A} ⊆ P(M∞) is tight.

(iii) The set of random variables {ρ∞(ξ
(α)
1 , ξ

(α)
2 . . . ; cαTα) : α ∈ A} in M∞

is tight.

(iv) The set of random variables {cαdα(ξ
(α)
1 , ξ

(α)
2 ) : α ∈ A} is tight.

(v) There exists xα ∈ Tα, α ∈ A, such that the set of random variables

{cαdα(ξ
(α)
1 , xα) : α ∈ A} is tight.

The same holds, mutatis mutandis, for sets of measured real trees {(Tα, dα, µα)},
and for sets of long dendrons {(Tα, dα, να)}; in these cases, ξ

(α)
i ∼ µα and

ξ
(α)
i ∼ να, respectively, and for long dendrons we use dD defined in (3.7).

Proof. (i) ⇐⇒ (ii) ⇐⇒ (iii): Prohorov’s theorem, together with the defini-
tion of convergence and Theorem 4.1.

(iii) =⇒ (iv): Immediate by (3.1), since the mapping (aij)i,j 7→ a1,2 is
continuous M∞ → R.

(iv) =⇒ (iii): Follows by symmetry and the fact that M∞ has the product
topology. To be more precise, let ε > 0. By (iv), there exist constants

Ck, k > 0, such that P
(
cαdα(ξ

(α)
1 , ξ

(α)
2 ) > Ck

)
< 2−kε for every α. Then

K := {(aij)i,j : |aij | 6 Ci+j} is a compact subset of M∞, and, by symmetry,

P
(
ρ∞(ξ

(α)
1 , ξ

(α)
2 . . . ; cαTα) /∈ K

)
6

∞∑
i,j=1

P
(
cαdα(ξ

(α)
i , ξ

(α)
j ) > Ci+j

)
<

∞∑
i,j=1

2−i−jε = ε. (6.1)

(iv) =⇒ (v): If Cε is such that P
(
cαdα(ξ

(α)
1 , ξ

(α)
2 ) > Cε

)
< ε, then (by

Fubini’s theorem), there exists xεα such that P
(
cαdα(ξ

(α)
1 , xεα) > Cε

)
< ε. It

suffices to consider ε < 1/2. It then follows that

P
(
cαdα(ξ

(α)
1 , xεα) 6 Cε and cαdα(ξ

(α)
1 , x1/2

α ) 6 C1/2

)
> 1− ε− 1/2 > 0

(6.2)

and thus the events {cαdα(ξ
(α)
1 , xεα) 6 Cε} and {cαdα(ξ

(α)
1 , x

1/2
α ) 6 C1/2} are

not disjoint. Hence, cαdα(xεα, x
1/2
α ) 6 Cε + C1/2. Consequently,

P
(
cαdα(ξ

(α)
1 , x1/2

α ) > 2Cε + C1/2

)
6 P

(
cαdα(ξ

(α)
1 , xεα) > Cε

)
< ε, (6.3)

and thus we may choose xα := x
1/2
α .

(v) =⇒ (iv): If Cε is such that P
(
cαdα(ξ

(α)
1 , xα) > Cε

)
< ε/2, then

P
(
cαdα(ξ

(α)
1 , ξ

(α)
2 ) > 2Cε

)
< ε. �

Definition 6.2. A set of rescaled trees, measured real trees, or long den-
drons, is tight if (iv) (or, equivalently, (v)) in Theorem 6.1 holds.

With this definition, Theorem 6.1 simply says that a set of rescaled trees,
measured real trees or long dendrons is relatively compact if and only if it
is tight. Usually, we consider sequences rather than general sets, and then
Theorem 6.1 has the following corollary.



TREE LIMITS AND LIMITS OF RANDOM TREES 15

Corollary 6.3. If (cnTn)n is a tight sequence of rescaled trees, then some
subsequence converges to some long dendron.

The same holds for tight sequences of measured real trees and for tight
sequences of long dendrons.

7. Simple examples

As a preparation for the study of limits of random trees in the following
sections, we give here a few simple examples of limits of deterministic trees.

Example 7.1 (paths). Let Pn be the path with n vertices. We may take
the vertices to be {1, . . . , n}, and then dPn(x, y) = |x− y|.

Let I = (I, d, µ) be the unit interval I := [0, 1] considered as a measured
real tree with the usual metric d and Lebesgue measure µ. We regard I as
a long dendron as in Example 3.11, and claim that 1

nPn → I.

To see this, let (ξi)i be i.i.d. with ξi ∼ µ, and let ξ
(n)
i := dnξie. Then

(ξ
(n)
i )i are i.i.d. uniform vertices of Pn, and 1

nξ
(n)
i → ξi as n→∞. Hence,

(3.1) shows that

ρr
(
ξ

(n)
1 , . . . , ξ(n)

r ; 1
nPn

) a.s.−→ ρr
(
ξ1, . . . , ξr; I

)
(7.1)

for every r. This implies convergence in distribution, and thus τr
(

1
nPn

)
→

τr(I), and thus

1

n
Pn → I. (7.2)

The diameter of Pn is n− 1. Obviously, we obtain the same limit I if we
use the Elek–Tardos normalization 1

n−1Pn. (Note that the limit I is a short

dendron.) �

Example 7.2 (stars). Let Sn = Kn−1,1 be a star with n vertices. If (ξ
(n)
i )i

are i.i.d. random vertices in Sn, then with probability 1 − O(1/n), ξ
(n)
1

and ξ
(n)
2 are distinct peripheral vertices, and thus d(ξ

(n)
1 , ξ

(n)
2 ) = 2. Hence,

d(ξ
(n)
1 , ξ

(n)
2 )

p−→ 2 as n→∞, and thus Theorem 3.13 shows that

Sn → Υ1. (7.3)

Of course, we can use the Elek–Tardos normalization and consider 1
2Sn,

which has diameter 1, and obtain the equivalent result 1
2Sn → Υ1/2. �

Example 7.3 (complete binary trees). Let Bn be a complete binary tree
with height n − 1 and thus 2n − 1 vertices. Let o be the root and let
h(x) := d(x, o) (known as the depth of x) denote the distance from a vertex
x to the root.

If (ξ
(n)
i )i are i.i.d. random vertices in Bn, then for 0 6 k < n,

P
(
h(ξ

(n)
i ) < n− k

)
=

2n−k − 1

2n − 1
6 2−k. (7.4)

Since also h(ξ
(n)
i ) < n, it follows that

1

n
h(ξ

(n)
i )

p−→ 1. (7.5)
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Recall that x∧y denotes the last common ancestor of x, y ∈ Bn. If h(x∧y) >
k, then x and y are both descendants of one of the 2k vertices z with depth
k. For each z, the number of such x (or y) is 2n−k − 1. Hence,

P
(
h(ξ

(n)
1 ∧ ξ(n)

2 ) > k
)

= 2k
(2n−k − 1)2

(2n − 1)2
6 2−k, k < n. (7.6)

Consequently,

1

n
h(ξ

(n)
1 ∧ ξ(n)

2 )
p−→ 0. (7.7)

Since d(x, y) = h(x) + h(y)− 2h(x ∧ y) for x, y ∈ Bn, (7.5) and (7.7) imply

1

n
d(ξ

(n)
1 , ξ

(n)
2 ) =

1

n
h(ξ

(n)
1 ) +

1

n
h(ξ

(n)
2 )− 2

n
h(ξ

(n)
1 ∧ ξ(n)

2 )
p−→ 1 + 1− 0 = 2.

(7.8)

Consequently, Theorem 3.13 yields

1

n
Bn → Υ1. (7.9)

We see that (7.9) encapsulates (and formalizes) the fact that almost all pairs
of vertices in Bn have distance ≈ 2n.

Recall that Bn has N := 2n − 1 vertices. Thus, (7.9) can also be written

1

logN
Bn → Υ1/ log 2. (7.10)

The results extend to complete b-ary trees T bn, for any b > 2, with N =
(bn − 1)/(b− 1) nodes. In this case,

1

logN
T bn → Υ1/ log b. (7.11)

�

Example 7.4 (superstars). Let Tn consist of a central vertex o with n paths
attached: Nkn paths with k edges for k > 1, all having o as one endpoint
but otherwise disjoint, for some numbers Nkn > 0 with

∑
kNkn = n. The

number of vertices is thus |Tn| = 1 +
∑

k kNkn. We assume that as n→∞,
for some pk > 0 with

∑∞
k=1 pk = 1,

Nkn

n
→ pk, k > 1, (7.12)

and ∑
k

k
Nkn

n
→ γ :=

∞∑
k=1

kpk <∞. (7.13)

Thus

|Tn| ∼ γn. (7.14)

Suppose further (this actually follows from the other assumptions) that∑
k

k2Nkn

n
= o(n). (7.15)
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Let (ξ
(n)
i )i be i.i.d. uniformly random vertices of Tn. It follows from the

assumptions above that, for k > 1,

P
(
d(ξ

(n)
i , o) = k

)
=

∑
j>kNjn

|Tn|
→
∑

j>k pj

γ
=: qk. (7.16)

Note that
∞∑
k=1

qk =

∑∞
k=1

∑
j>k pj

γ
=

∑∞
j=1 jpj

γ
= 1. (7.17)

Let ν be the probability distribution on N given by ν{k} = qk, and let (ξi)i
be i.i.d. with ξi ∼ ν. Then, (7.16) shows that

d(ξ
(n)
i , o)

d−→ ξi, n→∞. (7.18)

Furthermore, for any i, j > 1, by (7.15) and (7.14), as in the special case in
Example 7.2,

P
(
d(ξ

(n)
i , ξ

(n)
j ) 6= d(ξ

(n)
i , o) + d(ξ

(n)
i , o)

)
= P

(
ξ

(n)
i and ξ

(n)
j are in the same path

)
=

∑
k k

2Nkn

|Tn|2
→ 0. (7.19)

It follows from (7.18) and (7.19) that for any r > 1,

ρr
(
ξ

(n)
1 , . . . ξ(n)

r ;Tn
) d−→

(
(ξi + ξj)1{i 6= j}

)r
i,j=1

= ρ
(
ξ1, . . . , ξr; Υν

)
.

(7.20)

Hence,

Tn → Υν . (7.21)

�

8. Limits of random trees

In the rest of the paper we consider limits of random (finite) trees. Sup-
pose that Tn, n > 1, are random trees (with any distributions) and let,

conditioned on Tn, (ξ
(n)
i )i be i.i.d. uniformly random vertices of Tn. We are

concerned with limits in distribution or probability of cnTn to some random
or deterministic long dendron (tree limit). (Here, cn are some given positive
numbers.) By the definitions above, this is equivalent to convergence of the
conditional distributions

τ∞(cnTn) = L
(
ρ∞(ξ

(n)
1 , ξ

(n)
2 , . . . ; cnTn) | Tn

)
, (8.1)

regarded as random elements of P(M∞); we thus want to show either that
τ∞(cnTn) converges in distribution to τ∞(D) for a random long dendron D,
or (as a special case) that it converges in probability to τ∞(D) for a fixed
D.

Remark 8.1. It is important that we consider randomness in two steps:

first Tn is a random tree and then (ξ
(n)
i )i are random vertices in Tn. As seen

in (8.1), we are interested in the quenched version, where we first sample Tn
and then condition on Tn.
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The alternative annealed version considers Tn and (ξ
(n)
i )i as random to-

gether; the annealed distribution of ρ∞(ξ
(n)
1 , ξ

(n)
2 , . . . ; cnTn) is the mean (or

intensity) E τ∞(cnTn) of the random measure in (8.1), which in general is
not what we want. �

We note one simple case where the difference between quenched and an-
nealed disappears.

Theorem 8.2. Let (Tn)n be a sequence of rescaled random trees and cn
some positive numbers. Let further a > 0. Then the following are equivalent,

where dn is the graph distance in Tn and (ξ
(n)
i )i are i.i.d. uniformly random

vertices in Tn.

(i) cnTn
p−→ Υa.

(ii)

cndn(ξ
(n)
1 , ξ

(n)
2 )

p−→ 2a. (8.2)

(iii) For every ε > 0,

P
[
|cndn(ξ

(n)
1 , ξ

(n)
2 )− 2a| > ε | Tn

] p−→ 0. (8.3)

Proof. Recall that for any random variables Zn,

Zn
p−→ 0 ⇐⇒ E

[
|Zn| ∧ 1

]
→ 0. (8.4)

Thus, for deterministic trees Tn, the convergence in probability (3.13) is
equivalent to

E
[
|cndn(ξ

(n)
1 , ξ

(n)
2 )− 2a| ∧ 1

]
→ 0. (8.5)

Consequently, by Theorem 3.13, (i) is equivalent to

E
[
|cndn(ξ

(n)
1 , ξ

(n)
2 )− 2a| ∧ 1 | Tn

] p−→ 0. (8.6)

A simple argument using Markov’s inequality shows that (8.6) is equivalent
to (iii). (This argument is a conditional version of (8.4).)

Furthermore, since the left-hand side of (8.6) is bounded by 1, (8.4) shows
that (8.6) is equivalent to

E
[
|cndn(ξ

(n)
1 , ξ

(n)
2 )− 2a| ∧ 1

] p−→ 0, (8.7)

which by a final application of (8.4) is equivalent to (ii). �

We give also a version of the compactness criterion in Theorem 6.1 for
random trees. We state the theorem for a sequence of random trees, although
the statement and proof holds for an arbitrary set.

Theorem 8.3. Let (cnTn)n be a sequence of rescaled random trees. Then the

following are equivalent, where (ξ
(n)
i )i are i.i.d. uniformly random vertices

in Tn and dn is the graph distance in Tn.

(i) The sequence (cnTn)n of random elements of T is relatively compact
in P(T).

(ii) The sequence (cnTn)n of random elements of T is tight.

(iii) The sequence of random variables
(
cndn(ξ

(n)
1 , ξ

(n)
2 )
)
n

is tight.
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Proof. (i)⇐⇒ (ii): Since T is a Polish space, this is Prohorov’s theorem.
(ii) =⇒ (iii): By the definitions in Section 5, T is a closed subspace of

P(M∞) and it follows that (ii) means that for every ε > 0, there exists a
compact set Kε ⊂ P(M∞) such that, for every n > 1,

P
(
τ∞(cnTn) /∈ Kε

)
< ε. (8.8)

Furthermore, Prohorov’s theorem (now applied to the Polish space M∞)
shows that for every δ > 0, there exists a compact set Kε,δ ⊂M∞ such that
if λ ∈ P(M∞), then

λ ∈ Kε =⇒ λ(Kε,δ) > 1− δ. (8.9)

Since the projection (aij)ij 7→ a12 is continuous M∞ → R, there exists a
constant Cε,δ such that if (aij)ij ∈ Kε,δ, then |a12| 6 Cε,δ.

Consequently, for every ε, δ > 0, and all n,

|cndn(ξ
(n)
1 , ξ

(n)
2 )| > Cε,δ =⇒ ρ∞(ξ

(n)
1 , . . . ; cnTn) /∈ Kε,δ (8.10)

and thus, using also (8.9),

P
(
|cndn(ξ

(n)
1 , ξ

(n)
2 )| > Cε,δ | Tn

)
> δ

=⇒ P
(
ρ∞(ξ

(n)
1 , . . . ; cnTn) /∈ Kε,δ | Tn

)
> δ

=⇒ τ∞(cnTn) = L
(
ρ∞(ξ

(n)
1 , . . . ; cnTn)

)
/∈ Kε. (8.11)

Hence, (8.8) implies

P
(
P
(
|cndn(ξ

(n)
1 , ξ

(n)
2 )| > Cε,δ | Tn

)
> δ
)
< ε (8.12)

which yields

P
(
|cndn(ξ

(n)
1 , ξ

(n)
2 )| > Cε,δ

)
= EP

(
|cndn(ξ

(n)
1 , ξ

(n)
2 )| > Cε,δ | Tn

)
6 δ + ε.

(8.13)

By taking δ = ε, this shows (iii).
(iii) =⇒ (ii): By (iii), for every ε > 0, there exists Cε such that

P
(
|cndn(ξ

(n)
1 , ξ

(n)
2 )| > Cε

)
< ε. (8.14)

Define

Kε :=
{

(aij)ij ∈M∞ : |aij | 6 C2−i−jε

}
. (8.15)

This is a compact subset of M∞, and (8.14) implies

P
(
ρ∞(ξ

(n)
1 , . . . ; cnTn) /∈ Kε

)
6

∞∑
i,j=1

P
(
|cndn(ξ

(n)
i , ξ

(n)
j )| > C2−i−jε

)
<

∞∑
i,j=1

2−i−jε = ε. (8.16)

Hence,

E
[
P
(
ρ∞(ξ

(n)
1 , . . . ; cnTn) /∈ Kε | Tn

)]
= P

(
ρ∞(ξ

(n)
1 , . . . ; cnTn) /∈ Kε

)
< ε,
(8.17)

and Markov’s inequality shows that, for any ` > 1,

P
[
P
(
ρ∞(ξ

(n)
1 , . . . ; cnTn) /∈ K4−`ε | Tn

)
> 2−`

]
< 2−`ε. (8.18)
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By the definition of τ∞, this is the same as

P
[
τ∞(cnTn)

(
M∞ \K4−`ε

)
> 2−`

]
< 2−`ε. (8.19)

Let

Kε :=
{
λ ∈ P(M∞) : λ(K4−`ε) > 1− 2−`, ∀` > 1

}
(8.20)

and note that Kε is compact by Prohorov’s theorem. It follows by (8.19)
that

P
(
τ∞(cnTn) /∈ Kε

)
<

∞∑
`=1

2−`ε = ε. (8.21)

Hence, the sequence τ∞(cnTn) is tight in P(M∞), and thus in T. �

Remark 8.4. Again, the same holds, mutatis mutandis, for random mea-
sured real trees and for random long dendrons. In fact, the argument is
quite general and holds for any measured metric spaces. We believe that
this may be known, but we do not know a reference and have included a full
proof for completeness. �

9. Conditioned Galton–Watson trees, I

Consider a Galton–Watson process with some given offspring distribution
ζ. (We let ζ denote both the distribution and a random variable with this
distribution.) The family tree of the Galton–Watson process is a random
tree T , which in the subcritical and critical cases (i.e., when E ζ 6 1) is a.s.
finite. T is a Galton–Watson tree, and the random tree Tn := (T | |T | = n)
obtained by conditioning T on a given size n is said to be a conditioned
Galton–Watson tree. (We consider only n such that P(|T | = n) > 0.) For
further details, see e.g. the survey [29].

In the standard case E ζ = 1 and Var ζ < ∞, Aldous [5, 6, 7] proved
convergence in distribution of the conditioned Galton–Watson tree Tn, after
rescaling, to a limit object called the Brownian continuum random tree; this
is a random measured real tree which we denote by T2e, for reasons given
below. Aldous’s original result was not in terms of the type of convergence
discussed in the present paper, but it holds in the present context too. In
fact, Aldous’s result has been stated in several different forms, more or less
equivalent; one version, stated e.g. in [24, Theorem 8] and [2, Theorem
5.2], is convergence in the Gromov–Hausdorff–Prohorov metric (defined in
e.g. [50, Chapter 27] and [41, Section 6]), which is stronger than Gromov–
Prohorov convergence and thus implies convergence in the tree limit sense
used in the present paper (see Remark 3.6 and Example 3.11). We thus have
the following.

Theorem 9.1. Let Tn be a conditioned Galton–Watson tree with critical
offspring distribution ζ with finite variance, i.e., we assume E ζ = 1 and
σ2 := Var ζ ∈ (0,∞). Then, as n→∞,

1√
n
Tn

d−→ 1

σ
T2e, (9.1)

where T2e is the Brownian continuum random tree.
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Proof. As said before the theorem, this is known. For completeness, we
sketch a proof in the present context; omitted details can be found e.g. in
e.g. [7] and [36].

One standard version of Aldous’s theorem uses the contour function CTn(t)
of Tn. In general, if T is a rooted tree with |T | = n, then CT is a continuous
function [0, 2(n − 1)] → [0,∞); informally, CT (t) is the distance, at time t,
from the root to a particle that travels with unit speed along the “outside”
of the tree, starting at the root at time 0 and returning at time 2(n − 1),
having traversed every edge once in each direction. Aldous [7] showed that

1√
n
CTn(2(n− 1)t)

d−→ 2

σ
e(t) in C[0, 1], (9.2)

where e(t) is the standard Brownian excursion, which is a random continuous
function [0, 1]→ [0,∞) with e(0) = e(1) = 0.

Every continuous function g : [0, 1]→ [0,∞) with g(0) = g(1) = 0 defines
a real tree Tg: define a pseudometric on [0, 1] by

d(s, t) := g(s) + g(t)− 2 min
u∈[s,t]

g(u), 0 6 s 6 t 6 1, (9.3)

and form the quotient of [0, 1] modulo the equivalence relation {d(s, t) = 0};
see e.g. [36, Theorem 2.2]. The uniform (Lebesgue) measure on [0, 1] induces
a measure µ on Tg, making (Tg, µ) a measured real tree.

Taking g(t) = CT (2(n−1)t) for a rooted tree T with |T | = n gives Tg = T̂ ,
the real tree obtained from T as in Example 3.4. The measure µ induced by
g is the uniform measure on the edges of T̂ , and not the uniform measure
µ′ on the vertices of T ⊆ T̂ ; however, it is easy to couple these measures
and find ξ ∼ µ and ξ′ ∼ µ′ such that P(|ξ − ξ′| > 1) 6 1/n. It follows that
(9.2) implies (9.1), both in the sense of the present paper and in the stronger
Gromov–Hausdorff–Prohorov metric. �

Remark 9.2. Duquesne [19] considered the case when ζ has infinite variance
and furthermore is in the domain of attraction of a stable distribution; he
extended Aldous’s result and showed convergence of the contour process of
cnTn (for suitable cn) to a certain stochastic process in this case too; this
implies convergence of cnTn to a random real tree called the stable tree [37]
in Gromov–Hausdorff–Prohorov sense, and thus in the weaker sense of tree
limits, also in this case. (See [24, Theorem 8], with a somewhat stronger
assumption on ζ.) �

Remark 9.3. As is well-known, several important classes of random trees
can be represented as conditioned Galton–Watson trees Tn satisfying the
conditions above by choosing suitable offspring distributions ζ; thus Theo-
rem 9.1 applies to them. This includes (uniformly) random labelled trees
(σ2 = 1), random ordered trees σ2 = 2) and random binary trees (σ2 = 1/2);
see e.g. [6] and [29]. �

Remark 9.4. Recall that random simply generated trees are defined by
a weight sequence (wk)k; see, again, e.g. [6] or [29] for the definition and
for the well-known fact that while simply generated trees are more general
than conditioned Galton–Watson trees, they can in many cases be reduced
to equivalent conditioned Galton–Watson trees. Thus Theorem 9.1 applies
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to simply generated trees under rather weak conditions. In other cases of
simply generated trees, the results in Sections 10 and 11 may apply. �

10. Conditioned Galton–Watson trees, II

Although a large class of conditioned Galton–Watson trees (and simply
generated trees) are covered by Theorem 9.1, there are also other cases.
One class of conditioned Galton–Watson trees with a different local limit
behaviour showing condensation was found by Jonsson and Stefánsson [33];
this was generalized in [29], with further results in [1] and [49]. This class
of conditioned Galton–Watson trees (called type II in [29] and [49]) has
offspring distributions ζ satisfying

0 < κ := E ζ < 1, (10.1)

ERζ =∞, ∀R > 1. (10.2)

In other words, the Galton–Watson trees are subcritical, and ζ has infinite
moment generating function; see further [29, Section 8]. We will show that
this class has tree limits that are very different from the ones in Section 9.

For a rooted tree T and a vertex v ∈ T , let δ(v) denote the outdegree
of v. Furthermore, let ∆ = ∆(T ) := maxv∈T δ(v) be the maximum outde-
gree, and let v† be the vertex with maximum outdegree (chosen as e.g. the
lexicographically first if there is a tie), so ∆ = δ(v†).

It is shown in [29, Section 19.6] that (10.1)–(10.2) imply the existence
(asymptotically) of one or several vertices of very high (out)degree, with a
total outdegree ≈ (1 − κ)n; typically, there is one single large vertex with
degree ≈ (1−κ)n, but this is not always the case; see [29] and Remark 10.8.
We will assume that there is such a vertex; a case known as complete con-
densation. To be precise, we assume that ζ is such that

∆(Tn) = (1− κ)n+ op(n). (10.3)

For example, this holds when the offspring distribution satisfies (10.1)–(10.2)
and has a power law tail, as shown by Jonsson and Stefánsson [33, Theorem
5.5], see also [29, Theorem 19.34] and (more generally, with regularly varying
tails) Kortchemski [35, Theorem 1].

We note that (10.3) implies that the second largest outdegree is op(n); in

particular the maximum degree vertex v† is unique w.h.p., see [29, paragraph
after Lemma 19.32].

Theorem 10.1. Let Tn be a conditioned Galton–Watson tree with subcrit-
ical offspring distribution ζ satisfying (10.1)–(10.2) and (10.3). Then, as
n→∞,

Tn
p−→ Υν , (10.4)

where ν = Ge(1− κ) is a geometric distribution on N := {1, 2, . . . }.

Recall that Υν is the deterministic long dendron defined in Example 3.12.

Remark 10.2. Note that there is no rescaling of Tn in (10.4); the situation is
similar to Examples 7.2 and 7.4. Distances are typically small; formally, the

distance d(ξ
(n)
1 , ξ

(n)
2 ) between two random vertices is stochastically bounded
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(i.e., tight). Hence, the local limits studied in [29] and [49] are essentially
global in this case. �

Remark 10.3. The diameter diam(Tn)
p−→∞, e.g. by Lemma 10.6 below.

Hence, rescaling such that the diameter becomes 1 would only give the trivial
limit Υ0, see Remark 3.14. �

The rest of this section contains the proof of Theorem 10.1. We begin
with some further notation. In this proof, all trees are rooted and ordered.
Trees that are equal up to order-preserving isomorphisms are regarded as
equal. Let T be the countable set of all finite trees.

Let again T denote the (unconditioned) Galton–Watson tree with the
chosen offspring distribution ζ. Since E ζ < 1, T is a.s. finite. If t is any
fixed finite tree, let

πt := P(T = t). (10.5)

In other words, (πt)t∈T is the probability distribution of T ∈ T.
The fringe tree [4] of a tree T at a vertex v, denoted T v, is the subtree of

T consisting of v and its descendants, rooted at v.
Let t denote a finite tree. For any tree T , let

Nt(T ) :=
∣∣{v ∈ T : T v = t}

∣∣, (10.6)

i.e., the number of fringe trees of T equal to t.
It is shown in [29, Theorem 7.12] that for any fixed tree t, assuming

(10.1)–(10.2),

Nt(Tn)

n

p−→ πt. (10.7)

Both sides of (10.7) are, regarded as functions of t, probability distributions
on the countable set of finite trees. (Note that

(
Nt(Tn)/n

)
t

is the condi-

tional distribution of T vn given Tn, with v a random vertex, while
(
πt
)
t

is the distribution of T .) Hence, (10.7) says that the random distribution(
Nt(Tn)/n

)
t

converges in probability to (πt)t in the space P(T) with the
usual weak topology. (Note that we here consider convergence of random
probability distributions, regarded as elements of the space P(T) of proba-
bility distributions on finite trees.) We claim that, since T is countable, it
follows that the random distribution

(
Nt(Tn)/n

)
t

converges in probability

to (πt)t in total variation, and thus for any set T′ ⊆ T of finite trees,∑
t∈T′

Nt(Tn)

n

p−→
∑
t∈T′

πt = P(T ∈ T′). (10.8)

To see this, note that the corresponding result for sequences of probability
distributions on a countable set is well known, see e.g. [23, Theorem 5.6.4].
The version used here with random distributions and convergence in prob-
ability follows by essentially the same proof, or by first using the Skorohod
coupling theorem [34, Theorem 4.30], to see that we may assume that (10.7)
holds a.s. for each t, and then using the deterministic version.

We need an extension of (10.7). Let

Nt,k(T ) :=
∣∣{v ∈ T : T v = t and δ(v̂) = k}

∣∣, (10.9)
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where v̂ denotes the parent of v (undefined for the root). Also, let

pk := P(ζ = k), k > 0 (10.10)

and note that

κ := E ζ =
∞∑
k=1

kpk. (10.11)

Lemma 10.4. Assume (10.1)–(10.2). For every fixed t ∈ T and k ∈ N,

Nt,k(Tn)

n

p−→ kpkπt. (10.12)

Proof. Let, for j = 1, . . . , k,

Nt,k,j(T ) :=
∣∣{v ∈ T : T v = t, δ(v̂) = k, and v is the jth child of v̂}

∣∣,
(10.13)

Note that v is in the set in (10.13) if and only if T v̂ ∈ Tj , where Tj is the

set of all trees t̂ such that the root has exactly k children, and if w is the
jth of these, then the fringe tree t̂w = t. Hence, (10.8) shows that, using
also the recursive property of the Galton–Watson tree T ,

Nt,k,j(Tn)

n

p−→ P(T ∈ Tj) = pk P(T = t) = pkπt. (10.14)

The result follows, since Nt,k(Tn) =
∑k

j=1Nt,k,j(Tn). �

We have so far not used the assumption (10.3), but it is essential for the
next lemma. Recall that ∆ = ∆(Tn) is the maximum outdegree, and that
w.h.p. v† is the only vertex of outdegree ∆. Hence, w.h.p., Nt,∆(Tn) is the

number of children v of v† such that T vn = t.

Lemma 10.5. Assume (10.1)–(10.3). For every fixed t ∈ T,

Nt,∆(Tn)

n

p−→ (1− κ)πt. (10.15)

Proof. Let Nk :=
∣∣{v ∈ Tn : δ(v) = k}

∣∣. Then, as a consequence of (10.8) or
as a simpler version of (10.7), see [29, Theorem 7.11],

Nk/n
p−→ pk, k > 0. (10.16)

Let ε > 0, and choose K such that∑
k>K

kpk < ε. (10.17)

The number of vertices having a parent of outdegree k is kNk. Thus∑
k kNk = n− 1. Hence, using (10.16), (10.3), (10.11) and (10.17),

∆−1∑
K+1

kNk 6
∞∑
k=1

kNk −
K∑
k=1

kNk −∆

= n− 1−
K∑
k=1

kpkn− (1− κ)n+ op(n)

=
∑
k>K

kpkn+ op(n)
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< εn+ op(n) < 2εn w.h.p. (10.18)

Now consider the Nt vertices v such that T vn = t. Assume for convenience
n > |t|, so that the root is not one of these vertices. Then, using (10.7) and
(10.12),

Nt,∆ = Nt −
K∑
k=1

Nt,k −
∆−1∑
K+1

Nt,k

= πtn−
K∑
k=1

kpkπtn−
∆−1∑
K+1

Nt,k + op(n). (10.19)

Thus, using (10.18) and Nt,k 6 kNk, w.h.p.,

πtn−
K∑
k=1

kpkπtn− 2εn+ op(n) 6 Nt,∆ 6 πtn−
K∑
k=1

kpkπtn+ op(n).

(10.20)

Using also (10.17) and (10.11), we find that w.h.p.

(1− κ)πtn− 3εn 6 Nt,∆ 6 (1− κ)πtn+ 2εn. (10.21)

The result (10.15) follows, since ε > 0 is arbitrary. �

Next, for a tree t, and ` > 0, let w` be the number of vertices at distance

` from the root. Furthermore, for ` > 1, let W` := w`(T v
†

n ), the number of
vertices in Tn that are descendants of v† and are ` generations from it, and
let W := n −

∑
`>1W` be the number of vertices that are not descendants

of v†.

Lemma 10.6. Assume (10.1)–(10.3). Then, for ` > 1,

W`

n

p−→ (1− κ)κ`−1 (10.22)

and

W

n

p−→ 0. (10.23)

Proof. We have, assuming N∆ = 1 which holds w.h.p.,

W` =
∑
t∈T

Nt,∆(Tn)w`−1(t). (10.24)

For any finite family T0 ⊂ T, by Lemma 10.5,

1

n

∑
t∈T0

Nt,∆(Tn)w`−1(t)
p−→ (1− κ)

∑
t∈T0

πtw`−1(t). (10.25)

Hence, by (10.24),

1

n
W` =

1

n

∑
t∈T

Nt,∆(Tn)w`−1(t) > (1− κ)
∑
t∈T0

πtw`−1(t) + op(1) (10.26)

for any finite T0. Furthermore, by elementary branching process theory,∑
t∈T

πtw`−1(t) = Ew`−1(T ) = (E ζ)`−1 = κ`−1. (10.27)
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In particular, the sum converges, and it follows from (10.26) that

1

n
W` > (1− κ)

∑
t∈T

πtw`−1(t) + op(1). (10.28)

Thus, (10.28) yields

1

n
W` > (1− κ)κ`−1 + op(1), ` > 1. (10.29)

We can sum (10.29) over any set of `, using the same argument as for (10.28)
again. In particular, we obtain

1

n

∑
j 6=`

Wj > (1− κ)
∑
j 6=`

κj−1 + op(1). (10.30)

On the other hand, trivially,

1

n

∞∑
j=1

Wj 6 1 = (1− κ)
∞∑
j=1

κj−1. (10.31)

Subtracting (10.30) from (10.31) yields

1

n
W` 6 (1− κ)κ`−1 + op(1), (10.32)

which together with (10.29) yields the result (10.22).
Furthermore, (10.29) and (10.30) yield

1

n

∞∑
j=1

Wj > (1− κ)

∞∑
j=1

κj−1 + op(1) = 1 + op(1). (10.33)

Thus,

W = n−
∞∑
j=1

Wj = op(n), (10.34)

which yields (10.23) and completes the proof. �

Lemma 10.7. Assume (10.1)–(10.3). Let (ξ
(n)
i )i be i.i.d. vertices in Tn.

Then

P
(
d(ξ

(n)
1 , ξ

(n)
2 ) 6= d(ξ

(n)
1 , v†) + d(ξ

(n)
2 , v†)

∣∣∣ Tn) p−→ 0. (10.35)

Proof. If ξ
(n)
1 and ξ

(n)
2 both are descendants of v†, then d(ξ

(n)
1 , ξ

(n)
2 ) =

d(ξ
(n)
1 , v†) + d(ξ

(n)
2 , v†) unless ξ

(n)
1 and ξ

(n)
2 are in the same fringe subtree

rooted at a child of v†. Hence, the probability in (10.35) is at most

2
W

n
+

1

n2

∑
t∈T

Nt,∆|t|2. (10.36)

By (10.23), it suffices to show that the sum in (10.36) is op(n2). Fix K > 1,
and let TK := {t ∈ T : |t| 6 K} and T>K := {t ∈ T : |t| > K}. First,
deterministically,∑

t∈TK

Nt,∆|t|2 6 K
∑
t∈TK

Nt,∆|t| 6 Kn = o(n2). (10.37)
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Secondly, since no subtree of Tn has more than n vertices,∑
t∈T>K

Nt,∆|t|2 6 n
∑

t∈T>K

Nt,∆|t|. (10.38)

By (10.15), since the set TK is finite,∑
t∈T>K

Nt,∆|t| 6 n−
∑
t∈TK

Nt,∆|t| = n− n
∑
t∈TK

(1− κ)πt|t|+ op(n).

(10.39)

On the other hand∑
t∈T

(1− κ)πt|t| = (1− κ)E |T | = (1− κ)
1

1− κ
= 1. (10.40)

Thus, for every ε > 0, we may choose K such that
∑

t∈TK (1−κ)πt|t| > 1−ε,
and then (10.38)–(10.39) yield, w.h.p.,∑

t∈T>K

Nt,∆|t|2 6 n2ε+ op(n2) < 2εn2. (10.41)

The result follows by (10.36), (10.37) and (10.41). �

Proof of Theorem 10.1. Let (ξ
(n)
i ) be i.i.d. uniformly random vertices of Tn,

and let Y
(n)
i := d(ξ

(n)
i , v†). Then Lemma 10.6 yields

P
(
Y

(n)
i = ` | Tn

) p−→ (1− κ)κ`−1, ` > 1, (10.42)

and Lemma 10.7 yields

P
(
d(ξ

(n)
i , ξ

(n)
j ) 6= Y

(n)
i + Y

(n)
j | Tn

) p−→ 0. (10.43)

We may for convenience, by the Skorohod coupling theorem [34, Theo-
rem 4.30], or (more elementary) by considering suitable subsequences, as-

sume that (10.42) and (10.43) hold with
a.s.−→. Then, (10.42) and the inde-

pendence of (Y
(n)
i )i shows that a.s. the sequence Tn is such that, conditioned

on Tn, we have (Y
(n)
i )i

d−→ (Yi)i with Yi ∼ Ge(1 − κ) i.i.d. Consequently,
for every r > 1, using also (10.43),

ρr(ξ
(n)
1 , . . . , ξ(n)

r ; Tn)
d−→
(
(Yi + Yj)1{i 6= j}

)r
i,j=1

= ρr(ξ1, . . . , ξr; Υν),

(10.44)

where ξi := (•, Yi) ∈ AΥν are i.i.d. with ξi ∼ ν. Hence, a.s., τr(Tn)→ τr(Υν)
and thus Tn → Υν . �

Remark 10.8. [29, Example 19.37] gives an example of an offspring distri-
bution satisfying (10.1)–(10.2) but not (10.3). In this example, there exists

a subsequence of n such that ∆(Tn)/n
p−→ 0; there exists also another sub-

sequences for which Tn w.h.p. contains two vertices of outdegree n/3.
It is an open problem to find tree limits in such cases. In the case just

mentioned with two large vertices (but not more), we conjecture that the
tree limit is similar to Υν in Example 3.12, but has a base consisting of a
unit interval with the marginal distribution of ν concentrated on the two
endpoints. �
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Remark 10.9. The proof above is based on the result (10.7) for random
fringe trees T vn of Tn. However, we also consider the parent of the random
node v, see e.g. (10.9); thus we really consider properties of (part of) the
extended fringe tree, also defined by Aldous [4]. The asymptotic distribution
of the entire extended fringe tree was found by Stufler [49]. However, his
result is for the annealed version, where the tree Tn and the vertex v are
chosen at random together, while we here need the quenched version, where
we fix (i.e., condition on) Tn and then take a random vertex v. We have
therefore used the (quenched) result (10.7) rather than the result of [49].
In fact, the argument above is easily extended to show that for the part of
the extended fringe tree up to the first very large ancestor (i.e., w.h.p., v†),
the infinite limit tree found by Stufler [49] is also the limit in the quenched
sense. However, this does not hold for the remaining part of the extended
fringe tree; this part is, for n − op(n) choices of v, equal to the part of Tn
between the root and v†, and conditioned on Tn it is thus w.h.p. equal to
some random tree determined by Tn. Consequently, there is no quenched
limit of the entire extended fringe tree. �

11. Simply generated trees, type III

As said in Remark 9.4, many simply generated trees are covered by the
results for conditioned Galton–Watson trees in the preceding sections. How-
ever, there are also simply generated trees of a different type (called type
III in [29]), where there is no equivalent conditioned Galton–Watson tree.
These are defined by weight sequences (wk)k such that the power series∑

k wkz
k has radius of convergence 0, i.e.,

∞∑
k=0

wkz
k =∞, z > 0. (11.1)

As shown in [29], such simply generated trees have many similarities with
conditioned Galton–Watson trees satisfying (10.1)–(10.2), if we define κ :=
0. In particular, there exists one or several vertices of high outdegree, with
total outdegree n− op(n). Again, cf. (10.3), we regard as typical the case of
complete condensation now defined by

∆(Tn) = n− op(n), (11.2)

so that there is a single vertex v† that has fathered almost all others. (In
fact, then w.h.p. v† is the root, see [29, (20.2)].) We then have an almost
trivial result.

Theorem 11.1. Let Tn be a simply generated tree defined by a weight se-
quence (wk)

∞
1 satisfying (11.1) and (11.2). Then

Tn
p−→ Υ1. (11.3)

Proof. If (ξ
(n)
i ) are i.i.d. uniformly random vertices of Tn, then (11.2) shows

that w.h.p. ξ
(n)
1 and ξ

(n)
2 are children of the node v† with highest degree.

Furthermore, w.h.p., ξ
(n)
1 6= ξ

(n)
2 . Hence, w.h.p. d(ξ

(n)
1 , ξ

(n)
2 ) = 2, and the

result follows by Theorem 8.2. �
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The proof shows that (11.3) holds because Tn “almost” is a star Sn, see
Example 7.2.

Example 11.2. Consider the case wk = k!, which satisfies (11.1). It was
shown in [32] that then (11.2) holds. More precisely, if the fringe trees rooted
at children of the root are called branches, w.h.p. Tn has a root of degree

n − 1 − Zn, where Zn
d−→ Po(1), and of the n − 1 − Zn branches, Zn have

size 2 and all others are single vertices (i.e., leaves of Tn).
The case wk = (k!)α with 0 < α < 1 is similar [32]; there are more

branches that have size > 2, and the largest may have size d1/αe + 1, but
their number is still op(n) and (11.2) holds. If wk = (k!)α with α > 1, then
Tn = Sn w.h.p.

Thus, (11.3) holds for any α > 0. �

Remark 11.3. [29, Examples 19.18 and 19.39] give examples where (11.2)
does not hold, and there are (at least for some subsequences) several large
vertices. It is still true that w.h.p. almost all vertices are at distance 1 from
one of the large vertices, so possible subsequence limits (in distribution)
of Tn are determined by the structure of the subtree spanned by the large
vertices. We leave further study of this case as an open problem. �

12. Logarithmic trees

Many random trees Tn have heights that w.h.p. are of order log n; we
call such trees logarithmic trees. (Here, as usual, n measures the size of
the tree in some sense. Note, however, that in some examples below, |Tn|
is random and not always equal to n; nevertheless, it is always w.h.p. of
order n.) Some examples are binary search trees, random recursive trees,
m-ary search trees, digital search trees, preferential attachment trees and
tries. Two general classes of such trees (overlapping, and together including
the examples just mentioned) are studied in Sections 13 and 14.

In all these cases, it turns out that the random trees Tn after rescaling have
a non-random tree limit (in probability) of the type Υa in Example 3.12.
More precisely, for some a ∈ (0,∞),

1

log n
Tn

p−→ Υa. (12.1)

We note that by Theorem 8.2, (12.1) is equivalent to

d(ξ
(n)
1 , ξ

(n)
2 )

log n

p−→ 2a, (12.2)

where, as usual, d is the distance in Tn and (ξ
(n)
i )i are i.i.d. vertices in Tn.

Equivalently, from our point of view, i.e. with regard to distances between
random points, these classes of logarithmic trees behave just like the deter-
ministic binary tree in Example 7.3. (We do not know any natural example
of logarithmic random trees that do not satisfy (12.1)–(12.2).)

Remark 12.1. Note that Theorem 8.2 shows that in this case, with conver-
gence to a constant, the annealed result (12.2) is sufficient. To prove (12.1)
for some random trees Tn, we therefore may work with annealed results and
do not have to show quenched versions (which often are more difficult). �
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Before considering particular classes of random trees, we note the follow-
ing simple result, which is used to prove (12.1) in many cases.

Theorem 12.2. Let Tn be random trees such that, as n→∞, for some
a ∈ [0,∞),

d(ξ
(n)
1 , o)

log n

p−→ a (12.3)

and

d(ξ
(n)
1 ∧ ξ(n)

2 , o)

log n

p−→ 0, (12.4)

where (ξ
(n)
i )i are i.i.d. random vertices in Tn. Then (12.1) and (12.2) hold.

Proof. We have d(v, w) = d(v, o) + d(w, o)− 2d(v ∧ w, o) for any v, w ∈ Tn;
thus (12.2) follows from (12.3) and (12.4). (Cf. Example 7.3, where the same
argument was used.) �

The estimate (12.4) is usually easy, for example by arguments such as in
Lemma 13.9 below, so the main task is to prove (12.3); this has been done
for many logarithmic random trees.

The distance d(ξ
(n)
1 , ξ

(n)
2 ) between two random vertices has previously

been studied in a number of papers for various random trees. These results
verify (12.2) and thus (12.1) for several random trees; we give some examples.
(The references below show stronger results, which we ignore here.)

Example 12.3. Binary search trees were studied by Mahmoud and Neininger
[40] who showed (in particular) (12.2) with a = 2. (See also Panholzer and
Prodinger [46].) Hence,

1

log n
Tn

p−→ Υ2. (12.5)

This also follows by any of Theorem 13.1, 13.4 or Theorem 14.3 below. �

Example 12.4. Random recursive trees were studied by Panholzer [45],
who showed (in particular) (12.2) with a = 1. Hence,

1

log n
Tn

p−→ Υ1. (12.6)

This also follows by Theorem 14.3 below. �

Example 12.5. Heap ordered trees (also called plane-oriented recursive
trees and preferential attachment trees) were studied by Morris, Panholzer
and Prodinger [42] who showed (in particular) (12.2) with a = 1/2. Hence,

1

log n
Tn

p−→ Υ1/2. (12.7)

This also follows by Theorem 14.3 below. �

Example 12.6. Random b-ary recursive trees (b-ary increasing trees) were
studied by Munsonius and Rüschendorf [43] who showed (in particular)
(12.2) with a = b/(b− 1). Hence,

1

log n
Tn

p−→ Υb/(b−1). (12.8)
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This also follows by Theorem 14.3 below, or (using [30, Theorem 6.1]) by
Theorems 13.1 and 13.4. (The binary search tree in Example 12.3 is the
case b = 2.) �

Example 12.7. More generally, for a preferential attachment tree where,
in each round, a node with outdegree k gets a child with probability pro-
portional to χk + ρ, it follows from Theorem 14.3 and [26, Example 6.4]
that

1

log n
Tn

p−→ Υρ/(χ+ρ). (12.9)

Examples 12.3–12.6 are the cases with (χ, ρ) = (−1, 2), (0, 1), (1, 1), (−1, b),
respectively. �

We end with an example that, as far as we know, does not follow from
the general results in Sections 13 and 14.

Example 12.8. Simple families of increasing trees (simply generated in-
creasing trees) were studied by Panholzer and Prodinger [47], who showed
that if the generating function is a polynomial of degree d > 2, then (12.2)
holds with a = d/(d− 1). Hence,

1

log n
Tn

p−→ Υd/(d−1). (12.10)

�

13. Split trees

Random split trees were introduced by Devroye [14] as a unified model
that includes many important families of random trees (of logarithmic height),
for example binary search trees, m-ary search trees, tries and digital search
trees. Theorem 13.1 below shows that random split trees after rescaling
have a non-random tree limit of the type Υa in Example 3.12. Equivalently,
by Theorem 8.2, distances between random points satisfy (12.2).

The definition of split trees involves several parameters b, s, s0, s1 and
a split vector V = (V1, . . . , Vb) which is a random vector with Vi > 0 and∑b

i=1 Vi = 1, i.e., a random probability distribution on {1, . . . , b}. The
split tree is defined as a subtree of the infinite b-ary tree Tb. The tree is
constructed by adding a sequence of n balls to the tree, which initially is
empty. Each ball arrives at the root and then moves recursively as follows;
see [14] for further details.

Each vertex is equipped with its own copy V(v) of the random split vector
V; these copies are independent. Each vertex has maximum capacity s > 1;
the first s balls that arrive at a vertex stay there (temporarily), but when
the (s + 1)th ball arrives at the vertex, some balls are sent to its children,
leaving s0 ∈ [0, s] balls that remain in the vertex for ever. (The details of
this step depend on s1, see [14].) Any further ball that comes to the vertex

is immediately passed along to one of its children, with probability V
(v)
i for

child i and independently of all previous events.
The split tree Tn is defined as the set of all vertices that have been visited

by a ball; note that (if s0 = 0) some vertices in Tn may be empty, but there
is always at least one ball in some descendant of the vertex.
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We exclude the trivial case max(V1, . . . , Vb) = 1 a.s., and then Tn is finite
a.s. (Usually one assumes the slightly stronger Vi < 1 a.s. for every i [14].)

It is important to note that Tn is defined with a fixed number n of balls,
while the number of vertices |Tn| in general is random. Nevertheless, it is
easy to see that

E |Tn| = O(n). (13.1)

Furthermore, since each node stores at most s balls, we have a deterministic
lower bound

|Tn| > n/s. (13.2)

In fact, in most cases E |Tn|/n converges to some constant, and, moreover,
|Tn|/n converges in probability to the same constant, see [25, Theorem 1.1].
However, this is not always the case; for some tries, E |Tn|/n oscillates.

We define

χ :=
b∑
i=1

E
[
Vi log(1/Vi)

]
, (13.3)

and note that 0 < χ <∞.

Theorem 13.1. Let Tn be a random split tree with a split vector V =
(V1, . . . , Vb) and let χ be given by (13.3). Then,

1

log n
Tn

p−→ Υ1/χ. (13.4)

Proof. As said in Section 12, by Theorem 8.2, (13.4) is equivalent to

d(ξ
(n)
1 , ξ

(n)
2 )

log n

p−→ 2

χ
. (13.5)

where (ξ
(n)
i )i are i.i.d. vertices in Tn. Under a technical condition, (13.5) was

proved by Berzunza, Cai and Holmgren [8, Corollary 1], as a corollary to
some stronger estimates. (Actually, their d is slightly different, and includes
the distance to the root, but the same proof yields (13.5).)

For completeness, we give a proof (by similar methods) in the following
subsection, not requiring any further conditions; in fact, we consider there
an even more general model. �

Without going into details, we note that the proof of (13.5) in [8], as well
as our similar proof in Section 13.1, is based on showing the two results
(12.3) and (12.4), and that (12.3) was shown by Holmgren [25].

Note also the related fact that if η(n) is a random ball in Tn, then

d(η(n), o)

log n

p−→ 1

χ
. (13.6)

This was proved by Devroye [14, Theorem 2], see also the stronger results
by Holmgren [25, Theorem 1.3] (under a weak technical assumption) and
Berzunza, Cai and Holmgren [8, Lemma 13(ii)] (Actually, Devroye [14] con-
sidered the depth of the last added ball, and not a random one, but that
easily implies the result (13.6) by Holmgren [25, Proposition 1.1], arguing
as in Holmgren [25, proof of Corollary 1.1].)
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Furthermore, Ryvkina [48] showed (in particular) the corresponding fact
for the distance between two random balls:

d(η
(n)
1 , η

(n)
2 )

log n

p−→ 2

χ
. (13.7)

See also Albert, Holmgren, Johansson and Skerman [3, Lemma 3.4], showing

that d(η
(n)
1 ∧ η(n)

2 , o) is tight, which together with (13.6) implies (13.7),

Remark 13.2. In analogy with Theorem 8.2, we can interpret (13.7) as
convergence

1

log n

(
Tn, µ∗n

) p−→ Υ1/χ, (13.8)

where we equip Tn with the probability measure µ∗n defined as the distribu-
tion of the balls on Tn. �

13.1. Generalized split trees. We define random generalized split trees as
follows; this is a minor variation of the model in Broutin, Devroye, McLeish
and de la Salle [13]. Let 2 6 b <∞ be a fixed branching factor and suppose

that for every integer n > 1 we have a random vector N (n) = (N
(n)
i )bi=0 with

N
(n)
i ∈ N0 and

b∑
i=0

N
(n)
i = n. (13.9)

Consider the infinite b-ary tree Tb. For a given number n of balls, all starting

at the root, distribute the balls according to N (n), with N
(n)
0 balls remaining

in the root (for ever), and N
(n)
i balls passed to the ith child. Continue

recursively in each subtree that has received at least one ball, using an
independent copy of N (m) at each vertex that has received m balls.

It is convenient to begin by equipping each vertex v in the infinite tree
Tb with a private copy N (n,v) of N (n) for each n > 1, with all these random
vectors N (n,v) independent. Then, at each vertex v that receives m > 1
balls, we apply N (m,v).

The tree Tn is defined as the set of all vertices that have received at least
one ball (whether or not any ball remains there). Equivalently, Tn is the set
of all vertices v ∈ Tb such that the fringe tree Tv

b contains at least one ball.
Note again that the size |Tn| is random.

We assume the following:

(ST1) There exists a constant C0 such that for every n, a.s.,

0 6 N (n)
0 6 C0. (13.10)

(ST2) The random vector n−1N (n) converges in distribution as n→∞:

1

n
N (n) =

(N (n)
i

n

)b
i=0

d−→ V =
(
Vi
)b
i=0
. (13.11)

(ST3) For every n > 1,

P
(

max
16i6b

N
(n)
i = n

)
< 1 (13.12)
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and, similarly,

P
(

max
16i6b

Vi = 1
)
< 1. (13.13)

We call the limit V in (13.11) the (asymptotic) split vector. Note that V0 = 0
by (ST1) and (ST2); thus it suffices to consider (Vi)

b
1. Furthermore, (13.11)

implies

b∑
i=1

Vi = 1 a.s. (13.14)

Thus, V is a random probability distribution on {1, . . . , b}.
It should be clear that the definition above includes the split trees defined

by Devroye [14] and discussed above. (In particular, our model includes tries,
unlike the version in [13].)

Remark 13.3. (13.12) only excludes the trivial case when, for some n, a.s.
all n balls are passed to the same child, and therefore, by induction, continue
along some infinite path so that Tn becomes infinite.

Conversely, it is easy to see by induction that (13.12) implies that Tn is
finite a.s. for every n > 1.

Moreover, (13.13) implies uniformity in (13.12): it is easy to see that
(13.12)–(13.13) is equivalent to the existence of c, δ > 0 such that, for every
n > 1,

P
(

max
16i6b

N
(n)
i > (1− δ)n

)
6 1− c. (13.15)

�

Theorem 13.4. Let Tn be a random generalized split tree with a split vector
V = (V1, . . . , Vb) and let χ be given by (13.3). Then,

d(ξ
(n)
1 , ξ

(n)
2 )

log n

p−→ 2

χ
, (13.16)

where d is the distance in Tn and (ξ
(n)
i )i are i.i.d. vertices in Tn. Conse-

quently,

1

log n
Tn

p−→ Υ1/χ. (13.17)

To prove Theorem 13.4, we show a series of lemmas. We define random
variables W (n) and W as size-biased selections from N (n)/n and V. More

precisely, conditionally on N (n), we select an index I with distribution P(I =

i | N (n)) = N
(n)
i /n, and then define

W (n) :=

{
N

(n)
I /n, I > 1,

1, I = 0.
(13.18)

(The special definition in the case I = 0, which has probability O(1/n) only,
will be convenient below.) Similarly, conditionally on V we select I with
P(I = i | V) = Vi, and then take

W := VI . (13.19)
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It follows from (ST2) that

W (n) d−→W. (13.20)

Note that

E
(
− log(W (n))

)
= E

b∑
i=1

N
(n)
i

n

(
− log

N
(n)
i

n

)
(13.21)

and, by (13.3),

E
(
− logW

)
= E

b∑
i=1

Vi
(
− log Vi

)
= χ. (13.22)

Lemma 13.5. We may couple − logW (n) with a copy ζ(n) of ζ := − logW
such that

E |ζ(n) + logW (n)| → 0 as n→∞. (13.23)

Proof. By (13.20), we have

logW (n) d−→ logW = −ζ. (13.24)

By the Skorohod coupling theorem [34, Theorem 4.30], we may assume that
(13.24) holds a.s., and thus

logW (n) + ζ
a.s.−→ 0. (13.25)

Furthermore,

E
[(

logW (n)
)2]

= E
b∑
i=1

N
(n)
i

n

(
− log

N
(n)
i

n

)2
6 C, (13.26)

since x log2 x is bounded on [0, 1], and similarly E ζ2 = E[
(
logW

)2
] 6 C.

Hence the sequence E(logW (n) + ζ)2 is uniformly bounded, and thus the

sequence logW (n) + ζ is uniformly integrable [23, Theorem 5.4.2]. Conse-

quently, (13.25) implies E | logW (n) + ζ| → 0 [23, Theorem 5.5.2]. �

Let N̂v be the number of balls received by vertex v ∈ Tb. Thus

Tn = {v ∈ Tb : N̂v > 1}. (13.27)

Lemma 13.6. (i) There exists a constant C such that, for all n,

E |Tn| 6 Cn (13.28)

and, more generally, for any K,

E
∣∣{v ∈ Tn : N̂v > K}

∣∣ 6 Cn/K. (13.29)

Furthermore,

|Tn| 6 Cn w.h.p. (13.30)

(ii) Deterministically,

|Tn| > cn. (13.31)
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Proof. First, (13.31) follows immediately from the fact that by (ST1), no
vertex contains more than C0 balls when the construction is finished; hence
there are at least n/C0 vertices containing balls.

For (13.28), recall (13.15), and assume as we may that δ < 1/2. Let
r := 1/(1 − δ) < 2, and let Xk be the number of vertices v such that

N̂v ∈ [rk, rk+1). For a given k > 0, generate the tree as usual, but stop at

every vertex v that receives N̂v < rk+1 balls, and colour these vertices pink.

If a pink vertex v has N̂v > rk, recolour it red. Since the red vertices receive
disjoint sets of balls, the number Rk of them is at most n/rk. Condition
on the set of red vertices and the numbers of balls in them, and continue
the construction of the tree. Since r < 2, each red vertex has at most

one child w with N̂w > rk, and by (13.15), with probability at least c
it has none. Continuing, we see that for each red vertex, the number of

descendants w with N̂w > rk is dominated by a geometric distribution,
and thus the expected number of such descendants is O(1). Consequently,
E
(
Xk | Rk

)
6 CRk, and thus

EXk 6 C ERk 6 C
n

rk
. (13.32)

This yields

E |Tn| = E
∞∑
k=0

Xk 6
∞∑
k=0

C
n

rk
= Cn, (13.33)

which is (13.28).
We obtain (13.29) in the same way, summing only over k with rk+1 > K.
Finally, the argument above shows that Xk is stochastically dominated

by a sum of bn/rkc independent copies of a geometric random variable ζ.
Furthermore, we may choose these to be independent also for different k.
(The red vertices for different k are not independent, but the stochastic
upper bound that we use holds also conditioned on events for larger k.)
Hence,

|Tn| 6
mn∑
i=1

ζi, (13.34)

where ζi ∈ Ge(p) are i.i.d. with some fixed 0 < p < 1, andmn :=
∑∞

k=0bn/rkc 6
Cn. Hence, (13.30) follows by the law of large numbers. �

Lemma 13.7. Let χ > 0 be given by (13.3). If Dn is the depth of a random
ball in Tn, then

Dn

log n

p−→ 1

χ
. (13.35)

Proof. Consider a random ball, and suppose that it follows a path v0 =
o, v1, . . . , vD, ending up at a vertex vD of depth D = Dn. For completeness,
define vj := vD for j > D. Let, for k > 0,

Yk := log N̂vk−1
− log N̂vk = − log

N̂vk

N̂vk−1

> 0, k > 0. (13.36)
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For k > 0, let Fk be the σ-field generated by N (m,v) with m > 1 and

d(v, o) < k, together with vj for j 6 k. Then N̂vk and Yk are Fk-measurable,
and so is the event {D > k} = {vk 6= vk−1}. Conditioned on Fk, and

assuming N̂vk = m and D > k, Yk+1 has by the definitions (13.36) and

(13.18) the same distribution as − logW (m).
Let λ > 0 be fixed and let ε > 0. By Lemma 13.5, there exists B = Bε

such that if m > B, then we can couple − logW (m) with ζ := − logW such
that E |ζ + logW (m)| < ε.

Let L = bλ log nc and define the stopping time τ as the smallest k such
that one of the following occurs.

(a) k > L,

(b) N̂vk 6 B,
(c) k > D, and thus the ball has come to rest.

By the comments just made, we can couple the sequence (Yk)k with an

i.i.d. sequence (ζk)
∞
1 with ζk

d
= − logW such that on the event {τ > k} ∈ Fk,

E
(
|Yk+1 − ζk+1| | Fk

)
< ε. (13.37)

Let, recalling (13.36),

X :=
τ∑
k=1

(
Yk − ζk

)
= log n− log N̂vτ −

τ∑
k=1

ζk. (13.38)

Then, (13.37) implies

E |X| 6
L∑
k=1

E
∣∣(Yk − ζk)1{k 6 τ}∣∣ 6 Lε. (13.39)

Let E− be the event {D < L − 1}, and let E ′− := E− ∩ {N̂vτ > B}
and E ′′− := E− ∩ {N̂vτ 6 B}. First, if E ′− occurs, then in the definition
of τ , neither (a) nor (b) may occur. (If τ > L, then already τ − 1 > D,
a contradiction.) Hence, (c) occurs, and thus the ball has vτ as its final

position. Let S := {v ∈ Tb : N̂v > B}. By the definition of E ′−, we have
vτ ∈ S, and thus the ball ends up in the set S. By (ST1), there are at
most C0|S| such balls, and thus the conditional probability given Tn that
our random ball is one of them is 6 C0|S|/n. Hence, by (13.29),

P (E ′−) 6
E(C0|S|)

n
6
C1

B
. (13.40)

We may increase B if necessary so that B > C1/ε, and thus P(E ′−) < ε.
On the other hand, if E ′′− holds, then, by (13.38),

X > log n− logB −
τ∑
k=1

ζk > log n− logB −
L∑
k=1

ζk. (13.41)

Thus, by the law of large numbers, recalling that E ζk = χ by (13.22), on
the event E ′′−, w.h.p.

X > log n− logB − L(χ+ ε) >
(
1− λ(χ+ ε)− ε

)
log n. (13.42)



38 SVANTE JANSON

If λ < 1/χ, and ε is so small that λ(χ + ε) + ε < 1, (13.42), (13.39) and
Markov’s inequality yield

P(E ′′−) 6
Lε(

1− λ(χ+ ε)− ε
)

log n
+ o(1) 6

λε

1− λ(χ+ ε)− ε
+ o(1).

(13.43)

Hence,

P(D < L− 1) = P(E−) = P(E ′−) + P(E ′′−) 6 ε+ ε
λ

1− λ(χ+ ε)− ε
+ o(1).

(13.44)

Letting ε → 0, we see that P(D 6 λ log n − 2) 6 P(D < L − 1) → 0. In
other words, for any λ < 1/χ,

D > λ log n− 2 w.h.p. (13.45)

For the other side, assume λ > 1/χ, and let E+ be the event {D > L}.
Let E ′+ := {τ = L} and E ′′+ := E+ ∩ {τ < L}.

The law of large numbers and (13.38) imply that on the event E ′+, w.h.p.,

X 6 log n−
L∑
k=1

ζk 6 log n− (λχ− ε) log n = −(λχ− 1− ε) log n. (13.46)

Hence, if ε is small enough, (13.39) and Markov’s inequality yield

P(E ′+) 6
Lε

(λχ− 1− ε) log n
+ o(1) 6

λε

λχ− 1− ε
+ o(1). (13.47)

If E ′′+ holds, then (a) and (c) cannot hold, and thus N̂vτ 6 B. Hence
our chosen ball belongs to a subtree rooted at vτ with at most B balls.

Conditioned on N̂vτ = m, this subtree is a copy of Tm, and since the finitely
many random trees Tm, 1 6 m 6 B, all are a.s. finite and thus have finite
(random) heights H(Tm), there exists a constant C2 such that

P
(
H(Tm) > C2

)
6 ε, m = 1, . . . , B. (13.48)

It follows that conditioned on E ′′,
E
(
D > L+ C2 | E ′′+

)
6 E

(
D > τ + C2 | E ′′+

)
6 ε. (13.49)

Finally, combining (13.47) and (13.49) we obtain

P
(
D > L+ C2

)
6 P

(
E ′
)

+ P
(
D > L+ C2 and E ′′

)
6

λε

λχ− 1− ε
+ ε+ o(1). (13.50)

The constant C2 may depend on ε, but it follows that for large n,

P
(
D > (λ+ ε) log n

)
6 P

(
D > L+ C2

)
6

λ

λχ− 1− ε
ε+ ε+ o(1). (13.51)

Since ε can be arbitrarily small, this shows that for any λ > 1/χ and δ > 0,

D 6 (λ+ δ) log n w.h.p., (13.52)

which together with (13.45) completes the proof. �

We transfer this result from balls to vertices.
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Lemma 13.8. Let Tn and ξ
(n)
i be as above. Then

d(ξ
(n)
1 , o)

log n

p−→ 1

χ
. (13.53)

Proof. Again, let L := bλ log nc for a fixed λ > 0. Let Zk be the set of
vertices of Tn with depth k, and Zb

k the set of balls with depth k; define

Z6k,Z>k,Zb
6k,Zb

>k analogously.
First, let λ > 1/χ. Let UL be the set of all vertices of Tb with depth

L. For any v ∈ Tb, conditioned on N̂v, the fringe subtree T vn has the same

distribution as Tm with m = N̂v. Consequently, Lemma 13.6 shows that

E
(
|T vn | | N̂v

)
6 CN̂v (13.54)

and thus

E |T vn | 6 C E N̂v. (13.55)

Since Z>L is the union of the fringe trees T vn for v ∈ UL, and Zb
>L is the

set of all balls that reach some vertex in UL, it follows from (13.55) that

E |Z>L| = E
∑
v∈UL

|T vn | 6 C
∑
v∈UL

E N̂v = C E
∑
v∈UL

N̂v = C E |Zb
>L|. (13.56)

However, we have by Lemma 13.7,

E |Zb
>L| = nP(Dn > L) = o(n). (13.57)

Combining (13.56) and (13.57) yields, recalling (13.31),

P
(
ξ

(n)
i > L

)
= E
|Z>L|
|Tn|

6 C E
|Z>L|
n
6 C

E |Zb
>L|
n

= o(1). (13.58)

In the opposite direction, let λ < 1/χ. Let ε > 0 and let B be a large

number. We split Z6L into the two sets Z ′6L := {v ∈ Z6L : N̂v > B} and

Z ′′6L := {v ∈ Z6L : N̂v 6 B}. By (13.29), we may choose B so large that

E |Z ′6L| 6 εn. (13.59)

To treat Z ′′6L, we now stop the construction of Tn at each vertex v with

N̂v 6 B. If such a vertex also has depth 6 L, we colour it green. Let G be
the set of all green vertices. Then the set Z ′′6L is included in the union of
the fringe trees T vn for v ∈ G. Furthermore, conditioned on the set G and

(N̂v)v∈G , each T vn (for v ∈ G) has the same distribution as Tm for m = N̂v.
Thus, by Lemma 13.6,

E
(
|Z ′′6L| | G|, (N̂v)v∈G

)
6
∑
v∈G

E
(
|T vn | | G, (N̂v)v∈G

)
6
∑
v∈G

CN̂v

6 CB|G| = C|G|. (13.60)

Consequently,

E |Z ′′6L| 6 C E |G|. (13.61)

Next, let again C2 be such that (13.48) holds, with ε replaced by 1/2. Then,

still conditioned on G and (N̂v)v∈G , (13.48) shows that each fringe tree T vn
(for v ∈ G) with probability > 1/2 has height 6 C2; if this happens, T vn
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has in particular at least one ball of depth 6 C2 in the fringe tree, and thus
depth 6 L+ C2 in Tn. Hence,

E
(
|Zb
6L+C2

| | G
)
> 1

2 |G|. (13.62)

Together with (13.61), this yields

E |Z ′′6L| 6 C E |G| 6 C E |Zb
6L+C2

| (13.63)

and then Lemma 13.7 implies

E |Z ′′6L| 6 C E |Zb
6L+C2

| = CnP
(
Dn 6 L+ C2

)
= o(n). (13.64)

By (13.59) and (13.64), we have for large n

E |Z6L| = E |Z ′6L|+ E |Z ′′6L| 6 2εn. (13.65)

Thus, E |Z6L| = o(n), and, similarly to (13.58),

P
(
ξ

(n)
i 6 L

)
= E
|Z6L|
|Tn|

6 C E
|Z6L|
n

= o(1). (13.66)

This completes the proof together with (13.58). �

Lemma 13.9. With notations as above,

d(ξ
(n)
1 ∧ ξ(n)

2 , o)

log n

p−→ 0. (13.67)

Proof. There is a standard identification of the vertices of Tb with finite
strings i1 · · · ik with k > 0 and ij ∈ {1, . . . , b}. If v = i1 · · · ik ∈ Tb, let
vj := i1 · · · ij , j 6 k, and define

V̂v :=
k−1∏
j=0

V
(vj)
ij+1

. (13.68)

Then [13, Lemma 2], by (ST2) and induction over k, as n→∞,

N̂v/n
p−→ V̂v, v ∈ Tb. (13.69)

Furthermore, it follows from (13.30) that for any ε > 0 and any fixed v ∈ Tb,
w.h.p.

|T vn | 6 CN̂v + op(n). (13.70)

(The term op(n) takes care of the possibility that N̂v is small; we have not

excluded the case V̂v = 0.) By (13.69) and (13.70),

|T vn | 6 (CV̂v + op(1))n (13.71)

and thus, for any fixed K,∑
v∈UK

|T vn |2 6
∑
v∈UK

(CV̂v + op(1))2n2. (13.72)

Since d(ξ
(n)
1 ∧ ξ(n)

2 , o) > K) if and only if the two vertices ξ
(n)
1 and ξ

(n)
2 are

in the same subtree T vn for some v ∈ UK , it follows from (13.72) that, using

also (13.31) and
∑

v∈UK V̂v = 1,

P
(
d(ξ

(n)
1 ∧ ξ(n)

2 , o) > K | Tn)
)

=
1

|Tn|2
∑
v∈UK

|T vn |2
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6 C
∑
v∈UK

(CV̂v + op(1))2

= C
∑
v∈UK

V̂ 2
v + op(1). (13.73)

Since the probability on the left-hand side is bounded by 1, we may assume
that so is the term op(1) on the right-hand side, and thus we may take the
expectation and use dominated convergence to conclude

P
(
d(ξ

(n)
1 ∧ ξ(n)

2 , o) > K
)
6 C E

∑
v∈UK

V̂ 2
v + o(1). (13.74)

Furthermore, by the definition (13.68) and independence,

E
∑
v∈UK

V̂ 2
v =

∑
i1,...,iK

K∏
j=1

EV 2
ij =

( b∑
i=1

EV 2
i

)K
. (13.75)

Since
∑

i V
2
i 6

∑
i Vi = 1, and strict inequality holds with positive proba-

bility,

b∑
i=1

EV 2
i = E

b∑
i=1

V 2
i < 1. (13.76)

Hence, given any ε > 0, we can find K such that (13.74) yields

P
(
d(ξ

(n)
1 ∧ ξ(n)

2 , o) > K)
)
6 C

ε

2C
+ o(1) < ε (13.77)

for large n. In particular, (13.67) follows. (In fact, we have proved that the

sequence d(ξ
(n)
1 ∧ ξ(n)

2 , o) of random variables is tight.) �

Proof of Theorem 13.4. Theorem 13.4 follows from Lemmas 13.8 and 13.9
by Theorem 12.2. �

Remark 13.10. The random recursive tree and preferential attachment
trees are not split trees in the sense above, since degrees are unbounded.
Nevertheless, if the definition above is generalized to allow b =∞, they too
can be regarded as split trees, see [30]. We conjecture that under suitable
conditions, Theorem 13.4 extends to the case b = ∞, but we have not
pursued this. (Random recursive trees and preferential attachment trees
can be handled by Theorem 14.3 below instead.) �

14. Crump–Mode–Jagers branching process trees

A Crump–Mode–Jagers (CMJ) branching process (see e.g. [28]) is a con-
tinuous time process, where each individual gives birth to a (generally ran-
dom) number of children at arbitrary random times; the times a single
individual gets children are thus described by a point process Ξ on [0,∞).
All individuals have independent and identically distributed such point pro-
cesses. We start with a single individual, born at time 0; we also suppose
that the CMJ process is supercritical and that it never dies out; hence its
size a.s. grows to ∞.

The family tree of the CMJ process is a growing random tree T̃t, t > 0,
where the vertices are all individuals born up to time t. We stop the tree
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at the stopping time τ(n) where the tree first reaches n vertices. Then

(provided births a.s. occur at distinct times) Tn := T̃τ(n) is a random tree
with fixed size |Tn| = n. More generally, τ(n) may be defined as the first
time the total weight reaches n, where each individual has a weight given
by some “characteristic” ψ; see [26] for details. (For example, for an m-ary
search tree, ψ counts the balls, and we stop when there are n balls; cf. the
split trees in Section 13.)

Many examples of such CMJ trees are discussed in the survey [26, Sections
6–8]; these include for example binary search trees and m-ary search trees
(also covered by Section 13), and random recursive trees and preferential
attachment trees. We give in Theorem 14.3 a general result for such trees.
For example, this applies to Examples 12.3–12.6.

The point process Ξ can informally be regarded as the random set {ξ̄i}Ni=1

of the times of births ξ̄i of the children of the root, where the number of
children N ∈ {0, 1, . . . ,∞} in general is random. (We use the notation ξ̄i

to avoid confusion with the random vertices ξ
(n)
i .) Formally, Ξ is defined as

the random measure
∑N

i=1 δξ̄i . Let µ := EΞ denote the intensity measure
of Ξ.

We define the Laplace transform of the measure µ on [0,∞) by

µ̂(θ) =

∫ ∞
0

e−θtµ(dt) = E
∫ ∞

0

N∑
i=1

e−θξ̄i , −∞ < θ <∞. (14.1)

As in [26], we make the following assumptions; see further [26].

(A1) µ{0} = EΞ{0} < 1. (This rules out a rather trivial case with explo-
sions already at the start. In all examples in [26], µ{0} = 0.)

(A2) µ is not concentrated on any lattice hZ, h > 0. (This is for conve-
nience only.)

(A3) EN > 1. (This is known as the supercritical case.) For simplicity,
we further assume that N > 1 a.s. (In this case, every individual

has at least one child, so the process never dies out and |T̃∞| =∞.)
(A4) There exists a real number α > 0 (the Malthusian parameter) such

that µ̂(α) = 1, i.e., ∫ ∞
0

e−αtµ(dt) = 1. (14.2)

(A5) µ̂(θ) <∞ for some θ < α.
(A6ψ) (Only needed if the stopping time τ(n) is defined using a weight ψ.

Thus void in the case that Tn always has n vertices.) The random
variable supt

(
e−θtψ(t)

)
has finite expectation for some θ < α.

We assume also the following technical condition. (We conjecture that
this is not necessary, but we use it in our proof.) Define the random variable

Ξ̂(α) :=
N∑
i=1

e−αξ̄i (14.3)

and note that (14.2) is equivalent to

E Ξ̂(α) = 1. (14.4)
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We assume a weak moment condition.

(A7) We have E
[
Ξ̂(α) log Ξ̂(α)

]
<∞.

Remark 14.1. Note that (A7) trivially holds if the outdegrees in Tn are
bounded, so N 6 C a.s. for some C 6 ∞. It is also easily seen that (A7)

holds, as a consequence of the stronger E
[
Ξ̂(α)2

]
<∞, for random recursive

trees and the linear preferential attachment trees in [26, Section 6]. �

We let for convenience Zt := |T̃t|, and similarly Zvt := |T̃ vt | for fringe trees.
We also define

β :=

∫ ∞
0

te−αtµ(dt) <∞. (14.5)

Remark 14.2. Nerman [44] showed that under the assumptions (A1)–
(A6ψ) above, there exists a random variable W such that, as t→∞,

e−αtZt
a.s.−→W. (14.6)

If furthermore (A7) holds, then W > 0 a.s. and

EW = (αβ)−1. (14.7)

However, if (A7) fails, then W = 0 a.s. See also [16]. �

Theorem 14.3. Assume (A1)–(A6ψ) and (A7). Then

1

log n
Tn

p−→ Υ1/(αβ). (14.8)

Proof. It is shown in [27, Theorem 13.61], using results by Nerman [44] and
Biggins [9, 10], that (12.3) holds with a := 1/(αβ). Hence, by Theorem 12.2,
it remains only to verify (12.4). We argue similarly as for Lemma 13.9.

We regard T̃t as a subtree of the infinite tree T∞, where the vertices are
all finite strings i1 · · · ik of natural numbers ij ∈ N, with 0 6 k < ∞; thus
the children of v are vi, for i = 1, . . . , in this order. Note that the length of
the string labelling v ∈ T∞ equals d(v, o); we denote this length by |v|.

For a vertex v ∈ T∞, let bv be the time that v is born in our CMJ
branching process; if v never appears, then bv :=∞.

The fringe tree T̃ vt (defined as ∅ if bv > t so v /∈ T̃t) is from the time bv
on a copy of the entire branching process tree, and thus (14.6) implies that
for every v with bv <∞,

e−α(t−bv)Zvt
a.s.−→Wv, t→∞, (14.9)

where Wv
d
= W is independent of bv. Thus

e−αtZvt
a.s.−→ e−αbvWv, t→∞, (14.10)

which holds trivially also for bv =∞ (with e−∞ = 0). Consequently,

Zvt
Zt

=
e−αtZvt
e−αtZt

a.s.−→ e−αbvWv

W
=: Yv, t→∞. (14.11)

Consider first the children of the root; these are labelled with i ∈ N. Since
Zt = 1 +

∑
i Z

i
t , we have by (14.11) and (the elementary) Fatou’s lemma for
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sums, a.s., ∑
i

Yi =
∑
i

lim inf
t→∞

Zit
Zt
6 lim inf

t→∞

∑
i

Zit
Zt

= 1. (14.12)

Equivalently, by (14.11),∑
i

e−αbiWi 6W, a.s. (14.13)

Furthermore, by (14.3)–(14.4), noting that bi = ξ̄i,

E
∑
i

e−αbiWi =
∑
i

E
[
e−αbiWi

]
=
∑
i

E
[
e−αbi

]
E[Wi]

= E[W ]
∑
i

E e−αbi = E[W ]E
∑
i

e−αbi = E[W ]E Ξ̂(α)

= EW. (14.14)

By (14.7), EW <∞ and thus (14.13) and (14.14) imply∑
i

e−αbiWi = W, a.s. (14.15)

Equivalently, there is a.s. equality in (14.12).

Let v ∈ T∞ and apply (14.15) to the fringe tree T̃ vt , again regarded as a
copy of the original branching process; this shows that if bv <∞, then∑

i

e−α(bvi−bv)Wvi = Wv, a.s. (14.16)

and thus ∑
i

e−αbviWvi = e−αbvWv, a.s., (14.17)

where (14.17) trivially holds also if bv =∞.
By (14.17) and induction we conclude that for every k > 0,∑

|v|=k

e−αbvWv = W, a.s. (14.18)

Equivalently, by the definition (14.11) again,∑
|v|=k

Yv = 1, a.s. (14.19)

Next, fix an integer k. Two vertices v and w of T̃t have d(v ∧ w, o) > k

if and only if they belong to the same subtree T̃ vt for some v with |v| = k.

Thus, if ξ
(t)
j are i.i.d. uniformly random vertices in T̃t,

P
(
d(ξ

(t)
1 ∧ ξ

(t)
2 , o) > k | T̃t

)
=
∑
|v|=k

(Zvt
Zt

)2
. (14.20)

By (14.19) and Fatou’s lemma as in (14.12), a.s.,

1 =
∑
|v|=k

Yv 6 lim inf
t→∞

∑
|v|=k

Zvt
Zt
6 lim sup

t→∞

∑
|v|=k

Zvt
Zt
6 1, (14.21)
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and thus ∑
|v|=k

Zvt
Zt

a.s.−→ 1. (14.22)

This together with (14.11) and (14.19) implies by a standard argument, cf.
again [23, Theorem 5.6.4], ∑

|v|=k

∣∣∣∣ZvtZt − Yv
∣∣∣∣ a.s.−→ 0. (14.23)

Hence, ∑
|v|=k

∣∣∣∣(ZvtZt
)2
− Y 2

v

∣∣∣∣ 6 ∑
|v|=k

∣∣∣∣ZvtZt − Yv
∣∣∣∣ a.s.−→ 0 (14.24)

and thus (14.20) implies

P
(
d(ξ

(t)
1 ∧ ξ

(t)
2 , o) > k | T̃t

) a.s.−→
∑
|v|=k

Y 2
v . (14.25)

By considering the sequence of times τ(n), this shows

P
(
d(ξ

(n)
1 ∧ ξ(n)

2 , o) > k | Tn
) a.s.−→

∑
|v|=k

Y 2
v . (14.26)

Taking the expectation yields, by dominated convergence,

P
(
d(ξ

(n)
1 ∧ ξ(n)

2 , o) > k
)
→ E

∑
|v|=k

Y 2
v . (14.27)

We want to show that the right-hand side of (14.27) tends to 0 as k →∞.
Define, for k > 0,

Qk :=
∑
|v|=k

(
e−αbvWv

)2
=
∑
|v|=k

e−2αbvW 2
v = W 2

∑
|v|=k

Y 2
v . (14.28)

By (14.17), a.s.,

W 2 = Q0 > Q1 > Q2 > . . . (14.29)

Define

Q∞ := lim
k→∞

Qk. (14.30)

Similarly, for each i ∈ N with bi <∞, consider the fringe tree T̃ it , and define

Qk;i :=
∑
|v|=k

e−2α(biv−bi)W 2
iv, (14.31)

Q∞;i := lim
k→∞

Qk;i
d
= Q∞. (14.32)

For convenience, we define Q∞:i also when bi = ∞, as some copy of Q∞
independent of everything else. Then, (14.31) and (14.28) yield, for any
k > 0,

Qk+1 =

∞∑
i=1

e−2αbiQk;i. (14.33)
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Letting k →∞ in (14.33), we obtain by dominated convergence, since Qk;i 6
Q0;i and

∑
i e
−2αbiQ0;i = Q1 6 Q0 = W 2 <∞ a.s.,

Q∞ =

∞∑
i=1

e−2αbiQ∞;i a.s. (14.34)

We claim that Q∞ = 0 a.s. To see this note first that (14.34) implies

Q1/2
∞ 6

∞∑
i=1

e−αbiQ
1/2
∞;i a.s., (14.35)

with strict inequality as soon as there is more than one non-zero term in
the sum. Moreover, since bi and Q∞;i are independent, using (14.3)–(14.4)
again,

E
∞∑
i=1

e−αbiQ
1/2
∞;i =

∞∑
i=1

E
[
e−αbiQ

1/2
∞;i

]
=
∞∑
i=1

E
[
e−αbi

]
E
[
Q

1/2
∞;i

]
= E

[
Q1/2
∞
] ∞∑
i=1

E
[
e−αbi

]
= E

[
Q1/2
∞
]
E
[
Ξ̂(α)

]
= EQ1/2

∞ . (14.36)

Furthermore, EQ1/2
∞ 6 EW <∞. Hence, (14.36) implies

E
( ∞∑
i=1

e−αbiQ
1/2
∞;i −Q

1/2
∞

)
= EQ1/2

∞ − EQ1/2
∞ = 0, (14.37)

and thus there is equality in (14.35) a.s.
Suppose that P(Q∞ > 0) > 0. Conditioned on the offspring Ξ of the

root, the fringe trees T̃ it , i 6 N , are independent copies of T̃t. Hence, the
events N > 2, Q∞;1 > 0 and Q∞;2 > 0 are independent and thus with
positive probability they occur together, and then there is strict inequality
in (14.35). This contradiction shows that Q∞ = 0 a.s.

Consequently, (14.28) shows that, since W > 0 a.s.,∑
|v|=k

Y 2
v = W−2Qk

a.s.−→W−2Q∞ = 0, k →∞. (14.38)

Furthermore,
∑
|v|=k Y

2
v 6 1 by (14.19) or (14.26). Hence, by dominated

convergence,

E
∑
|v|=k

Y 2
v → 0, k →∞. (14.39)

Finally, (14.27) and (14.39) show that

lim
k→∞

lim
n→∞

P
(
d(ξ

(n)
1 ∧ ξ(n)

2 , o) > k
)

= 0, (14.40)

which shows that the sequence of random variables d(ξ
(n)
1 ∧ ξ(n)

2 , o) is tight,
and in particular that (12.4) holds. �
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15. Proof of Theorem 3.15

Theorem 3.15 is stated in [20, Theorem 1] for uniformly bounded rescaled
finite trees. Furthermore, [20, Theorem 4] contains a related statement (for
measured real trees); we show that it implies Theorem 3.15.

Proof of Theorem 3.15. This is the only place in the present paper where
we use the machinery with ultraproducts used in [20] to prove the results
there. We refer to [20] for definitions and basic properties, and will here
only give the additional arguments needed. We fix, as in [20], an ultrafilter
ω on N. All ultralimits and ultraproducts are defined using ω.

Let (Tn)∞1 = (Tn, dn, µn)∞1 be a convergent sequence of measured real
trees. Thus (3.6) holds for some measures λr ∈ P(Mr).

Taking r = 2 in Definition 3.5, we see by (3.3) and (3.1) that, in particular,

dn(ξ
(n)
1 , ξ

(n)
2 )

d−→ ζ, (15.1)

for some random variable ζ. It follows from (15.1) that the sequence of

random variables dn(ξ
(n)
1 , ξ

(n)
2 ) is tight, i.e., that for every ε > 0, there exists

a constants Cε such that for every n

P
(
dn(ξ

(n)
1 , ξ

(n)
2 ) > Cε

)
6 ε. (15.2)

Fix ε > 0. By (15.2) and Fubini’s theorem, there exists xn ∈ Tn such that

P
(
dn(ξ

(n)
1 , xn) > Cε

)
6 ε. (15.3)

Let An := {x ∈ Tn : dn(x, xn) 6 Cε}. Then (15.3) says

µn(An) > 1− ε. (15.4)

As in [20], form the ultraproduct T :=
∏
ω Tn, and equip it with the pseu-

dometric d := limω dn (which may take the value +∞) and the probability
measure µ :=

∏
ω µn. Let x := [(xn)n] ∈ T and A :=

∏
ω An ⊆ T. For any

y ∈ A, y = [(yn)n] for some yn ∈ Tn with yn ∈ An and thus dn(xn, yn) 6 Cε
for every n; hence

d(x,y) = lim
ω
dn(xn, yn) 6 Cε. (15.5)

Furthermore, by (15.4),

µ(A) = lim
ω
µn(An) > 1− ε. (15.6)

Let X := B(x,∞) := {y : d(y,x) < ∞}. Then (15.5) shows that A ⊂ X,
and thus (15.6) shows

µ(X) > µ(A) > 1− ε. (15.7)

(It is shown in [20] that X is µ-measurable.) Here x = x(ε) and X = X(ε)
may depend on ε. However, two infinite balls B(x1,∞) and B(x2,∞) in T
either coincide or are disjoint. (Such infinite balls are called clusters in [20].)
Hence, considering only ε 6 1

2 , it follows from (15.7) that all X(ε) coincide,
and consequently form a cluster X with, using (15.7) again, µ(X) = 1.

This means that the sequence (Tn, dn, µn)n is essentially bounded, in the
terminology of [20]. Consequently, [20, Theorem 4] applies, and shows that

lim
ω
τr(Tn) = lim

ω
τr(Tn, dn, µn) = τr(D), (15.8)
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for every r > 1 and some long dendron D (constructed from the ultraproduct
T in a way that we do not have to consider further).

On the other hand, we have assumed (3.6), so the sequence τr(Tn) =
τr(Tn, dn, µn) converges. A convergent sequence has its limit as its ultralimit;
hence (15.8) and (3.6) yield τr(D) = λr. Consequently, (3.6) says

τr(Tn)→ τr(D), r > 1, (15.9)

and thus Tn → D, which completes the proof. �

Remark 15.1. The proof shows that a tight sequence (Tn)n of measured
real trees is essentially bounded. The converse does not hold, since we may
let Tn be arbitrary along some subsequences without affecting the ultraprod-
uct and ultralimits, and thus the property of being essentially bounded.
Nevertheless, a sequence (Tn)n such that every subsequence is essentially
bounded is tight (as a consequence of [20, Theorem 4]). Similarly, a se-
quence is tight if and only if it is essentially bounded for every ultrafilter ω.
�
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