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Abstract. We study (asymmetric) U -statistics based on a stationary sequence of
m-dependent variables; moreover, we consider constrained U -statistics, where the
defining multiple sum only includes terms satisfying some restrictions on the gaps
between indices. Results include a law of large numbers and a central limit theo-
rem, together with results on rate of convergence, moment convergence, functional
convergence and a renewal theory version.

Special attention is paid to degenerate cases where, after the standard normal-
ization, the asymptotic variance vanishes; in these cases non-normal limits occur
after a different normalization.

The results are motivated by applications to pattern matching in random strings
and permutations. We obtain both new results and new proofs of old results.

1. Introduction

The purpose of the present paper is to present some new results for (asymmetric)
U -statistics together with some applications. (See Section 3 for definitions.) The
results include a strong law of large numbers and a central limit theorem (asymp-
totic normality), together with results on rate of convergence, moment convergence,
functional convergence and a renewal theory version.

Many results of these types have been proved for U -statistics under different hy-
potheses by a large number of authors, from Hoeffding [27] and on. The new feature
of the results here, which are motivated by applications discussed below, is the com-
bination of the following:

(i) We consider, as in e.g. [35], [37] and [26] but unlike many other authors, asym-
metric U -statistics and not just the symmetric case. (See Remark 3.3.)

(ii) We consider also constrained U -statistics, where the summations are restricted
as in (3.2) or (3.3).

(iii) The U -statistics are based on an underlying sequence that is not necessarily
i.i.d. (as is usually assumed); we assume only that the sequence is stationary
and m-dependent. (This case has been studied earlier by e.g. [59], but not in
the present asymmetric case.)

The extension to the m-dependent case might be of interest for some applications,
but for us the main motivation is that it allows us to reduce the constrained versions
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to ordinary U -statistics; hence this extension is implicitly used also when we apply
the results for constrained U -statistics based on i.i.d. sequences.

Remark 1.1. The combination of the three features (i)–(iii) above is new, but they
have each been considered separately earlier.

In particular, constrained U -statistics are special cases of the large class of in-
complete U -statistics [6]. These are, in turn, special cases of the even more general
weighted U -statistics, see e.g. [62], [48], [43], [56], [30], [66], [26]. (These references
show asymptotic normality under various conditions; some also study degenerate
cases with non-normal limits; [26] includes the asymmetric case.) In view of our ap-
plications, we consider here only the constrained case instead of trying to find suitable
conditions for general weights.

Similarly, U -statistics have been considered by many authors for more general
weakly dependent sequences than m-dependent ones. In particular, asymptotic nor-
mality has been shown under various types of mixing conditions by e.g. [60], [64; 65],
[15]. We are not aware of any paper on asymmetric U -statistics with a mixing con-
dition on the variables. Such results might be interesting for future research, but
again in view of our applications, we have not pursued this and consider here only
the m-dependent case. �

There are thus many previous results yielding asymptotic normality for U -statistics
under various condition. One general feature, found already in the first paper [27],
is that there are degenerate cases where the asymptotic variance vanishes (typically
because of some internal cancellations). In such cases, the theorems only yield con-
vergence to 0 and do not imply asymptotic normality; indeed, typically a different
normalization yields a non-normal limit. It is often difficult to calculate the asymp-
totic variance exactly, and it is therefore of great interest to have simple criteria that
show that the asymptotic variance is non-zero. Such a criterion is well known for
the standard case of (unconstrained) U -statistics based on i.i.d. variables [27]. We
give corresponding (somewhat more complicated) criteria for the m-dependent case
studied here, both in the unconstrained and constrained cases. (This is one reason
for considering only the m-dependent case in the present paper, and not more gen-
eral weakly dependent sequences.) We show the applicability of our criteria in some
examples.

We, as many (but not all) of the references cited above, base our proof of as-
ymptotic normality on the decomposition method of Hoeffding [27], with appropriate
modifications. As pointed out by an anonymous referee, an alternative method is to
use dependency graphs together with Stein’s method which under an extra moment
assumption yields our main results on asymptotic normality together with an upper
bound on the rate of convergence. We do not use this method in the main parts of
the paper, partly because it does not seem to yield simple criteria for non-vanishing
of the asymptotic variance; however, as a complement, we use this method to give
some results on rate of convergence.

1.1. Applications. The background motivating our general results is given by some
parallel results for pattern matching in random strings and in random permutations
that earlier have been shown by different methods, but easily follow from our results;
we describe these results here and return to them (and some new results) in Sections 13
and 14. Further applications to pattern matching in random permutations restricted
to two classes of permutations are given in [39].
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First, consider a random string Ξn = ξ1 · · · ξn consisting of n i.i.d. random letters
from a finite alphabet A (in this context, this is known as a memoryless source), and
consider the number of occurences of a given word w = w1 · · ·w` as a subsequence; to
be precise, an occurrence of w in Ξn is an increasing sequence of indices i1 < · · · < i`
in [n] = {1, . . . , n} such that

ξi1ξi2 · · · ξi` = w, i.e., ξik = wk for every k ∈ [`]. (1.1)

This number, Nn(w) say, was studied by Flajolet, Szpankowski and Vallée [23] who
proved that Nn(w) is asymptotically normal as n→∞.

Flajolet, Szpankowski and Vallée [23] studied also a constrained version, where
we are given also numbers d1, . . . , d`−1 ∈ N ∪ {∞} = {1, 2, . . . ,∞} and count only
occurences of w such that

ij+1 − ij 6 dj , 1 6 j < `. (1.2)

(Thus the jth gap in i1, . . . , i` has length strictly less than dj .) We write D :=
(d1, . . . , d`−1), and let Nn(w;D) be the number of occurrences of w that satisfy the
constraints (1.2). It was shown in [23] that, for any fixed w and D, Nn(w,D) is
asymptotically normal as n→∞. See also the book by Jacquet and Szpankowski
[31, Chapter 5].

Remark 1.2. Note that dj =∞ means no constraint for the jth gap. In particular,
d1 = · · · = d`−1 = ∞ yields the unconstrained case; we denote this trivial (but
important) constraint D by D∞.

In the other extreme case, if dj = 1, then ij and ij+1 have to be adjacent. In
particular, in the completely constrained case d1 = · · · = d`−1 = 1, then Nn(w;D)
counts occurences of w as a substring ξiξi+1 · · · ξi+`−1. Substring counts have been
studied by many authors; some references with central limit theorems or local limit
theorems under varying conditions are [4], [53], [46], [22, Proposition IX.10, p. 660].
See also [63, Section 7.6.2 and Example 8.8] and [31]; the latter book discusses not
only substring and subsequence counts but also other versions of substring matching
problems in random strings.

Note also that the case when all di ∈ {1,∞} means that w is a concatenation
w1 · · ·wb (with w broken at positions where di = ∞), such that an occurence now
is an occurence of each wi as a substring, with these substrings in order and non-
overlapping, and with arbitrary gaps in between. (A special case of the generalized
subsequence problem in [31, Section 5.6]; the general case can be regarded as a sum
of such counts over a set of w.) �

There are similar results for random permutations. Let Sn be the set of the
n! permutations of [n]. If π = π1 · · ·πn ∈ Sn and τ = τ1 · · · τ` ∈ S`, then an
occurrence of the pattern τ in π is an increasing sequence of indices i1 < · · · < i` in
[n] = {1, . . . , n} such that the order relations in πi1 · · ·πi` are the same as in τ1 · · · τ`,
i.e., πij < πik ⇐⇒ τj < τk.

Let Nn(τ) be the number of occurences of τ in π when π = π(n) is uniformly
random in Sn. Bóna [7] proved that Nn(τ) is asymptotically normal as n→∞, for
any fixed τ .

Also for permutations, one can consider, and count, constrained occurrences by
again imposing the restriction (1.2) for some D = (d1, . . . , d`−1). In analogy with

strings, we let Nn(τ,D) be the number of constrained occurences of τ in π(n) when

π(n) is uniformly random in Sn. This random number seems to mainly have been
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studied in the case when each di ∈ {1,∞}, i.e., some ij are required to be adjacent
to the next one – such constrained patterns are in the permutation context known as
vincular patterns. Hofer [29] proved asymptotic normality of Nn(τ,D) as n→∞, for
any fixed τ and vincular D. The extreme case with d1 = · · · = d`−1 = 1 was earlier
treated by Bóna [9]. Another (non-vincular) case that has been studied is d-descents,
given by ` = 2, τ = 21 and D = (d); Bóna [8] shows asymptotic normality and Pike
[51] gives a rate of convergence.

We unify these results by considering U -statistics. It is well known and easy to see
that the number Nn(w) of unconstrained occurences of a given subsequence w in a
random string Ξn can be written as an asymmetric U -statistic; see Section 13 and
(13.2) for details. There are general results on asymptotic normality of U -statistics
that extend the basic result by [27] to the asymmetric case, see e.g. [35, Corollary
11.20], [37]. Hence, asymptotic normality of Nn(w) follows directly from these gen-
eral results. Similarly, it is well known that the pattern count Nn(τ) in a random
permutation also can be written as a U -statistic, see Section 14 for details, and again
this can be used to prove asymptotic normality. (See [40], with an alternative proof
by this method of the result by Bóna [7].)

The constrained case is different, since the constrained pattern counts are not U -
statistics. However, they can be regarded as constrained U -statistics, which we define
in (3.2) below in analogy with the constrained counts above. As said above, we show
in the present paper general limit theorems for such constrained U -statistics, which
thus immediately apply to the constrained pattern counts discussed above in random
strings and permutations.

The basic idea in the proofs is that a constrained U -statistic based on a sequence
(Xi) can be written (possibly up to a small error) as an unconstrained U -statistic
based on another sequence (Yi) of random variables, where the new sequence (Yi) is m-
dependent (with a different m) if (Xi) is. (However, even if (Xi) is independent, (Yi)
is in general not; this is our main motivation for considering m-dependent sequences.)
The unconstrained m-dependent case then is treated by standard methods from the
independent case, with appropriate modifications.

Section 2 contains some preliminaries. The unconstrained and constrained U -
statistics are defined in Section 3, where also the main theorems are stated. The
degenerate case, when the asymptotic variance in the central limit theorem Theo-
rem 3.8, 3.9, or 3.20 vanishes, is discussed later in Section 8, when more notation
has been introduced; Theorems 8.1, 8.4 and 8.7, repectively, give criteria that can
be used to show that the asymptotic variance is non-zero in an application. On the
other hand, Example 8.6 shows that the degenerate case can occur in new ways for
constrained U -statistics.

The reduction to the unconstrained case and some other lemmas are given in
Section 4, and then the proofs of the main theorems are completed in Sections 5–7
and 9–12. Section 13 gives applications to the problem on pattern matching in random
strings discussed above. Similarly, Section 14 gives applications to pattern matching
in random permutations. Some further comments and open problems are given in
Section 15. The appendix contains some further results on subsequence counts in
random strings.
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2. Preliminaries

2.1. Some notation. A constraint is, as in Section 1, a sequenceD = (d1, . . . , d`−1) ∈
(N∪ {∞})`−1, for some given ` > 1. Recall that the special constraint (∞, . . . ,∞) is
denoted by D∞. Given a constraint D, define b = b(D) by

b = b(D) := `− |{j : dj <∞}| = 1 + |{j : dj =∞}|. (2.1)

We say that b is the number of blocks defined by D, see further Section 4 below.

For a random variable Z, and p > 0, we let ‖Z‖p :=
(
E[|Z|p]

)1/p
.

We use
d−→,

p−→, and
a.s.−→, for convergence of random variables in distribution,

probability, and almost surely (a.s.), respectively. For a sequence of random variables

(Zn), and a sequence an > 0, we write Zn = op(an) when Zn/an
p−→ 0.

Unspecified limits are as n→∞. C denotes unspecified constants, which may be
different at each occurrence. (C may depend on parameters that are regarded as
fixed, for example the function f below; this will be clear from the context.)

We use the convention
(
n
k

)
:= 0 if n < 0. (We will always have k > 0.) Some

further standard notation: [n] := {1, . . . , n}. max ∅ := 0. All functions are tacitly
assumed to be measurable.

2.2. m-dependent variables. For reasons mentioned in the introduction, we will
consider U -statistics not only based on sequences of independent random variables,
but also based on m-dependent variables.

Recall that a (finite or infinite) sequence of random variables (Xi)i is m-dependent
if the two families {Xi}i6k and {Xi}i>k+m of random variables are independent of
each other for every k. (Here, m > 0 is a given integer.) In particular, 0-dependent
is the same as independent; thus the important independent case is included as the
special case m = 0 below.

It is well known that if (Xi)i∈I is m-dependent, and I1, . . . , Ir ⊆ I are sets of
indices such that dist(Ij , Ik) := inf{|i− i′| : i ∈ Ij , i′ ∈ Ik} > m when j 6= k, then the
families (vectors) of random variables (Xi)i∈I1 , . . . , (Xi)i∈Ir are mutually independent
of each other. (To see this, note first that it suffices to consider the case when each Ij
is an interval; then use the definition and induction on r.) We will use this property
without further comment.

In practice, m-dependent sequences usually occur as block factors, i.e. they can be
expressed as

Xi := h(ξi, . . . , ξi+m) (2.2)

for some i.i.d. sequence (ξi) of random variables (in some measurable space S0), and
a fixed function h on Sm+1

0 . (It is obvious that (2.2) then defines a stationary m-
dependent sequence.)

3. U-statistics and main results

LetX1, X2, . . . be a sequence of random variables, taking values in some measurable
space S, and let f : S` → R be a (measurable) function of ` variables, for some ` > 1.
Then the corresponding U -statistic is the (real-valued) random variable defined for
each n > 0 by

Un = Un(f) = Un
(
f ; (Xi)

)
:=

∑
16i1<···<i`6n

f
(
Xi1 , . . . , Xi`

)
. (3.1)
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U -statistics were introduced by Hoeffding [27], who proved a general central limit
theorem; the present paper gives an extension of his result that builds on his methods.

Remark 3.1. Of course, for the definition (3.1) it suffices to have a finite sequence
(Xi)

n
1 , but we will in the present paper only consider the initial segments of an infinite

sequence. �

Remark 3.2. Many authors, including Hoeffding [27], define Un by dividing the sum
in (3.1) by

(
n
`

)
, the number of terms in it. We find it more convenient for our purposes

to use the unnormalized version above. �

Remark 3.3. Many authors, including Hoeffding [27], assume that f is a symmetric
function of its ` variables. In this case, the order of the variables does not matter, and
we can in (3.1) sum over all sequences i1, . . . , i` of ` distinct elements of {1, . . . , n},
up to an obvious factor of `!. ([27] gives both versions.) Conversely, if we sum over
all such sequences, we may without loss of generality assume that f is symmetric.
However, in the present paper (as in several earlier papers by various authors) we
consider the general case of (3.1) without assuming symmetry, which we for empha-
sis call an asymmetric U -statistic. (This is essential in our applications to pattern
matching.) Note that for independent (Xi)

n
1 , the asymmetric case can be reduced to

the symmetric case by the trick in [35, Remark 11.21, in particular (11.20)], see also
[40, (15)] and (A.18) below. However, this trick does not work in the m-dependent
or constrained cases studied here, so we cannot use it here. �

As said in the introduction, we also consider constrained U -statistics. Given a
constraint D = (d1, . . . , d`−1), we define the constrained U -statistic

Un(f ;D) = Un(f ;D; (Xi)) :=
∑

16i1<···<i`6n
ij+1−ij6dj

f
(
Xi1 , . . . , Xi`

)
, n > 0, (3.2)

where we thus impose the constraints (1.2) on the indices.
We define further the exactly constrained U -statistic

Un(f ;D=) = Un(f ;D=; (Xi)) :=
∑

16i1<···<i`6n
ij+1−ij=dj if dj<∞

f
(
Xi1 , . . . , Xi`

)
, n > 0, (3.3)

where we thus specify each gap either exactly or (when dj = ∞) not at all. In
the vincular case, when all dj are either 1 or ∞, there is no difference and we have
Un(f ;D) = Un(f ;D=).

Note that, trivially, each constrained U -statistic can be written as a sum of exactly
constrained U -statistics:

Un(f ;D) =
∑
D′

Un(f ;D′=), (3.4)

where we sum over all constraints D′ = (d′1, . . . , d
′
`) with{

1 6 d′j 6 dj , dj <∞,
d′j =∞, dj =∞.

(3.5)

Remark 3.4. As said in the introduction, the [exactly] constrained U -statistics thus
belong to the large class of incomplete U -statistics [6], where the summation in (3.1)
is restricted to some, in principle arbitrary, subset of the set of all `-tuples (i1, . . . , i`)
in [n]. �
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The standard setting, in [27] and many other papers, is to assume that the under-
lying random variables Xi are i.i.d.; we consider in the present paper a more general
case, and we will assume only that X1, X2, . . . is an infinite stationary m-dependent
sequence, for some fixed integer m > 0; See Section 2.2 for the definition, and recall
in particular that the special case m = 0 yields the case of independent variables Xi.

We will consider limits as n→∞. The sequence X1, X2, . . . (and thus the space S
and the integer m) and the function f (and thus `) will be fixed, and do not depend
on n.

We will throughout assume the following moment condition for p = 2; at a few
places (always explicitly stated) we also assume it for some larger p:

(Ap) E |f(Xi1 , . . . , Xi`)|p <∞ for every i1 < · · · < i`.

Note that in the independent case (m = 0), it suffices to verify (Ap) for a single
sequence i1, . . . , i`, for example 1, . . . , `. In general, it suffices to verify (Ap) for all
sequences with i1 = 1 and ij+1− ij 6 m+1 for every j 6 `− 1, since the stationarity
and m-dependence imply that every larger gap can be reduced to m + 1 without
changing the distribution of f(Xi1 , . . . , Xi`). Since there is only a finite number of
such sequences, it follows that that (A2) is equivalent to the uniform bound

E |f(Xi1 , . . . , Xi`)|
2 6 C for every i1 < · · · < i`, (3.6)

and similarly for (Ap).

3.1. Expectation and law of large numbers. We first make an elementary ob-
servation on the expectations EUn(f ;D) and EUn(f ;D=). These can be calculated
exactly by taking the expectation inside the sums in (3.2) and (3.3). In the inde-
pendent case, all terms have the same expectation, so it remains only to count the
number of them. In general, because of the m-dependence of (Xi), the expectations
of the terms in (3.3) are not all equal, but most of them coincide, and it is still easy
to find the asymptotics.

Theorem 3.5. Let (Xi)
∞
1 be a stationary m-dependent sequence of random variables

with values in a measurable space S, let ` > 1, and let f : S` → R satisfy (A2). Then,
as n→∞, with µ given by (5.1) below,

EUn(f) =

(
n

`

)
µ+O

(
n`−1

)
=
n`

`!
µ+O

(
n`−1

)
. (3.7)

More generally, let D = (d1, . . . , d`−1) be a constraint, and let b := b(D). Then, as
n→∞, for some real numbers µD and µD= given by (5.5) and (5.4),

EUn(f ;D) =
nb

b!
µD +O

(
nb−1

)
, (3.8)

EUn(f ;D=) =
nb

b!
µD= +O

(
nb−1

)
. (3.9)

If m = 0, i.e., the sequence (Xi)
∞
1 is i.i.d., then, moreover,

µ = µD= = E f(X1, . . . , X`), (3.10)

µD = µ
∏

j:dj<∞
dj =

∏
j:dj<∞

dj · E f(X1, . . . , X`). (3.11)



8 SVANTE JANSON

The straightforward proof is given in Section 5, where we also give formulas for µD
and µD= in the general case, although in an application it might be simpler to find
the leading term of the expectation directly.

Next, we have a corresponding strong law of large numbers, proved in Section 7.
This extends well known results in the independent case, see [58; 28; 37].

Theorem 3.6. Let (Xi)
∞
1 be a stationary m-dependent sequence of random variables

with values in a measurable space S, let ` > 1, and let f : S` → R satisfy (A2). Then,
as n→∞, with µ given by (5.1),

n−`Un(f)
a.s.−→ 1

`!
µ. (3.12)

More generally, let D = (d1, . . . , d`−1) be a constraint, and let b := b(D). Then, as
n→∞,

n−bUn(f ;D)
a.s.−→ 1

b!
µD, (3.13)

n−bUn(f ;D=)
a.s.−→ 1

b!
µD=, (3.14)

where µD and µD=, as in Theorem 3.5, are given by (5.5) and (5.4).
Equivalently,

n−`
[
Un(f)− EUn(f)

] a.s.−→ 0, (3.15)

n−b
[
Un(f ;D)− EUn(f ;D)

] a.s.−→ 0, (3.16)

n−b
[
Un(f ;D=)− EUn(f ;D=)

] a.s.−→ 0. (3.17)

Remark 3.7. For convenience, we assume (A2) in Theorem 3.6 as in the rest of the
paper, which leads to a simple proof. We conjecture that the theorem holds assuming
only (A1) (i.e., finite first moments) instead of (A2), as in [28; 37] for the independent
case. �

3.2. Asymptotic normality. We have the following theorems yielding asymptotic
normality. The proofs are given in Section 6.

The first theorem is for the unconstrained case, and extends the basic theorem by
Hoeffding [27] for symmetric U -statistics based on independent (Xi)

∞
1 to the asym-

metric and m-dependent case. Note that both these extensions have earlier been
treated, but separately. For symmetric U -statistics in the m-dependent setting, as-
ymptotic normality was proved by Sen [59] (at least assuming a third moment); more-
over, bounds on the rate of convergence (assuming a moment condition) were given
by Malevich and Abdalimov [44]. The asymmetric case with independent (Xi)

∞
1 has

been treated e.g. in [35, Corollary 11.20] and [37]; furthermore, as said in Remark 3.3,
for independent (Xi), the asymmetric case can be reduced to the symmetric case by
the method in [35, Remark 11.21].

Theorem 3.8. Let (Xi)
∞
1 be a stationary m-dependent sequence of random variables

with values in a measurable space S, let ` > 1, and let f : S` → R satisfy (A2). Then,
as n→∞,

Var
[
Un(f)

]
/n2`−1 → σ2 (3.18)

for some σ2 = σ2(f) ∈ [0,∞), and

Un(f)− EUn(f)

n`−1/2
d−→ N(0, σ2). (3.19)
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The second theorem extends Theorem 3.8 to the constrained cases.

Theorem 3.9. Let (Xi)
∞
1 be a stationary m-dependent sequence of random variables

with values in a measurable space S, let ` > 1, and let f : S` → R satisfy (A2). Let
D = (d1, . . . , d`−1) be a constraint, and let b := b(D). Then, as n→∞,

Var
[
Un(f ;D)

]
/n2b−1 → σ2 (3.20)

for some σ2 = σ2(f ;D) ∈ [0,∞), and

Un(f ;D)− EUn(f ;D)

nb−1/2
d−→ N(0, σ2). (3.21)

The same holds, with some (generally different) σ2 = σ2(f ;D=), for the exactly
constrained Un(f ;D=).

Remark 3.10. It follows immediately by the Cramér–Wold device [25, Theorem
5.10.5] (i.e., considering linear combinations), that Theorem 3.8 extends in the obvious
way to joint convergence for any finite number of different f : S` → R, with σ2 now
a covariance matrix. Moreover, the proof shows that this holds also for a family of
different f with (possibly) different ` > 1.

Similarly, Theorem 3.9 extends to joint convergence for any finite number of differ-
ent f (possibly with different ` and D); this follows by the proof below, which reduces
the results to Theorem 3.8. �

Remark 3.11. The asymptotic variance σ2 in Theorems 3.8 and 3.9 can be calculated
explicitly, see Remark 6.2. �

Remark 3.12. Note that it is possible that the asymptotic variance σ2 = 0 in The-
orems 3.8 and 3.9; in this case, (3.19) and (3.21) just give convergence in probability
to 0. This degenerate case is discussed in Section 8. �

Remark 3.13. We do not consider extensions to triangular arrays where f or Xi (or
both) depend on n. In the symmetric m-dependent case, such a result (with fixed `
but possibly increasing m, under suitable conditions) has been shown by [44], with
a bound on the rate of convergence. In the independent case, results for triangular
arrays are given by e.g. [57] and [32]; see also [41] for the special case of substring
counts Nn(w) with w depending on n (and growing in length). It seems to be an
interesting (and challenging) open problem to formulate useful general theorems for
constrained U -statistics in such settings. �

3.3. Rate of convergence. Under stronger moment assumptions on f , an alter-
native method of proof (suggested by a referee) yields the asymptotic normality in
Theorems 3.8 and 3.9 together with an upper bound on the rate of convergence,
provided σ2 > 0.

In the following theorem of Berry–Esseen type we assume, for simplicity, that f
is bounded (as it is in our applications in Sections 13–14); see further Remark 9.1.
Let dK denote the Kolmogorov distance between distributions; recall that for two
distributions L1,L2 with distribution functions F1(x) and F2(x), dK = dK(L1,L2) :=
supx |F1(x) − F2(x)|; we use also the notation dK(X,L2) := dK(L(X),L2) for a
random variable X.

Theorem 3.14. Suppose in addition to the hypotheses in Theorem 3.8 or 3.9 that
σ2 > 0 and that f is bounded. Then,

dK

(Un − EUn√
VarUn

,N(0, 1)
)

= O
(
n−1/2

)
, (3.22)
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where Un denotes Un(f), Un(f,D) or Un(f ;D=).

In the symmetric and unconstrained case, this (and more) was shown by Malevich
and Abdalimov [44]. The proof of Theorem 3.14 is given in Section 9, together with
further remarks.

3.4. Moment convergence. Theorems 3.8 and 3.9 include convergence of the first
(trivially) and second moments in (3.19) and (3.21). This extends to higher mo-
ments under a corresponding moment condition on f . (The unconstrained case with
independent Xi was shown in [37, Theorem 3.15].)

Theorem 3.15. Suppose in addition to the hypotheses in Theorems 3.8 or 3.9 that
(Ap) holds for some real p > 2. Then all absolute and ordinary moments of order up
to p converge in (3.19) or (3.21).

The proof is given in Section 10, where we also give related estimates for maximal
functions.

3.5. Functional limit theorems. We can extend Theorem 3.9 to functional con-
vergence. For unconstrained U -statistics, this was done by Miller and Sen [45] in
the classical case of independent Xi and symmetric f ; the asymmetric case is [37,
Theorem 3.2]; furthermore, Yoshihara [65] proved the case of dependent Xi satisfying
a suitable mixing condition (assuming a technical condition on f besides symmetry).

Theorem 3.16. Suppose that (A2) holds. Then as n→∞, with b = b(D), in
D[0,∞),

Ubntc(f ;D)− EUbntc(f ;D)

nb−1/2
d−→ Z(t), t > 0, (3.23)

where Z(t) is a continuous centered Gaussian process. Equivalently, in D[0,∞),

Ubntc(f ;D)− (µD/b!)n
btb

nb−1/2
d−→ Z(t), t > 0. (3.24)

The same holds for exact constraints. Moreover, the results hold jointly for any
finite set of f and D (possibly with different ` and b), with limits Z(t) depending on
f and D.

The proof is given in Section 11.

Remark 3.17. A comparison between (3.23) and (3.21) yields Z(t) ∼ N(0, t2b−1σ2),
with σ2 as in Theorem 3.9. Equivalently, VarZ(t) = t2b−1σ2, which can be calculated
by Remark 6.2. Covariances Cov

(
Z(s), Z(t)

)
can be calculated by the same method

and (11.20) in the proof; we leave the details to the reader. Note that these covariances
determine the distribution of the process Z. �

3.6. Renewal theory. Assume further that h : S → R is another (fixed) measurable
function, with

ν := Eh(X1) > 0. (3.25)

We define

Sn = Sn(h) :=
n∑
i=1

h(Xi), (3.26)



CONSTRAINED U -STATISTICS, RANDOM STRINGS AND PERMUTATIONS 11

and, for x > 0,

N−(x) := sup{n > 0 : Sn 6 x}, (3.27)

N+(x) := inf{n > 0 : Sn > x}. (3.28)

N−(x) and N+(x) are finite a.s. by the law of large numbers for Sn (12.1); see further
Lemma 12.1. We let N±(x) denote either N−(x) or N+(x), in statements and formulas
that are valid for both.

Remark 3.18. In [37], we consider instead of h(x), more generally, a function of
several variables, and define N± using the corresponding U -statistic instead of Sn.
We believe that the results of the present paper can be extended to that setting, but
we have not pursued this, and leave it as an open problem. �

Remark 3.19. If h(X1) > 0 a.s., which often is assumed in renewal theory, then
N+(x) = N−(x) + 1. However, if h may be negative (still assuming (3.25)), then
N−(x) may be larger than N+(x). Nevertheless, the difference is typically small, and
we obtain the same asymptotic results for both N+ and N−. (We can also obtain the
same results if we instead use Sn < x or Sn > x in the definitions.) �

In this situation, we have the following limit theorems, which extend results in [37].
Proofs are given in Section 12. For an application, see [39].

Theorem 3.20. With the assumptions and notations of Theorem 3.9, assume (A2),
and suppose also that ν := Eh(X1) > 0 and Eh(X1)

2 <∞. Then, with notations as
above, as x→∞,

UN±(x)(f ;D)− µDν−bb!−1xb

xb−1/2
d−→ N

(
0, γ2

)
, (3.29)

for some γ2 = γ2(f ;h;D) > 0.
The same holds for exact constraints. Moreover, the results hold jointly for any

finite set of f and D (possibly with different ` and b).

Theorem 3.21. Suppose in addition to the hypotheses in Theorem 3.20 that h(X1)
is integer-valued and that (Xi)

∞
1 are independent. Then (3.29) holds also conditioned

on SN−(x) = x for integers x→∞.

We consider here tacitly only x such that P
(
SN−(x) = x

)
> 0.

Remark 3.22. We prove Theorem 3.21 only for independent Xi (which, in any case,
is our main interest as said in the introduction.) It seems likely that the result can
be extended to at least some m-dependent (Xi), using a modification of the proof
below and the m-dependent renewal theorem (under some conditions) [1, Corollary
4.2], but we have not pursued this. �

Theorem 3.23. Suppose in addition to the hypotheses in Theorem 3.20 that (Ap)
holds and E

[
|h(X1)|p

]
<∞ for every p <∞. Then all moments converge in (3.29).

Under the additional hypothesis in Theorem 3.21, this holds also conditioned on
SN−(x) = x.

Remark 3.24. In Theorem 3.23, unlike Theorem 3.15, we assume p-th moments for
all p, and conclude convergence of all moments. If we only want to show convergence
for a given p, some sufficient moment conditions on f and h can be derived from
the proof, but we do not know any sharp results and have not pursued this. Cf. [37,
Remark 6.1] and the references there. �
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4. Some lemmas

We give here some lemmas that will be used in the proofs in later sections. In
particular, they will enable us to reduce the constrained cases to the unconstrained
one.

Let D = (d1, . . . , d`−1) be a given constraint. Recall that b = b(D) is given by
(2.1), and let 1 = β1 < · · · < βb be the indices in [`] just after the unconstrained
gaps; in other words, βj are defined by β1 := 1 and dβj−1 = ∞ for j = 2, . . . , b. For
convenience we also define βb+1 := `+ 1. We say that the constraint D separates the
index set [`] into the b blocks B1, . . . , Bb, where Bk := {βk, . . . , βk+1 − 1}. Note that
the constraints (1.2) thus are constraints on ij for j in each block separately.

Lemma 4.1. Let (Xi)
∞
1 be a stationary m-dependent sequence of random variables

with values in S, let ` > 1, and let f : S` → R satisfy (A2). Let D = (d1, . . . , d`−1)
be a constraint. Then

Var
[
Un(f ;D)

]
= O

(
n2b(D)−1

)
, n > 1. (4.1)

Furthermore,

Var
[
Un(f ;D)− Un−1(f ;D)

]
= O

(
n2b(D)−2

)
, n > 1. (4.2)

Moreover, the same estimates hold for Un(f ;D=).

Proof. The definition (3.2) yields

Var
[
Un(f ;D)

]
=

∑
16i1<···<i`6n
ik+1−ik6dk

∑
16j1<···<j`6n
jk+1−jk6dk

Cov
(
f
(
Xi1 , . . . , Xi`

)
, f
(
Xj1 , . . . , Xj`

))
.

(4.3)

Let d∗ be the largest finite dj in the constraint D, i.e.,

d∗ := max
j
{dj : dj <∞}. (4.4)

The constraints imply that for each block Bq and all indices k ∈ Bq, coarsely,

0 6 ik − iβq 6 d∗` and 0 6 jk − jβq 6 d∗`. (4.5)

It follows that if |iβr − jβs | > d∗` + m for all r, s ∈ [b], then |iα − jβ| > m for all
α, β ∈ [`]. Since (Xi)

∞
1 is m-dependent, this implies that the two random vectors(

Xi1 , . . . , Xi`

)
and

(
Xj1 , . . . , Xj`

)
are independent, and thus the corresponding term

in (4.3) vanishes.
Consequently, we only have to consider terms in the sum in (4.3) such that

|iβr − jβs | 6 d∗`+m (4.6)

for some r, s ∈ [b]. For each of the O(1) choices of r and s, we can choose iβ1 , . . . , iβb in

at most nb ways; then jβs in O(1) ways such that (4.6) holds; then the remaining jβq
in O(nb−1) ways; then, finally, all remaining ik and jk in O(1) ways because of (4.5).
Consequently, the number of non-vanishing terms in (4.3) is O(n2b−1). Moreover, each
term is O(1) by (3.6) and the Cauchy–Schwarz inequality, and thus (4.1) follows.

For (4.2), we note that Un(f ;D) − Un−1(f ;D) is the sum in (3.2) with the extra
restriction i` = n. Hence, its variance can be expanded as in (4.3), with the extra
restrictions i` = j` = n. We then argue as above, but note that (4.5) and i` = n
imply that there are only O(1) choices of ib, and hence O(nb−1) choices of i1, . . . , ib.
We thus obtain O

(
n2b−2

)
non-vanishing terms in the sum, and (4.2) follows.
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The argument for the exactly constrained Un(f ;D=) is the same (and slightly
simpler). (Alternatively, we could do this case first, and then use (3.4) to obtain the
results for Un(f ;D).) �

The next lemma is the central step in the reduction to the unconstrained case.

Lemma 4.2. Let (Xi)
∞
1 , f : S` → R, and D = (d1, . . . , d`−1) be as in Lemma 4.1,

and let

D :=
∑

j:dj<∞
dj . (4.7)

Let M > D and define

Yi := (Xi, Xi+1, . . . , Xi+M−1) ∈ SM , i > 1. (4.8)

Then there exists a function g = gD= : (SM )b → R such that for every n > 0,

Un(f ;D=; (Xi)) =
∑

j1<···<jb6n−D
g
(
Yj1 , . . . , Yjb

)
= Un−D

(
g; (Yi)

)
, (4.9)

with Un−D(g) := 0 when n < D. Furthermore,

E
∣∣g(Yj1 , . . . , Yjb)∣∣2 <∞, (4.10)

for every j1 < · · · < jb.

Proof. For each block Bq = {βq, . . . , βq+1 − 1} defined by D, let

`q := |Bq| = βq+1 − βq, (4.11)

tqr :=
r−1∑
j=1

dβq+j−1, r = 1, . . . , `q, (4.12)

uq := tq,`q =

βq+1−βq−1∑
j=1

dβq+j−1, (4.13)

vq :=
∑
k<q

uk. (4.14)

Note that tq1 = 0 for every q and that tqr, uq <∞. (We stop the summation in (4.13)
just before the next infinite dj , which occurs for j = βq+1 − 1 provided q < b.) Note
also that

ub + vb =
∑
k6b

uk = D. (4.15)

We then rewrite (3.3) as, letting kq := iβq and grouping the arguments of f according
to the blocks of D (using an obvious notation for this),

Un(f ;D=) =
∑

16k1<k2<···<kb6n−ub,
kq+1>kq+uq

f
(
(Xk1+t1r)

`1
r=1, . . . , (Xkb+tbr)

`b
r=1

)
. (4.16)

Change summation variables by kq = jq + vq. Then (4.16) yields, recalling (4.14)–
(4.15),

Un(f ;D=) =
∑

16j1<j2<jb6n−D
f
(
(Xj1+v1+t1r)

`1
r=1, . . . , (Xjb+vb+tbr)

`b
r=1

)
. (4.17)
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Define, for yi = (yik)
M
k=1 ∈ SM ,

g(y1, . . . , yb) = f
(
(y1,v1+t1r+1)

`1
r=1, . . . , (yb,vb+tbr+1)

`b
r=1

)
. (4.18)

(Note that vj + tjr + 1 6 vj +uj + 1 6 D+ 1 6M .) We have Yj = (Xj+k−1)
M
k=1, and

thus (4.18) yields

g(Yj1 , . . . , Yjb) = f
(
(Xj1+v1+t1r)

`1
r=1, . . . , (Xjb+vb+tbr)

`b
r=1

)
. (4.19)

Consequently, (4.9) follows from (4.17) and (4.19).
Furthermore, (4.10) follows from (4.19) and (A2). �

Lemma 4.3. Let (Xi)
∞
1 and D = (d1, . . . , d`−1) be as in Lemma 4.1, and let M

and Yi be as in Lemma 4.2. For every f : S` → R such that (A2) holds, there exist
functions gD, gD= : (SM )b → R such that (4.10) holds for both, and

Var
[
Un
(
f ;D; (Xi)

)
− Un

(
gD; (Yi)

)]
= O

(
n2b(D)−2

)
, (4.20)

Var
[
Un(f ;D=; (Xi))− Un

(
gD=; (Yi)

)]
= O

(
n2b(D)−2

)
. (4.21)

Proof. First, letting gD= be as in Lemma 4.2, we have by (4.9),

Un(f ;D=; (Xi))− Un
(
gD=; (Yi)

)
= Un−D

(
gD=

)
− Un

(
gD=

)
= −

q∑
k=1

(
Un−k+1

(
gD=

)
− Un−k

(
gD=

))
. (4.22)

Thus (4.21) follows by (4.2) in Lemma 4.1 applied to gD=, the trivial constraint D∞
(i.e., no constraint), and (Yi)

∞
1 .

Next, we recall (3.4) and define

gD =
∑
D′

gD′=, (4.23)

again summing over all constraints D′ satisfying (3.5). This is a finite sum, and by
(3.4) and (4.23),

Un(f ;D; (Xi))− Un
(
gD; (Yi)

)
=
∑
D′

(
Un(f ;D′=; (Xi))− Un

(
gD′=; (Yi)

))
(4.24)

and thus (4.20) follows from (4.21). �

To avoid some of the problems caused by dependencies between the Xi, we follow
Sen [59] and introduce another type of constrained U -statistics, where we require the
gaps beteen the summation indices to be large, instead of small as in (3.2). We need
only one case, and define

Un(f ;> m) :=
∑

16i1<···<i`6n
ij+1−ij>m

f
(
Xi1 , . . . , Xi`

)
, n > 0, (4.25)

summing only over terms where all gaps ij+1 − ij > m, j = 1, . . . , ` − 1. (The
advantage is that in each term in (4.25), the variables Xi1 , . . . , Xi` are independent.)

Lemma 4.4. Let (Xi)
∞
1 and f : S` → R be as in Lemma 4.1. Then,

Var
(
Un(f)− Un(f ;> m)

)
= O

(
n2`−3

)
. (4.26)
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Proof. We can express the type of constrained U -statistic in (4.25) as a combination
of constrained U -statistics of the previous type by the following inclusion–exclusion
argument:

Un(f ;> m) =
∑

16i1<···<i`6n
f
(
Xi1 , . . . , Xi`

) `−1∏
j=1

1{ij+1 − ij > m}

=
∑

16i1<···<i`6n
f
(
Xi1 , . . . , Xi`

) `−1∏
j=1

(
1− 1{ij+1 − ij 6 m}

)
=

∑
J⊆[`−1]

(−1)|J |
∑

16i1<···<i`6n
f
(
Xi1 , . . . , Xi`

)∏
j∈J

1{ij+1 − ij 6 m}

=
∑

J⊆[`−1]

(−1)|J |Un(f ;DJ), (4.27)

where we sum over the 2`−1 subsets J of [`− 1], and use the constraints

DJ := (dJj)
`−1
j=1 with dJj =

{
m, j ∈ J,
∞, j /∈ J.

(4.28)

We have b(DJ) = ` − |J |, and thus b(DJ) < ` unless J = ∅. Moreover, D∅ =
(∞, . . . ,∞) = D∞, and thus means no constraint, so Un(f ;D∅) = Un(f), the uncon-
strained U -statistic. Consequently, by (4.27) and Lemma 4.1,

Var
(
Un(f)− Un(f ;> m)

)
= Var

(∑
J 6=∅

(−1)|J |−1Un(f ;DJ)
)

= O
(
n2`−3

)
, (4.29)

which proves the estimate (4.26). �

4.1. Triangular arrays. We will also use a central limit theorem for m-dependent
triangular arrays satisfying the Lindeberg condition, which we state as Theorem 4.5
below. The theorem is implicit in Orey [49]; it follows from his theorem there exactly
as his corollary, which however is stated for a sequence and not for a triangular array.
See also Peligrad [50, Theorem 2.1], which contains the theorem below (at least for
σ2 > 0; the case σ2 = 0 is trivial), and is much more general in that it only assumes
strong mixing instead of m-dependence.

Recall that a triangular array is an array (ξni)16i6n<∞ of random variables, such
that the variables (ξni)

n
i=1 in a single row are defined on a common probability space.

(As usual, it is only for convenience that we require that the nth row has length n;
the results extend to arbitrary lengths Nn.) We are here mainly interested in the
case when each row is an m-dependent sequence; in this case, we say that (ξni) is
an m-dependent triangular array. (We make no assumption on the relation between
variables in different rows; these may even be defined on different probability spaces.)

Theorem 4.5 (Orey [49]). Let (ξni)16i6n<∞ be an m-dependent triangular array of

real-valued random variables with E ξni = 0. Let Ŝn :=
∑n

i=1 ξni. Assume that, as
n→∞,

Var Ŝn → σ2 ∈ [0,∞), (4.30)
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that ξni satisfy the Lindeberg condition
n∑
i=1

E
[
ξ2ni1{|ξni| > ε}

]
→ 0, for every ε > 0, (4.31)

and that
n∑
i=1

Var ξni = O(1). (4.32)

Then, as n→∞,

Ŝn
d−→ N(0, σ2). (4.33)

�

Note that Theorem 4.5 extends the standard Lindeberg–Feller central limit theo-
rem for triangular arrays with row-wise independent variables (see e.g. [25, Theorem
7.2.4]), to which it reduces when m = 0.

Remark 4.6. In fact, the assumption (4.32) is not needed in Theorem 4.5, see [38].
However, it is easily verified in our case (and many other applications), so we need
only this classical result. �

5. The expectation

The expectation of a (constrained) U -statistics, and in particular its leading term, is
easily found from the definition. Nevertheless, we give a detailed proof of Theorem 3.5,
for completeness and for later reference.

Proof of Theorem 3.5. Consider first the unconstrained case. We take expectations
in (3.1). The sum in (3.1) has

(
n
`

)
terms. We consider first the terms that satisfy

the restriction ij+1 > ij + m for every j ∈ [`− 1]. (I.e., the terms in (4.25).) As
noted above, in each such term, the variables Xj1 , . . . , Xj` are independent. Hence,

let (X̂i)
`
1 be an independent sequence of random variables in S, each with the same

distribution as X1 (and thus as each Xj), and define

µ := E f(X̂1, . . . , X̂`). (5.1)

Then

µ = E f
(
Xi1 , . . . , Xi`

)
(5.2)

for every sequence of indices i1, . . . , i` with ij+1 > ij +m for all j ∈ [`− 1]. Moreover,

the number of terms in (3.1) that do not satisfy these constraints is O
(
n`−1

)
, and

their expectations are uniformly O(1) as a consequence of (3.6). Thus, (3.7) follows
from (3.1).

Next, consider the exactly constrained case. We use Lemma 4.2 and then apply
the unconstrained case just treated to g and (Yi); this yields

EUn
(
f ;D=

)
= EUn−D

(
g; (Yi)

)
=

(
n−D
b

)
E g(Ŷ1, . . . , Ŷb) +O

(
nb−1

)
(5.3)

with Ŷ1, . . . , Ŷb
d
= Y1 independent. Using (4.19), and the notation there, this yields

(3.9) with

µD= := E g(Yj1 , . . . , Yjb) = E f
(
(Xj1+v1+t1r)

`1
r=1, . . . , (Xjb+vb+tbr)

`b
r=1

)
, (5.4)
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for any sequence j1, . . . , jb with jk+1 − jk > m + M for all k ∈ [b − 1]. (Note that
(Yi)

∞
1 is (m+M − 1)-dependent.)

Finally, the constrained case (3.8) follows by (3.9) and the decomposition (3.4),
with

µD :=
∑
D′

µD′=, (5.5)

summing over all D′ satisfying (3.5).
In the independent case m = 0, the results above simplify. First, for the uncon-

strained case, the formula for µ in (3.10) is a special case of (5.2). Similarly, in the
exactly unconstrained case, (5.4) yields the formula for µD= in (3.10). Finally, (3.10)
shows that µD= does not depend on D, and thus all terms in the sum in (5.5) are
equal to µ. Furthermore, it follows from (3.5) that the number of terms in the sum
is
∏
dj<∞ dj , and (3.11) follows.

Alternatively, in the independent case, all terms in the sums in (3.1), (3.2) and
(3.3) have the same expectation µ given by (3.10), and the result follows by counting
the number of terms. In particular, exactly,

EUn(f) =

(
n

`

)
µ (5.6)

and, with D given by (4.7),

EUn(f ;D=) =

(
n−D
b

)
µ. (5.7)

�

6. Asymptotic normality

The general idea to prove Theorem 3.8 is to use the projection method by Ho-
effding [27], together with modifications as in [59] to treat m-dependent variables
and modifications as in e.g. [37] to treat the asymmetric case. We then obtain the
constrained version Theorem 3.9 by reduction to the unconstrained case.

Proof of Theorem 3.8. We first note that by Lemma 4.4, it suffices to prove (3.18)–
(3.19) for Un(f ;> m). (This uses standard arguments with Minkowski’s inequality
and Cramér–Slutsky’s theorem [25, Theorem 5.11.4], respectively; we omit the details.
The same arguments are used several times below without comment.)

As commented above, the variables inside each term in the sum in (4.25) are
independent; this enables us to use Hoeffding’s decomposition for the independent
case, which we (in the present, asymmetric case) define as follows.

As in Section 5, let (X̂i)
`
1 be an independent sequence of random variables in S,

each with the same distribution as X1. Recall µ defined in (5.1), and, for i = 1, . . . , `,
define the function fi as the one-variable projection

fi(x) :=E f
(
X̂1, . . . , X̂i−1, x, X̂i+1, . . . , X̂`

)
− µ. (6.1)

Equivalently,

fi(X̂i) =E
(
f(X̂1, . . . , X̂`) | X̂i

)
− µ. (6.2)
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(In general, fi is defined only L(X̂i)-a.e., but it does not matter which version we
choose.) Define also the residual function

f∗(x1, . . . , xd) := f(x1, . . . , xd)− µ−
∑̀
j=1

fj(xj). (6.3)

Note that the variables fi(Xj) are centered by (5.1) and (6.2):

E fi(Xj) = E fi(X̂i) = 0. (6.4)

Furthermore, (A2) implies that fi(X̂i), and thus each fi(Xj), is square integrable.
The essential property of f∗ is that, as an immediate consequence of the definitions

and (6.4), its one-variable projections vanish:

E
(
f∗(X̂1, . . . , X̂`) | X̂i = x

)
= E f∗

(
X̂1, . . . , X̂i−1, x, X̂i+1, . . . , X̂`

)
= 0. (6.5)

We assume from now on for simplicity that µ = 0; the general case follows by
replacing f by f−µ. Then (4.25) and (6.3) yield, by counting the terms where ij = k
for given j and k,

Un(f ;> m) =
∑

16i1<···<i`6n
ij+1−ij>m

(∑̀
j=1

fj(Xij ) + f∗
(
Xi1 , . . . , Xi`

))

=
∑̀
j=1

n∑
k=1

(
k − 1− (j − 1)m

j − 1

)(
n− k − (`− j)m

`− j

)
fj(Xk) + Un(f∗;> m).

(6.6)

Let us first dispose of the last term in (6.6). Let i1 < · · · < i` and j1 < · · · < j`
be two sets of indices such that the constraints ik+1 − ik > m and jk+1 − jk > m in
(4.25) hold. First, as in the proof of Lemma 4.1, if also |iα− jβ| > m for all α, β ∈ [`],
then all Xiα and Xjβ are independent; thus f∗(Xi1 , . . . , Xi`) and f∗(Xj1 , . . . , Xj`) are
independent, and

E
[
f∗(Xi1 , . . . , Xi`)f∗(Xj1 , . . . , Xj`)

]
= E f∗(Xi1 , . . . , Xi`)E f∗(Xj1 , . . . , Xj`) = 0.

(6.7)

Moreover, suppose that |iα − jβ| > m for all but one pair (α, β) ∈ [`]2, say for
(α, β) 6= (α0, β0). Then the pair (Xiα0

, Xjβ0
) is independent of all the variables

{Xiα : α 6= α0} and {Xjβ : β 6= β0}, and all these are mutually independent. Hence,
recalling (6.5), a.s.

E
[
f∗(Xi1 , . . . , Xi`)f∗(Xj1 , . . . , Xj`) | Xiα0

, Xjβ0

]
(6.8)

= E
[
f∗(Xi1 , . . . , Xi`) | Xiα0

]
E
[
f∗(Xj1 , . . . , Xj`) | Xjβ0

]
= 0.

Thus, taking the expectation, we find that unconditionally

E
[
f∗(Xi1 , . . . , Xi`)f∗(Xj1 , . . . , Xj`)

]
= 0. (6.9)

Consequently, if we expand Var
[
Un(f∗;> m)

]
in analogy with (4.3), then all terms

where |iα− jβ| 6 m for at most one pair (α, β) will vanish. The number of remaining

terms, i.e., those with at least two such pairs (α, β), is O(n2`−2), and each term is
O(1), by (A2) and the Cauchy–Schwarz inequality. Consequently,

Var
[
Un(f∗;> m)

]
= O

(
n2`−2

)
. (6.10)
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Hence, we may ignore the final term Un(f∗;> m) in (6.6).

We turn to the main terms in (6.6), i.e., the double sum; we denote it by Ûn and
write it as

Ûn =
∑̀
j=1

n∑
k=1

aj,k,nfj(Xk), (6.11)

where we thus define

aj,k,n :=

(
k − 1− (j − 1)m

j − 1

)(
n− k − (`− j)m

`− j

)
=

1

(j − 1)! (`− j)!
kj−1(n− k)`−j +O(n`−2), (6.12)

where the O is uniform over all k 6 n and j 6 `. Define the polynomial functions,
for j = 1, . . . , `,

ψj(x) :=
1

(j − 1)! (`− j)!
xj−1(1− x)`−j , x ∈ R. (6.13)

Then (6.12) yields, again uniformly for all k 6 n and j 6 `,

aj,k,n = n`−1ψj(k/n) +O
(
n`−2

)
. (6.14)

The expansion (6.11) yields

Var Ûn =
∑̀
i=1

∑̀
j=1

n∑
k=1

n∑
q=1

ai,k,naj,q,n Cov
[
fi(Xk), fj(Xq)

]
, (6.15)

where all terms with |k − q| > m vanish because the sequence (Xi) is m-dependent.
Hence, with r− := max{−r, 0} and r+ := max{r, 0},

Var Ûn =
∑̀
i=1

∑̀
j=1

m∑
r=−m

n−r+∑
k=1+r−

ai,k,naj,k+r,n Cov
[
fi(Xk), fj(Xk+r)

]
. (6.16)

The covariance in (6.16) is independent of k; we thus define, for any k > r−,

γi,j,r := Cov
[
fi(Xk), fj(Xk+r)

]
(6.17)

and obtain

Var Ûn =
∑̀
i=1

∑̀
j=1

m∑
r=−m

γi,j,r

n−r+∑
k=1+r−

ai,k,naj,k+r,n. (6.18)

Furthermore, by (6.14),

n2−2`
n−r+∑
k=1+r−

ai,k,naj,k+r,n =

n−r+∑
k=1+r−

(
ψi(k/n) +O(n−1)

)(
ψj(k/n) +O(n−1)

)
=

n−r+∑
k=1+r−

(
ψi(k/n)ψj(k/n) +O(n−1)

)
=

n∑
k=1

ψi(k/n)ψj(k/n) +O(1)
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=

∫ n

0
ψi(x/n)ψj(x/n) dx+O(1)

= n

∫ 1

0
ψi(t)ψj(t) dt+O(1). (6.19)

Consequently, (6.18) yields

n1−2` Var Ûn =
∑̀
i=1

∑̀
j=1

m∑
r=−m

γi,j,r

∫ 1

0
ψi(t)ψj(t) dt+O

(
n−1

)
. (6.20)

Since (4.26), (6.6), and (6.10) yield

Var
[
Un(f)− Ûn

]
= O

(
n2`−2

)
, (6.21)

the result (3.18) follows from (6.20), with

σ2 =
∑̀
i=1

∑̀
j=1

m∑
r=−m

γi,j,r

∫ 1

0
ψi(t)ψj(t) dt. (6.22)

Next, we use (6.11) and write

n
1
2
−`Ûn =

n∑
k=1

Zkn, (6.23)

with

Zkn :=
∑̀
j=1

n
1
2
−`aj,k.nfj(Xk). (6.24)

Since Zkn is a function of Xk, it is evident that (Zkn) is an m-dependent triangular
array with centered variables. Furthermore, EZkn = 0 as a consequence of (6.4).

We apply Theorem 4.5 to (Zkn), so Ŝn = n
1
2
−`Ûn by (6.23), and verify first its

conditions. The condition (4.30) holds by (6.20) and (6.22). Write Zkn =
∑`

j=1 Zjkn
with

Zjkn := n
1
2
−`aj,k.nfj(Xk) (6.25)

Since (6.12) yields |aj,k,n| 6 n`−1, we have, for ε > 0,

E
[
Z2
jkn1{|Zjkn| > ε}

]
6 n−1 E

[
|fj(Xk)|21{|fj(Xk)| > εn1/2}

]
(6.26)

The distribution of fj(Xk) does not depend on k, and thus the Lindeberg condition
(4.31) for each triangular array (Zjkn)k,n follows from (6.26). The Lindeberg condition
(4.31) for (Znk)k,n then follows easily. Finally, taking ε = 0 in (6.26) yields EZ2

jkn 6
Cn−1, and thus EZ2

kn 6 Cn
−1, which shows (4.32).

We have shown that Theorem 4.5 applies, and thus, recalling (6.23) and (6.4),

n
1
2
−`(Ûn − E Ûn

)
= n

1
2
−`Ûn =

n∑
k=1

Zkn
d−→ N(0, σ2). (6.27)

The result (3.19) now follows from (6.27) and (6.21). �

Proof of Theorem 3.9. Lemma 4.3 implies that it suffices to consider Un
(
g; (Yi)

)
in-

stead of Un(f ;D) or Un(f ;D=). Note that the definition (4.8) implies that (Yi)
∞
1 is a

stationary m′-dependent sequence, with m′ := m+M − 1. Hence, the result follows
from Theorem 3.8 applied to g and (Yi)

∞
1 . �
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Remark 6.1. The integrals in (6.22) are standard Beta integrals [47, 5.12.1]; we have∫ 1

0
ψi(t)ψj(t) dt =

1

(i− 1)! (j − 1)! (`− i)! (`− j)!

∫ 1

0
ti+j−2(1− t)2`−i−j dt

=
(i+ j − 2)! (2`− i− j)!

(i− 1)! (j − 1)! (`− i)! (`− j)! (2`− 1)!
. (6.28)

�

Remark 6.2. In the unconstrained case Theorem 3.8, the asymptotic variance σ2 is
given by (6.22) together with (6.17), (6.1) and (6.28).

In the constrained cases, the proof above shows that σ2 is given by (6.22) applied
to the function g given by Lemma 4.3 and (Yi)

∞
1 given by (4.8) (with M = D+ 1 for

definiteness); note that this also entails replacing ` by b and m by m+M−1 = m+D
in the formulas above. In particular, in the exactly constrained case (3.3), it follows
from (6.1) and (4.18) that, with y = (x1, . . . , xM ) ∈ SM and other notation as in
(4.11)–(4.14) and (5.4),

gi(x1, . . . , xM ) = E f
(
(Xj1+v1+t1r)

`1
r=1, . . . , (x1+vi+tir)

`i
r=1, . . . , (Xjb+vb+tbr)

`b
r=1

)
− µD=,
(6.29)

where the ith group of variables consists of the given xi, and the other b− 1 groups
contain variables Xi, and j1, . . . , jb is any sequence of indices that has large enough
gaps: ji+1 − ji > m+M − 1 = m+D.

In the constrained case (3.2), g = gD is obtained as the sum (4.23), and thus
each gi is a similar sum of functions that can be obtained as (6.29). (Note that
M := D + 1 works in Lemma 4.2 for all terms by (3.5).) Then, σ2 is given by (6.22)
(with substitutions as above). �

7. Law of large numbers

Proof of Theorem 3.6. Note first that if Rn is any sequence of random variables such
that

ER2
n = O

(
n−2

)
, (7.1)

then Markov’s inequality and the Borel–Cantelli lemma show that Rn
a.s.−→ 0.

We begin with the unconstrained case, D = D∞ = (∞, . . . ,∞). We may assume,
as in the proof of Theorem 3.8, that µ = 0. Then (6.21) holds, and thus by the

argument just given, and recalling that E Ûn = 0 by (6.11) and (6.4),

n−`
[
Un(f)− EUn(f)− Ûn

] a.s.−→ 0. (7.2)

Hence, to prove (3.15), it suffices to prove n−`Ûn
a.s.−→ 0.

For simplicity, we fix j ∈ [`], and define, with fj as above given by (6.1),

Sjn = Sjn(f) := Sn(fj) :=
n∑
k=1

fj(Xk) (7.3)

and, using partial summation,

Ûjn :=

n∑
k=1

aj,k,nfj(Xk) =

n−1∑
k=1

(aj,k,n − aj,k+1,n)Sjk + aj,n,nSjn. (7.4)
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The sequence (fj(Xk))k is m-dependent, stationary and with E |fj(Xk)| < ∞. As
is well known, the strong law of large number holds for stationary m-dependent se-
quences with finite means. (This follows by considering the subsequences (X(m+1)n+q)n>0,
which for each fixed q ∈ [m+ 1] is an i.i.d. sequence.) Thus, by (7.3) and (6.4),

Sjn/n
a.s.−→ E fj(Xk) = 0. (7.5)

In other words, a.s. Sjn = o(n), and thus also

max
16k6n

|Sjk| = o(n) a.s. (7.6)

Moreover, (6.12) implies aj,k,n − aj,k+1,n = O(n`−2). Hence, (7.4) yields

n−`Ûjn =
n−1∑
k=1

O(n−2) · Sjk +O(n−1) · Sjn (7.7)

and thus, using (7.6),∣∣n−`Ûjn∣∣ 6 Cn−1 max
k6n
|Sjk| = o(1) a.s. (7.8)

Consequently,

n−`Ûn =
∑̀
j=1

n−`Ûjn
a.s.−→ 0, (7.9)

which together with (7.2) yields the desired result (3.15).
Next, for an exact constraint D=, we use Lemma 4.2. Then (4.9) together with

the just shown result applied to g and (Yi) yields

n−b
[
Un(f ;D=)− EUn(f ;D=)

]
= n−b

[
Un−D(g)− EUn−D(g)

] a.s.−→ 0. (7.10)

This proves (3.17), and (3.16) follows by (3.4).
Finally, using Theorem 3.5, (3.12)–(3.14) are equivalent to (3.15)–(3.17). �

8. The degenerate case

As is well known, even in the original symmetric and independent case studied in
[27], the asymptotic variance σ2 in Theorem 3.8 may vanish also in non-trivial cases.
In such cases, (3.19) is still valid, but says only that the left-hand side converges
to 0 in probability. In the present section, we characterize this degenerate case in
Theorems 3.8 and 3.9. Note that in applications, it is frequently natural to guess
that σ2 > 0, but this is sometimes surprisingly difficult to prove. One purpose of the
theorems below is to assist in showing σ2 > 0; see the applications in Sections 13 and
14.

For an unconstrained U -statistic and an independent sequence (Xi)
∞
1 (the case

m = 0 of Theorem 3.8), it is known, and not difficult to see, that σ2 = 0 if and
only if every projection fi(X1) defined by (6.1) vanishes a.s., see [37, Corollary 3.5].
(This is included in the theorem below by taking m = 0 in (iii), and it is also the
correct interpretation of (vi) when m = 0.) In the m-dependent case, the situation is
similar, but somewhat more complicated, as shown by the following theorem. Note
that Sn(fj) defined in (8.8) below equals Sjn; for later applications we find this change
of notation convenient.

Theorem 8.1. With assumptions and notation as in Theorem 3.8, define also fi by
(6.1), γi,j,r by (6.17) and Sjn by (7.3). Then, the following are equivalent.
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(i)

σ2 = 0. (8.1)

(ii)

VarUn = O
(
n2`−2

)
. (8.2)

(iii)
m∑

r=−m
γi,j,r = 0, ∀i, j ∈ [`]. (8.3)

(iv)

Cov
[
Sin, Sjn

]
/n→ 0 as n→∞ ∀i, j ∈ [`]. (8.4)

(v)

Var
[
Sjn
]
/n→ 0 as n→∞ ∀j ∈ [`]. (8.5)

(vi) For each j ∈ [`] there exists a stationary sequence (Zj,k)
∞
k=0 of (m−1)-dependent

random variables such that a.s.

fj(Xk) = Zj,k − Zj,k−1, k > 1. (8.6)

Moreover, suppose that the sequence (Xk)
∞
1 is a block factor given by (2.2) for

some function h and i.i.d. ξi, and that σ2 = 0. Then, in (vi), we may take Zj,k as
block factors

Zj,k = ϕj(ξk+1, . . . , ξk+m), (8.7)

for some functions ϕj : Sm0 → R. Hence, for every j ∈ [`] and n > 1,

Sn(fj) :=
n∑
k=1

fj(Xk) = Zj,n − Zj,0 = ϕj(ξn+1, . . . , ξn+m)− ϕj(ξ1, . . . , ξm), (8.8)

and thus Sn(fj) is independent of ξm+1, . . . , ξn for every j ∈ [`− 1] and n > m.

To prove Theorem 8.1, we begin with a well known algebraic lemma; for complete-
ness we include a proof.

Lemma 8.2. Let A = (aij)
`
i,j=1 and B = (bij)

`
i,j=1 be symmetric real matrices such

that A is positive definite and B is positive semidefinite. Then∑̀
i,j=1

aijbij = 0 ⇐⇒ bij = 0 ∀i, j ∈ [`]. (8.9)

Proof. Since A is positive definite, there exists an orthonormal basis (vk)
`
1 in R` con-

sisting of eigenvectors of A, in other words Avk = λkvk; furthermore, the eigenvalues
λk > 0. Write vk = (vki)

`
i=1. We then have

aij =
∑̀
k=1

λkvkivkj . (8.10)

Thus ∑̀
i,j=1

aijbij =
∑̀
k=1

λk
∑̀
i,j=1

bijvkivkj =
∑̀
k=1

λk〈vk, Bvk〉. (8.11)
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Since B is positive semidefinite, all terms in the last sum are > 0, so the sum is 0 if
and only if every term is, and thus∑̀

i,j=1

aijbij = 0 ⇐⇒ 〈vk, Bvk〉 = 0 ∀k ∈ [`]. (8.12)

By the Cauchy–Schwarz inequality for the semidefinite bilinear form 〈v,Bw〉 (or,
alternatively by using 〈vk± vn, B(vk± vn)〉 > 0) it follows that this condition implies
〈vk, Bvn〉 = 0 for any k, n ∈ [`], and thus∑̀

i,j=1

aijbij = 0 ⇐⇒ 〈vk, Bvn〉 = 0 ∀k, n ∈ [`]. (8.13)

Since (vk)
`
1 is a basis, this is further equivalent to 〈v,Bw〉 = 0 for any v,W ∈ R`, and

thus to B = 0. This yields (8.9). �

Proof of Theorem 8.1. The ` polynomials ψj , j = 1, . . . , `, of degree ` − 1 defined
by (6.13) are linearly independent (e.g., since the matrix of their coefficients in the
standard basis {1, x, . . . , x`−1} is upper triangular with non-zero diagonal elements).
Hence, the Gram matrix A = (aij)i,j with

aij :=

∫ 1

0
ψi(t)ψj(t) dt (8.14)

is positive definite.
We have by (7.3), similarly to (6.15)–(6.18),

Cov
(
Sin, Sjn

)
=

n∑
k=1

n∑
q=1

Cov
[
fi(Xk), fj(Xq)

]
=

m∑
r=−m

n−r+∑
k=1+r−

Cov
[
fi(Xk), fj(Xk+r)

]
=

m∑
r=−m

(n− |r|) Cov
[
fi(Xk), fj(Xk+r)

]
=

m∑
r=−m

(n− |r|)γi,j,r (8.15)

and thus, as n→∞,

Cov
(
Sin, Sjn

)
/n→

m∑
r=−m

γi,j,r =: bij . (8.16)

Note that (6.22) can be written

σ2 =
∑̀
i,j=1

bijaij . (8.17)

The covariance matrices
(
Cov(Sin, Sjn)

)`
i,j=1

are positive semidefinite, and thus so is

the limit B = (bij) defined by (8.16). Hence Lemma 8.2 applies and yields, using
(8.17) and the definition of bij in (8.16), the equivalence (i)⇐⇒ (iii).

Furthermore, (8.16) yields (iii)⇐⇒ (iv).
The implication (iv) =⇒ (v) is trivial, and the converse follows by the Cauchy–

Schwarz inequality.

If (iii) holds, then (6.20) yields Var Ûn = O
(
n2`−2

)
, and (ii) follows by (6.21).

Conversely, (ii) =⇒ (i) by (3.18).
Moreover, for m > 1, (v)⇐⇒ (vi) holds by [36, Theorem 1], recalling E fj(Xk) = 0

by (6.4). (Recall also that any stationary sequence (Wk)
∞
1 of real random variables
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can be extended to a doubly-infinite stationary sequence (Wk)
∞
−∞.) The case m = 0

is trivial, since then (v) is equivalent to Var fj(Xk) = 0 and thus fj(Xk) = 0 a.s. by
(6.4), while (vi) should be interpreted to mean that (8.6) holds for some non-random
Zj,k = zj .

Finally, suppose that (Xi)
∞
1 is a block factor. In this case, [36, Theorem 2] shows

that Zj,k can be chosen as in (8.7). (Again, the case m = 0 is trivial.) Then (8.8) is
an immediate consequence of (8.6)–(8.7). �

Remark 8.3. It follows from the proof in [36] that in (vi), we can choose Zjk such

that also the random vectors (Zjk)
`
j=1, k > 0, form a stationary (m − 1)-dependent

sequence. �

Theorem 8.4. With assumptions and notation as in Theorem 3.9, define also gi,
i ∈ [b], as in Remark 6.2, i.e., by (6.29) in the exactly constrained case and otherwise
as a sum of such terms over all D′ given by (3.5). Let also (again as in Remark 6.2)
D be given by (4.7) and Yk by (4.8) with M = D+ 1. Then σ2 = 0 if and only if for
every j ∈ [b], there exists a stationary sequence (Zj,k)

∞
k=0 of (m + D − 1)-dependent

random variables such that a.s.

gj(Yk) = Zj,k − Zj,k−1, k > 1. (8.18)

Moreover, if the sequence (Xi)
∞
1 is independent and σ2 = 0, then there exist func-

tions ϕj : SD → R such that (8.18) holds with

Zj,k = ϕj(Xk+1, . . . , Xk+D), (8.19)

and consequently a.s.

Sn(gj) :=

n∑
k=1

gj(Yk) = ϕj(Xn+1, . . . , Xn+D)− ϕj(X1, . . . , XD), (8.20)

and thus Sn(gj) is independent of XD+1, . . . , Xn for every j ∈ [`− 1] and n > D.

Proof. As in the proof of Theorem 3.9, it suffices to consider Un(g) with g given by
Lemma 4.3 (with M = D + 1). The first part then is an immediate consequence
of Theorem 8.1(i)⇔(vi) applied to g and Yi := (Xi, . . . , Xi+D), with appropriate
substitutions ` 7→ b and m 7→ m+D.

The second part follows similarly by the last part of Theorem 8.1, with ξi = Xi;
note that then (Yi) is a block factor as in (2.2), with m replaced by D. �

Remark 8.5. Of course, under the assumptions of Theorem 8.4, also the other
equivalences in Theorem 8.1 hold with the appropriate interpretations, substituting
g for f and so on. �

We give an example of a constrained U -statistic where σ2 = 0 in a somewhat
non-trivial way.

Example 8.6. Let (Xi)
∞
1 be an infinite i.i.d. symmetric random binary string, i.e.,

S = {0, 1} and Xi ∼ Be(1/2) are i.i.d. Let

f(x, y, z) := 1{xyz = 101} − 1{xyz = 011} (8.21)

and consider the constrained U -statistic

Un(f ;D) =
∑

16i<i+1<j6n

f
(
Xi, Xi+1, Xj

)
, (8.22)
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which thus has constraint D = (1,∞). (In this case, Un(f,D) = Un(f ;D=).) Note
that (8.22) is a difference of two constrained subsequence counts.

Although the function (8.21) might look non-trivial and innocuous at first glance,
this turns out to be a degenerate case. In fact, it is easily verified that

f(x, y, z) = (x− y)z, x, y, z ∈ {0, 1}. (8.23)

Hence, with m = 0, D = 1 and M = D + 1 = 2, (5.4) yields

µD = µD= = E g(Y1, Y3) = E f(X1, X2, X4) = 0 (8.24)

while (6.29) yields

g1(x, y) = E f(x, y,X4) = E
[
(x− y)X4

]
= 1

2(x− y), (8.25)

g2(x, y) = E f(X1, X2, y) = E
[
(X1 −X2)y

]
= 0. (8.26)

Thus g2 vanishes but not g1. Nevertheless, g1(Yk) = g1(Xk, Xk+1) = 1
2(Xk−Xk+1) is

of the type in (8.18)–(8.19) (with Z1,k := −1
2Xk+1). Hence, Theorem 8.4 shows that

σ2 = 0, and thus Theorem 3.9 and (3.8) yield n−3/2Un(f ;D=)
p−→ 0.

In fact, in this example we have by (8.23), for n > 3,

Un(f ;D) =
n∑
j=3

j−2∑
i=1

(Xi −Xi+1)Xj =
n∑
j=3

Xj(X1 −Xj−1)

= X1

n∑
j=3

Xj −
n∑
j=3

Xj−1Xj . (8.27)

Hence, by the law of large numbers for stationary m-dependent sequences,

n−1Un(f ;D)
a.s.−→ X1 EX2 − E

[
X2X3

]
= 1

2X1 − 1
4 = 1

2

(
X1 − 1

2

)
. (8.28)

As a consequence, n−1Un(f ;D) has a non-degenerate limiting distribution. Note that
this example differs in several respects from the degenerate cases that may occur for
standard U -statistics, i.e. unconstrained U -statistics based on independent (Xi). In
this example, (8.28) shows that the asymptotic distribution is a linear transformation
of a Bernoulli variable, and is thus neither normal, nor of the type that appears as
limits of degenerate standard U -statistics. (The latter are polynomials in independent
normal variables, in general infinitely many, see e.g. Theorem A.4 and, in general,
[57] and [35, Chapter 11].) Moreover, the a.s. convergence to a non-degenerate limit
is unheard of for standard U -statistics, where the limit is mixing. �

8.1. The degenerate case in renewal theory. In the renewal theory setting in
Theorem 3.20, the degenerate case is characterized by a modified version of the con-
ditions above.

Theorem 8.7. With the assumptions and notations of Theorem 3.20, let gi, i ∈ [b],
be as in Theorem 8.4 and Remark 6.2. Then, γ2 = 0 if and only if for every j ∈ [b],
the function

g̃j(y) := gj(y) + µD −
µD
ν
h(y1), y = (y1, . . . , yb) ∈ Sb, (8.29)

satisfies the condition (8.18). Moreover, if the sequence (Xi)
∞
1 is independent and

γ2 = 0, then the functions g̃j also satisfy (8.19)–(8.20).

The proof is given in Section 12. Note that E g̃j(Y1) = 0 for each j ∈ [b] by (6.4)
and (3.25).
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9. Rate of convergence

We use here a different method than in the rest of the paper.

Proof of Theorem 3.14. We consider Un(f,D); the argument for Un(f ;D=) is identi-
cal, and Un(f) is a special case.

Let I denote the set of all indices (i1, . . . , i`) in the sum (3.2); thus (3.2) can be
written Un(f ;D) =

∑
I∈I ZI , where Zi1,...,i` := f(Xi1 , . . . , Xi`). Note that the size

|I| ∼ Cnb for some C > 0, where b = b(D).

We define a graph Î with vertex set I by putting an edge between I = (i1, . . . , i`)
and I ′ = (i′1, . . . , i

′
`) if and only if |ij− i′k| 6 m for some j, k ∈ {1 . . . , `}. Let ∆ be 1 +

the maximum degree of the graph Î; it is easy to see that ∆ = O(nb−1). Moreover, it

follows from the m-dependence of (Xi) that Î is a dependency graph for the random
variables (ZI)I , meaning that if A and B are two disjoint subsets of I such that there
is no edge between A and B, then the two random vectors (ZI)I∈A and (ZI)I∈B are
independent.

The result now follows from [55, Theorem 2.2], which in our notation yields the
bound, with σ2n := VarUn ∼ σ2n2b−1 and B := 2 sup |f | which implies |ZI−EZI | 6 B
a.s. for every I ∈ I,

dK 6
1

σn

{
(2π)−1/2∆B + 16

( |I|∆
σ2n

)1/2
∆B2 + 10

( |I|∆
σ2n

)
∆B3

}
6 C

∆

σn
6 Cn−1/2, (9.1)

since |I|∆ 6 Cnb+b−1 6 Cσ2n and B is a constant. (Alternatively, one could use the
similar bound in [20, Theorem 2.1].) �

Remark 9.1. The assumption in Theorem 3.14 that f be bounded can be relaxed
to the 6th moment condition (A6) by using [55, Theorem 2.1 instead of Theorem 2.2]
together with Hölder’s inequality and straightforward estimates.

The similar bound [2, Corollary 2] gives the weaker estimate dK = O
(
n−1/4

)
,

assuming again that f is bounded; this can be relaxed to (A4) by instead using [2,
Theorem 1].

If we instead of the Kolmogorov distance use the Wasserstein distance dW (see e.g.
[14, pp. 63–64] for several equivalent definitions, and for several alternative names),

the estimate dW = O
(
n−1/2

)
follows similarly from [3, Theorem 1], assuming only the

third moment condition (A3); we omit the details. (Actually, [3] does not state the re-
sult for the Wasserstein distance but for a weaker version called bounded Wasserstein
distance; however, the same proof yields estimates for dW .) See also [52, Theorem
3 and Remark 3], which yield the same estimate under (A3), and furthermore imply
convergence in distribution assuming only (A2). (This thus yields an alternative proof
of Theorems 3.8 and 3.9.) �

Returning to the Kolmogorov distance, we do not believe that the moment as-
sumption (A6) in Remark 9.1 is best possible. For unconstrained and symmetric
U -statistics, Malevich and Abdalimov [44, Theorem 2] has shown bounds for the
Kolmogorov distance, which in particular show that then (A3) is sufficient to yield

dK = O
(
n−1/2

)
; we conjecture that the same holds in our, more general, setting.

Conjecture 9.2. Theorem 3.14 holds assuming only (A3) (instead of f bounded).
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Remark 9.3. If we do not care about the rate of convergence, we can for bounded
f alternatively obtain convergence in distribution in (3.22), and thus in (3.19) and

(3.21), by [34, Theorem 2] using the dependency graph Î in the proof of Theorem 3.14.
This can easily be extended to any f satisfying the second moment condition (A2)
by a standard truncation argument. �

10. Higher moments and maximal functions

To prove Theorem 3.15, we will show estimates for maximal functions that also
will be used in Sections 11 and 12. Let p > 2 be fixed throughout the section; explicit
and implicit constants may thus depend on p. We let

U∗n(f) := max
j6n
|Uj(f)|, (10.1)

and use similar notation for maximal functions of other sequences of random variables.
We use another decomposition of f and Un(f) which was used in [37] for the

independent case (m = 0); unlike Hoeffding’s decomposition in Section 6, it focuses
on the order of the arguments.

Recall from Section 5 that (X̂i)
`
1 are i.i.d. with the same distribution as X1. Let

F̂0 := µ defined in (5.1) and, for 1 6 k 6 `,

F̂k(x1, . . . , xk) := E f
(
x1, . . . , xk, X̂k+1, . . . , X̂`

)
, (10.2)

Fk(x1, . . . , xk) := F̂k
(
x1, . . . , xk)− F̂k−1(x1, . . . , xk−1

)
. (10.3)

(These are defined at least for L(X1)-a.e. x1, . . . , xk ∈ S, which is enough for our
purposes.) In other words, a.s.,

F̂k(X̂1, . . . , X̂k) = E
(
f(X̂1, . . . , X̂`) | X̂1, . . . , X̂k

)
, (10.4)

and thus F̂k(X̂1, . . . , X̂k), k = 0, . . . , `, is a martingale, with the martingale differ-

ences Fk(X̂1, . . . , X̂k), k = 1, . . . , `. Hence, or directly from (10.2)–(10.3), for a.e.
x1, . . . , xk−1,

EFk(x1, . . . , xk−1, X̂k) = 0. (10.5)

Furthermore, if (Ap) holds, then by (10.4) and Jensen’s inequality,

‖F̂k(X̂1, . . . , X̂k)‖p 6 ‖f(X̂1, . . . , X̂`)‖p 6 C, (10.6)

and thus by (10.3),

‖Fk(X̂1, . . . , X̂k)‖p 6 2‖f(X̂1, . . . , X̂`)‖p 6 C. (10.7)

Lemma 10.1. Suppose that (Ap) holds for some p > 2, and that µ = 0. Then∥∥U∗n(f ;> m)
∥∥
p
6 Cn`−1/2. (10.8)

Proof. We argue as in [37, Lemmas 4.4 and 4.7] with some minor differences. By

(10.2)–(10.3), f(x1, . . . , x`) = F̂`(x1, . . . , x`) =
∑`

k=1 Fk(x1, . . . , xk) for a.e. x1, . . . , x`,
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and thus, a.s.,

Un(f ;> m) =
∑̀
k=1

∑
16i1<···<ik6n
ij+1−ij>m

(
n− ik − (`− k)m

`− k

)
Fk(Xi1 , . . . , Xik)

=
∑̀
k=1

n∑
i=1

(
n− i− (`− k)m

`− k

)(
Ui(Fk;> m)− Ui−1(Fk;> m)

)
= Un(F`;> m) +

`−1∑
k=1

n−1∑
i=1

(
n− i− (`− k)m− 1

`− k − 1

)
Ui(Fk;> m), (10.9)

using a summation by parts and the identity
(
n′

`−k
)
−
(
n′−1
`−k
)

=
(
n′−1
`−k−1

)
. In particular,

|Un(f ;> m)| 6 |Un(F`;> m)|+
`−1∑
k=1

n−1∑
i=1

(
n− i− (`− k)m− 1

`− k − 1

)
U∗n(Fk;> m)

= |Un(F`;> m)|+
`−1∑
k=1

(
n− (`− k)m− 1

`− k

)
U∗n(Fk;> m)

6
∑̀
k=1

n`−kU∗n(Fk;> m). (10.10)

Since the right-hand side is weakly increasing in n, it follows that, a.s.,

U∗n(f ;> m) 6
∑̀
k=1

n`−kU∗n(Fk;> m). (10.11)

We thus may consider each Fk separately. Let 1 6 k 6 `, and let

∆Un(Fk;> m) := Un(Fk;> m)− Un−1(Fk;> m). (10.12)

By the definition (4.25), ∆Un(Fk;> m) is a sum of
(n−(k−1)m−1

k−1
)
6 nk−1 terms

Fk(Xi1 , . . . , Xik−1
, Xn) that all have the same distribution as Fk(X̂1, . . . , X̂k), and

thus by Minkowski’s inequality and (10.7),

‖∆Un(Fk;> m)‖p 6 nk−1‖Fk(X̂1, . . . , X̂k)‖p 6 Cnk−1. (10.13)

Furthermore, in each such term Fk(Xi1 , . . . , Xik−1
, Xn) we have ik−1 6 n − m − 1.

Hence, if we let Fi be the σ-field generated by X1, . . . , Xi, then, by m-dependence,
Xn is independent of Fik−1

, whence (10.5) implies

E
(
Fk(Xi1 , . . . , Xik−1

, Xn) | Fn−m−1
)

= E
(
Fk(Xi1 , . . . , Xik−1

, Xn) | Xi1 , . . . , Xik−1

)
= 0. (10.14)

Consequently,

E
(
∆Un(Fk;> m) | Fn−m−1

)
= 0. (10.15)

In the independent case m = 0 treated in [37], this means that Un(Fk) is a martingale.
In general, we may as a substitute split Un(Fk;> m) as a sum of m+ 1 martingales.
For j = 1, . . . ,m+ 1 and i > 1, let

∆M
(k,j)
i := ∆U(i−1)(m+1)+j(Fk;> m), (10.16)
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M
(k,j)
i :=

i∑
q=1

∆M (k,j)
q =

i∑
q=1

∆Uq(m+1)+j(Fk;> m). (10.17)

Then, (10.15) implies that (M
(k,j)
i )i>0 is a martingale, for each k and j. Hence,

Burkholder’s inequality [25, Theorem 10.9.5] yields, for the maximal function M
(k,j)∗
n ,

‖M (k,j)∗
n ‖p 6 C

∥∥∥( n∑
i=1

|∆M (k,j)
i |2

)1/2∥∥∥
p

= C
∥∥∥ n∑
i=1

|∆M (k,j)
i |2

∥∥∥1/2
p/2
. (10.18)

Furthermore, Minkowski’s inequality yields (since p/2 > 1), using also (10.16) and
(10.13), for n > 1,∥∥∥ n∑

i=1

|∆M (k,j)
i |2

∥∥∥
p/2
6

n∑
i=1

∥∥|∆M (k,j)
i |2

∥∥
p/2

=

n∑
i=1

∥∥∆M
(k,j)
i

∥∥2
p
6 Cn1+2(k−1). (10.19)

Combining (10.18) and (10.19) yields

‖M (k,j)∗
n ‖p 6 Cnk−1/2. (10.20)

It follows from (10.16)–(10.17) that

Un(Fk;> m) =
m+1∑
j=1

M
(k,j)
b(n−j)/(m+1)c+1. (10.21)

Hence (coarsely),

U∗n(Fk;> m) 6
m+1∑
j=1

M (k,j)∗
n , (10.22)

and thus (10.20) and Minkowski’s inequality yield∥∥U∗n(Fk;> m)
∥∥
p
6 Cnk−1/2, (10.23)

for k = 1, . . . , `.
The result (10.8) now follows from (10.23) and (10.11) by a final application of

Minkowski’s inequality. �

Theorem 10.2. Suppose that (Ap) holds for some p > 2. Then, with b = b(D),∥∥max
j6n

∣∣Uj(f ;D)− EUj(f ;D)
∣∣∥∥
p

= O
(
nb−1/2

)
, (10.24)∥∥max

j6n

∣∣Uj(f ;D)− µD
b!
jb
∣∣∥∥
p

= O
(
nb−1/2

)
, (10.25)∥∥U∗n(f ;D)

∥∥
p

= O
(
nb
)
. (10.26)

The same results hold for an exact constraint D=.

Proof. We use induction on b. We split the induction step into three cases.

Case 1: no constraint, i.e., D = D∞ and b = `. By (4.27)–(4.28),

Un(f) = Un(f ;D∅) = Un(f ;> m)−
∑
J 6=∅

(−1)|J |Un(f ;DJ). (10.27)

Thus,

U∗n(f) 6 U∗n(f ;> m) +
∑
J 6=∅

U∗n(f ;DJ). (10.28)
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Suppose first that µ = 0; then Lemma 10.1 applies to U∗n(f ;> m). Furthermore,
the induction hypothesis applies to each term in the sum in (10.28), since b(DJ) =
`− |J | 6 `− 1 = b− 1. Hence, Minkowski’s inequality yields∥∥U∗n(f)

∥∥
p
6
∥∥U∗n(f ;> m)

∥∥
p

+
∑
J 6=∅

∥∥U∗n(f ;DJ)
∥∥
p
6 Cn`−1/2 + Cn`−1. (10.29)

When µ = 0, (3.7) yields

EUn(f) = O
(
n`−1

)
. (10.30)

Now (10.24) follows from (10.29) and (10.30), which shows (10.24) when µ = 0. The
general case follows by considering f − µ; this does not affect Un(f)− EUn(f).

Finally, both (10.25) and (10.26) follow from (10.24) and (3.7).

Case 2: an exact constraint D=, b < `. An immediate consequence of (4.9) in
Lemma 4.2 and Case 1 applied to g; note that g too satisfies (Ap) by (4.19).

Case 3: a constraint D, b < `. A consequence of Case 2 by (3.4) and (5.5). �

Lemma 10.3. Suppose that (Ap) holds for some p > 2. Let b := b(D). Then the
sequences

n1/2−b max
j6n

∣∣Uj(f ;D)− EUj(f ;D)
∣∣ and n−bU∗n(f ;D) (n > 1) (10.31)

are uniformly p-th power integrable.
The same holds for an exact constraint D=.

Proof. We consider the second sequence in (10.31); the proof for the first sequence
differs only notationally.

We have so far let f be fixed, so the constants above may depend on f . However,
it is easy to see that the proof of (10.26) yields∥∥U∗n(f ;D)

∥∥
p
6 Cp max

i1<···<i`
‖f(Xi1 , . . . , Xi`)‖pn

b, (10.32)

with Cp independent of f (but depending on p). (Note that we only have to consider
a finite set of indices (i1, . . . , i`), as discussed above (3.6).

Truncate f , and define, for B > 0, fB(x) := f(x)1{|f(x)| 6 B}. Then (10.32)
yields ∥∥n−bU∗n(f − fB;D)

∥∥
p
6 Cpε(B), (10.33)

where

ε(B) := max
i1<···<i`

‖f(Xi1 , . . . , Xi`)1{|f(Xi1 , . . . , Xi`)| > B}‖p → 0 (10.34)

as B →∞.
Let q := 2p. Since fB is bounded, we may apply (10.32) (or Theorem 10.2) with p

replaced by q and obtain

sup
n

∥∥n−`U∗n(fB;D)
∥∥
2p
<∞. (10.35)

Hence, for any B, the sequence n−`U∗n(fB;D) is uniformly p-th power integrable.
Since U∗n(f ;D) 6 U∗n(fB;D)+U∗n(f−fB;D), the result now follows from the following
simple observation. �

Lemma 10.4. Let 1 6 p < ∞. Let (ξn)n>1 be a sequence of random variables.
Suppose that for every ε > 0, there exist random variables ηεn and ζεn, n > 1, such
that
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(i) |ξn| 6 ηεn + ζεn,
(ii) the sequence (|ηεn|p)n is uniformly integrable,
(iii) ‖ζεn‖p 6 ε.

Then (|ξn|p)n is uniformly integrable.

Proof. Since (i) implies |ξn|p 6 2p|ηεn|p + 2p|ζεn|p, it suffices (by appropriate substitu-
tions) to consider the case p = 1. This is a simple exercise, using for example [25,
Theorem 5.4.1]. �

Proof of Theorem 3.15. An immediate consequence of Theorems 3.8–3.9 and the uni-
form integrability given by Lemma 10.3. �

11. Functional convergence

We begin by improving (10.8) in a special situation. (We consider only p = 2.)

Lemma 11.1. Suppose that (A2) holds and that µ = 0 and fi(Xi) = 0 a.s. for every
i = 1, . . . , `. Then ∥∥U∗n(f ;> m)

∥∥
2
6 Cn`−1. (11.1)

Proof. Note that (6.6) and (6.10) immediately give this estimate for ‖Un(f ;> m)‖2.
To extend it to the maximal function U∗n(f ;> m), we reuse the proof of Lemma 10.1
(with p = 2), and analyse the terms U∗n(Fk;> m) further. First, by (10.4), (6.2) and
the assumptions, for every k ∈ [`],

E
(
F̂k(X̂1, . . . , X̂k) | X̂k

)
= E

(
f(X̂1, . . . , X̂`) | X̂k

)
= fk(X̂k) + µ = 0. (11.2)

In particular, for k = 1, (11.2) yields F̂1(X̂1) = 0 a.s., and thus

U∗n(F1;> m) = 0 a.s. (11.3)

For k > 2, as said in the proof of Lemma 10.1, ∆Un(Fk;> m) is a sum of 6 nk−1

terms Fk(Xi1 , . . . , Xik−1
, Xn). Consider two such terms Fk(Xi1 , . . . , Xik−1

, Xn) and
Fk(Xi′1

, . . . , Xi′k−1
, Xn), and suppose that |ij − i′j′ | > m for all j, j′ ∈ [k− 1]. Then all

variables Xij , Xi′
j′

, and Xn are independent, and thus a.s.

E
[
Fk(Xi1 , . . . , Xik−1

, Xn)Fk(Xi′1
, . . . , Xi′k−1

, Xn) | Xn

]
= E

[
Fk(Xi1 , . . . , Xik−1

, Xn) | Xn

]
E
[
Fk(Xi′1

, . . . , Xi′k−1
, Xn) | Xn

]
= 0, (11.4)

by (11.2). Hence, taking the expectation,

E
[
Fk(Xi1 , . . . , Xik−1

, Xn)Fk(Xi′1
, . . . , Xi′k−1

, Xn)
]

= 0, (11.5)

unless |ij − i′j′ | 6 m for some pair (j, j′). For each (i1, . . . , ik−1), there are only

O(nk−2) such (i′1, . . . , i
′
k−1), and for each of these, the expectation in (11.5) is O(1) by

(A2) and the Cauchy–Schwarz inequality. Consequently, summing over all appearing
(i1, . . . , ik−1) and (i′1, . . . , i

′
k−1),

E
[∣∣∆Un(Fk;> m)

∣∣2] =
∑

i1,...,ik−1,i
′
1,...,i

′
k−1

E
[
Fk(Xi1 , . . . , Xik−1

, Xn)Fk(Xi′1
, . . . , Xi′k−1

, Xn)
]

= O
(
nk−1 · nk−2

)
= O

(
n2k−3

)
. (11.6)
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We have gained a factor of n compared to (10.13). Hence, recalling (10.16) and using
(11.6) in (10.18)–(10.19) (which for p = 2 essentially just is Doob’s inequality), we
improve (10.20) to

‖M (k,j)∗
n ‖2 6 Cnk−1. (11.7)

Finally, (11.7) and (10.22) yield∥∥U∗n(Fk;> m)
∥∥
2
6 Cnk−1, (11.8)

for 2 6 k 6 `; this holds trivially for k = 1 too by (11.3). The result follows by
(10.11) and (11.8). �

Proof of Theorem 3.16. We prove (3.23); then (3.24) follows by (3.8). By replacing
f by f − µ, we may assume that µ = 0.

Consider first the unconstrained case. We argue as in [37], with minor modifica-
tions. We use (6.6), which we write as, cf. (6.11),

Un(f ;> m) =
∑̀
j=1

n∑
i=1

aj,i,nfj(Xi) + Un(f∗;> m), (11.9)

with, as in (6.12),

aj,i,n :=

(
i− 1− (j − 1)m

j − 1

)(
n− i− (`− j)m

`− j

)
. (11.10)

Lemma 11.1 applies to f∗ and shows that

‖U∗n(f∗;> m)‖2 = O
(
n`−1

)
= o
(
n`−1/2

)
, (11.11)

which implies that the last term in (11.9) is negligible, so we concentrate on the sum.
Define ∆aj,i,n := aj,i+1,n − aj,i,n and, using a summation by parts,

Ûn,j :=

n∑
i=1

aj,i,nfj(Xi) = aj,n,nSn(fj)−
n−1∑
i=1

∆aj,i,nSi(fj). (11.12)

Donsker’s theorem extends to m-dependent stationary sequences [5], and thus, as
n→∞,

n−1/2Sbntc(fj)
d−→Wj(t) in D[0,∞), (11.13)

for a continuous centered Gaussian process Wj (a suitable multiple of Brownian mo-
tion); furthermore, as is easily seen, this holds jointly for j = 1, . . . , `. Moreover,
define

ψj(s, t) :=
1

(j − 1)! (`− j)!
sj−1(t− s)`−j . (11.14)

(Thus ψ(s, 1) = ψ(s) defined in (6.13); the present homogeneous version is more
convenient here.) Let ψ′j(s, t) := ∂

∂sψ(s, t). Then, straightforward calculations (as in

[37, Lemma 4.2]) show that, extending (6.12),

aj,i,n = ψj(i, n) +O(n`−2), (11.15)

∆aj,i,n = ψ′j(i, n) +O
(
n`−3 + n`−21{i 6 m or i > n−m}

)
(11.16)

uniformly for all n, j, i that are relevant; moreover, the error terms with negative
powers, i.e., n`−2 for ` = 1 and n`−3 for ` 6 2, vanish.
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By the Skorohod coupling theorem [42, Theorem 4.30], we may assume that the
convergences (11.13) hold a.s., and similarly, see (11.11), a.s.

n1/2−`U∗n(f∗;> m)→ 0. (11.17)

It then follows from (11.12)–(11.16) and the homogeneity of ψj that a.s., uniformly
for t ∈ [0, T ] for any fixed T ,

n1/2−`Ûbntc,j = n1−`ψj(bntc, bntc)Wj(t)−
bntc−1∑
i=1

n1−`ψ′j(i, bntc)Wj(i/n) + o(1)

= ψj(t, t)Wj(t)−
1

n

bntc−1∑
i=1

ψ′j(i/n, t)Wj(i/n) + o(1)

= ψj(t, t)Wj(t)−
∫ t

0
ψ′j(s, t)Wj(s) ds+ o(1). (11.18)

Summing over j ∈ [`], we obtain by (11.9), (11.12), (11.18), and (11.17), a.s. uniformly
for t ∈ [0, T ] for any T ,

n1/2−`Ubntc(f ;> m) = Z(t) + o(1), (11.19)

where

Z(t) :=
∑̀
j=1

(
ψj(t, t)Wj(t)−

∫ t

0
ψ′j(s, t)Wj(s) ds

)
, (11.20)

which obviously is a centered Gaussian process. We can rewrite (11.19) as

n1/2−`Ubntc(f ;> m)→ Z(t) in D[0,∞). (11.21)

Finally we use (10.27), which implies

max
k6n

∣∣Uk(f)− Uk(f ;> m)
∣∣ 6∑

J 6=∅

U∗n(f ;DJ) (11.22)

and thus, by Theorem 10.2, recalling b(DJ) = `− |J | 6 `− 1,∥∥max
k6n

∣∣Uk(f)− Uk(f ;> m)
∣∣∥∥

2
6
∑
J 6=∅

∥∥U∗n(f ;DJ)
∥∥
2
6
∑
J 6=∅

Cnb(DJ ) 6 Cn`−1. (11.23)

It follows that, in each D[0, T ] and thus in D[0,∞),

n1/2−`
(
Ubntc(f)− Ubntc(f ;> m)

) p−→ 0. (11.24)

Furthermore, recalling the assumption µ = 0, EUn(f) = O
(
n`−1

)
by (3.7), and thus

n1/2−` EUbntc(f)→ 0 in D[0,∞). (11.25)

The result (3.23) in the unconstrained case follows from (11.21), (11.24) and
(11.25).

Joint convergence for several f (in the unconstrained case) follows by the same
proof.

Finally, as usual, the exactly constrained case follows by (4.9) in Lemma 4.2 and
the constrained case then follows by (3.4), using joint convergence for all gD′=, with
notation as in (3.4) and Lemma 4.2. To obtain joint convergence for several f and
D, we only have to choose M in (4.8) large enough to work for all of them. �
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12. Renewal theory

Note first that by the law of large numbers for m-dependent sequences,

Sn/n = Sn(h)/n
a.s.−→ Eh(X1) = ν as n→∞. (12.1)

Moreover, as in (11.13), Donsker’s theorem for m-dependent sequences [5] yields

n−1/2Sbntc(h− ν) = n−1/2
(
Sbntc(h)− bntcν

) d−→Wh(t) in D[0,∞) (12.2)

for a continuous centered Gaussian process Wh(t). As a simple consequence, we have
the following (the case N+ is in [33, Theorems 2.1 and 2.2]), which extends the well
known case of independent Xi, see e.g. [24, Sections 3.4 and 3.10].

Lemma 12.1. As x→∞,

N±(x)/x
a.s.−→ 1/ν, (12.3)

SN±(x)(h) = x+ op
(
x1/2

)
. (12.4)

Proof. Note that, by the definitions (3.27)–(3.28),

SN−(x)(h) 6 x < SN−(x)+1(h) and SN+(x)−1(h) 6 x < SN+(x)(h). (12.5)

Then (12.3) follows easily from (12.1). Furthermore, (12.4) implies that as N →∞,

SN+1 − SN = op
(
N1/2

)
, and (12.4) follows. We omit the standard details. �

Proof of Theorem 3.20. Note that (12.2) is the special (unconstrained) case f = h,
D = (), ` = b = 1 of (3.23). By joint convergence in Theorem 3.16 for (f,D) and h,
we thus have (3.24) jointly with (12.2). We use again the Skorohod coupling theorem
and assume that (3.24), (12.2), and (12.4) hold a.s.

Take n := dxe and t := N±(x)/n, and let x→∞. Then, t → 1/ν a.s. by (12.3),
and thus (3.24) implies, a.s.,

UN±(x)(f ;D) =
µD
b!
N±(x)b + Z(ν−1)nb−1/2 + o

(
nb−1/2

)
=
µD
b!
N±(x)b + Z(ν−1)xb−1/2 + o

(
xb−1/2

)
. (12.6)

Similarly, (12.2) implies, a.s.,

SN±(x)(h) = N±(x)ν +Wh(ν−1)x1/2 + o
(
x1/2

)
. (12.7)

By (12.7) and (12.4), we have a.s.

νN±(x) = SN±(x)(h)−Wh(ν−1)x1/2 + o
(
x1/2

)
= x−Wh(ν−1)x1/2 + o

(
x1/2

)
.

(12.8)

Thus, by the binomial theorem, a.s.,

(νN±(x))b = xb − bWh(ν−1)xb−1/2 + o
(
xb−1/2

)
. (12.9)

Hence, (12.6) yields, a.s.,

UN±(x)(f ;D) =
µD
νbb!

(
xb − bWh(ν−1)xb−1/2

)
+ Z(ν−1)xb−1/2 + o

(
xb−1/2

)
, (12.10)

which yields (3.29) with

γ2 = Var
[
Z(ν−1)− µD

νb(b− 1)!
Wh(ν−1)

]
. (12.11)

The exactly constrained case and joint convergence follow similarly. �
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Proof of Theorem 8.7. We may as in the proof of Theorem 3.20 assume that (3.24),
(12.2), and (12.9) hold a.s. Recall that the proofs above use the decomposition
(3.4) and Lemma 4.2 applied to every D′= there, with b := b(D), D given by (4.7),
M := D + 1 (for definiteness), and Yi defined by (4.8). Furthermore, (4.20) holds
with g = gD : Sb → R given by (4.23); in (3.23)–(3.24), we thus have the same limit
Z(t) for Un(f ;D; (Xi)) and Un(g; (Yi)). We may assume that this limit holds a.s. also
for g.

Recall that h : S → R. We abuse notation and extend it to SM by h(x1, . . . , xM ) :=
h(x1); thus h(Yi) = h(Xi). In particular, Sn(h; (Xi)) = Sn(h; (Yi)), so we may write
Sn(h) without ambiguity. We define H : (SM )b → R by

H(y1, . . . , yb) :=

b∑
j=1

h(yj). (12.12)

Note that (5.1) and (6.1) applied to the function H yield

µH := EH
(
Ŷ1, . . . , Ŷb

)
= bν, (12.13)

Hj(y) = h(y) + (b− 1)ν − µH = h(y)− ν. (12.14)

(Since H is symmetric, Hj is the same for every j.)

In the unconstrained sum (3.1), there are
(
n−1
`−1
)

terms that contain Xi, for each

i ∈ [n]. Applying this to H and (Yi), we obtain by (12.12)

Un(H; (Yi)) =

(
n− 1

b− 1

)
Sn(h). (12.15)

Hence, for each fixed t > 0, by (12.2), a.s.,

Ubntc(H; (Yi))− EUbntc(H; (Yi)) =

(
bntc − 1

b− 1

)
Sbntc(h− ν)

=
(nt)b−1

(b− 1)!
n1/2Wh(t) + o

(
nb−1/2

)
. (12.16)

Combining (3.23) (for g and (Yi)) and (12.16), we obtain that, a.s.,

Ubntc
(
g − µD

ν H
)
− EUbntc

(
g − µD

ν H
)

nb−1/2
= Z(t)− µDt

b−1

ν(b− 1)!
Wh(t) + o(1). (12.17)

Taking t = ν−1, we see that this converges to the random variable in (12.11). Let
G := g − µDν−1H. Then a comparison with Theorem 3.8 (applied to G) shows that

γ2 = t2b−1σ2(G) = ν1−2bσ2(G). (12.18)

In particular, γ2 = 0 if and only if σ2(G) = 0, and the result follows by Theorem 8.4,
noting that Gj := gj − µDν−1Hj = gj + µD − µDν−1h by (12.14) �

Proof of Theorem 3.21. This can be proved as [37, Theorem 3.13], by first stopping
at N+(x−), with x− := bx − lnxc, and then continuing to N−(x); we therefore only
sketch the details. Let R(x) := SN+(x) − x > 0 be the overshoot at x, and let
∆(x) := x−SN+(x−) = x−x−−R(x−). It is well known, see e.g. [24, Theorem 2.6.2]

that R(x) converges in distribution as x→∞. In particular, ∆(x)
p−→ +∞ and thus

P[∆(x) > 0] → 1. Since N+(x−) is a stopping time and (Xi) are independent, the
increments of the random walk Sn after N+(x−) are independent of UN+(x−)(f), and it
follows that the overshoot R(x−1) is asymptotically independent of UN+(x−)(f). The
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event {SN−(x) = x} equals {R(x − 1) = 1}, and thus the asymptotic distribution of
UN+(x−)(f) conditioned on SN−(x) = x is the same as without conditioning, and given
by (3.29). Finally, the difference between UN+(x−)(f) and UN±(x)(f) is negligible, e.g.
as a consequence of (3.24). �

In the remainder of the section, we prove moment convergence. Since we here
consider different exponents p simultaneously, we let Cp denote constants that may
depend on p.

Lemma 12.2. Assume that ν := Eh(X1) > 0 and that E |h(X1)|p < ∞ for every
p <∞. Then, for every p <∞, A > 2/ν and x > 1, we have

P
[
N±(x) > Ax

]
6 Cp(Ax)−p. (12.19)

Proof. We have N+(x) 6 N−(x) + 1; hence it suffices to consider N−(x).
Let A > 2/ν. If N−(x) > Ax, then (12.5) implies

SN−(x)(h− ν) 6 x−N−(x)ν 6 (1−Aν)x 6 −(Aν/2)x. (12.20)

Hence, for any p > 2, using (10.24) for h (which is a well-known consequence of
Doob’s and Burkholder’s, or Rosenthal’s, inequalities),

P
[
Ax 6 N−(x) 6 2Ax

]
6 (Axν/2)−p E

[∣∣SN−(x)(h− ν)
∣∣p1{N−(x) 6 2Ax}

]
6 (Aνx/2)−p E

[∣∣S∗b2Axc(h− ν)
∣∣p] 6 Cp(Ax)−p(2Ax)p/2

6 Cp(Ax)−p/2. (12.21)

We replace p by 2p and A by 2kA in (12.21), and sum for k > 0; this yields (12.19). �

Lemma 12.3. Assume that (Ap) and E |h(X1)|p < ∞ hold for every p < ∞, and
that ν := Eh(X1) > 0. Then, for every p > 1 and x > 1,∥∥∥UN±(x)(f ;D)− µD

νbb!
xb
∥∥∥
p
6 Cpx

b−1/2. (12.22)

Proof. Let Vn := Un(f ;D) − µD
b! n

b, let B := 2/ν, and choose q := 2bp. Then the
Cauchy–Schwarz inequality, (10.25), and Lemma 12.2 yield, with V ∗x := supn6x |Vn|,

E
∣∣∣UN±(x)(f ;D)− µD

b!
N±(x)b

∣∣∣p = E |VN±(x)|
p

= E
[
|VN±(x)|

p1{N±(x) 6 Bx}
]

+
∞∑
k=1

E
[
|VN±(x)|

p1{2k−1Bx < N±(x) 6 2kBx}
]

6 E
[
|V ∗Bx|p

]
+
∞∑
k=1

E
[
|V ∗2kBx|

p1{N±(x) > 2k−1Bx}
]

6 E
[
|V ∗Bx|p

]
+
∞∑
k=1

E
[
|V ∗2kBx|

2p
]1/2 P[N±(x) > 2k−1Bx

]1/2
6 Cpx

p(b−1/2) +

∞∑
k=1

Cp(2
kx)p(b−1/2)Cq(2

k−1x)−q/2 6 Cpx
p(b−1/2). (12.23)

In other words, ∥∥∥UN±(x)(f ;D)− µD
b!
N±(x)b

∥∥∥
p
6 Cpx

b−1/2. (12.24)
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We may here replace Un(f ;D) by Sn(h) (and thus b by 1 and µD by ν). This yields∥∥SN±(x)(h)− νN±(x)
∥∥
p
6 Cpx

1/2. (12.25)

By the same proof, this holds also if we replace N±(x) by N±(x) ∓ 1. Using (12.5),
it follows that ∥∥x− νN±(x)

∥∥
p
6 Cpx

1/2. (12.26)

In particular, by Minkowski’s inequality,∥∥νN±(x)
∥∥
p
6 x+

∥∥x− νN±(x)
∥∥
p
6 Cpx. (12.27)

Consequently, by Minkowski’s and Hölder’s inequalities, (12.26) and (12.27),∥∥(νN±(x))b − xb
∥∥
p

=

∥∥∥∥∥
b−1∑
k=0

(νN±(x)− x)(νN±(x))kxb−1−k

∥∥∥∥∥
p

6
b−1∑
k=0

∥∥νN±(x)− x
∥∥
(k+1)p

∥∥νN±(x)
∥∥k
(k+1)p

xb−1−k

6 Cpx
b−1/2. (12.28)

Combining (12.24) and (12.28), we obtain (12.22). �

Proof of Theorem 3.23. We have shown that the left-hand side of (3.29) is uniformly
bounded in Lp for x > 1. By replacing p with 2p, say, this implies that these left-hand
sides are uniformly p-th integrable, for every p <∞, which implies convergence of all
moments in (3.29).

The proof of Theorem 3.21 shows that, under the assumptions there, P(SN−(x) = x)
converges to a positive limit as x→∞; hence P(SN−(x) = x) > c for some c > 0 and all
large x. This implies that the uniform p-th integrability holds also after conditioning
(for large x), and thus all moments converge in (3.29) also after conditioning. �

13. Constrained pattern matching in words

As said in Section 1, Flajolet, Szpankowski and Vallée [23] studied the following
problem; see also Jacquet and Szpankowski [31, Chapter 5]. Consider a random string
Ξn = ξ1 · · · ξn, where the letters ξi are i.i.d. random elements in some finite alphabet
A. (We may regard Ξn as the initial part of an infinite string ξ1ξ2 . . . of i.i.d. letters.)
Consider also a fixed word w = w1 · · ·w` from the same alphabet. (Thus, ` > 1
denotes the length of w; we keep w and ` fixed.) Let Nn(w) be the (random) number
of occurrences of w in Ξn. More generally, for any constraint D = (d1, . . . , d`−1), let
Nn(w;D) be the number of constrained occurrences. This is a special case of the
general setting in (3.1)–(3.2), with Xi = ξi, and, cf. (1.1),

f(x1, . . . , x`) = 1{x1, . . . , x` = w} = 1{xi = wi ∀i ∈ [`]}. (13.1)

Consequently,

Nn(w;D) = Un(f ;D; (ξi)) (13.2)

with f given by (13.1).
Denote the distribution of the individual letters by

p(x) := P(ξ1 = x), x ∈ A; (13.3)
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We will, without loss of generality, assume p(x) > 0 for every x ∈ A. Then, (13.2)
and the general results above yield the following result from [23], with b = b(D)
given by (2.1). The unconstrained case (also in [23]) is a special case. Moreover, the
theorem holds also for the exactly constrained case, with µD= =

∏
i p(wi) and some

σ2(w;D=); we leave the detailed statement to the reader. A formula for σ2 is given
in [23, (14)]; we show explicitly that σ2 > 0 except in trivial (non-random) cases,
which seems omitted from [23].

Theorem 13.1 (Flajolet, Szpankowski and Vallée [23]). With notations as above, as
n→∞,

Nn(w;D)− µD
b! n

b

nb−1/2
d−→ N

(
0, σ2

)
(13.4)

for some σ2 = σ2(w;D) > 0, with

µD :=
∏
dj<∞

dj ·
∏̀
i=1

p(wi). (13.5)

Furthermore, the all moments converge in (13.4).
Moreover, if |A| > 2, then σ2 > 0.

Proof. By (13.2), the convergence (13.4) is an instance of (3.21) in Theorem 3.9
together with (3.8) in Theorem 3.5. The formula (13.5) follows from (3.11) since, by
(13.1) and independence,

µ := E f(ξ1, . . . , ξ`) = P
(
ξ1 · · · ξ` = w1 · · ·w`

)
=
∏̀
i=1

P(ξi = wi). (13.6)

Moment convergence follows by Theorem 3.15; note that (Ap) is trivial, since f is
bounded.

Finally, assume |A| > 2 and suppose that σ2 = 0. Then Theorem 8.4 says that
(8.20) holds, and thus, for each n > D, the sum Sn(gj) is independent of ξD+1, . . . , ξn.
We consider only j = 1. Choose a ∈ A with a 6= w1. Consider first an exact constraint
D=. Then gD= is given by (4.18). Since f(x1, . . . , x`) = 0 whenever x1 = a, it follows
from (4.18) that g(y1, . . . , yb) = 0 whenever y1 = (y1k)

M
k=1 has y11 = a. hence, (6.1)

shows that

g1(y1) = −µD= = −µ, if y11 = a. (13.7)

Consequently, on the event ξ1 = · · · = ξn = a, we have, recalling (4.8) and M = D+1,
g1(Yk) = g1(ξk, . . . , ξk+D) = −µ for every k ∈ [n]. Thus,

Sn(g1) = −nµ if ξ1 = · · · = ξn = a. (13.8)

On the other hand, as noted above, the assumption σ2 = 0 implies that Sn(g1) is
independent of ξD+1, . . . , ξn. Consequently, (13.8) implies

Sn(g1) = −nµ if ξ1 = · · · = ξD = a, (13.9)

regardless of ξD+1 . . . , ξn+D. This is easily shown to lead to contradiction. For ex-
ample, we have, by (6.4),

E g1(Yk) = E g1(ξk, . . . , ξk+D) = 0, (13.10)
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and thus, conditioning on ξ1, . . . , ξD,

E
(
Sn(g1) | ξ1 = · · · = ξD = a

)
=

n∑
k=1

E
(
g1(ξk, . . . , ξk+D) | ξ1 = · · · = ξD = a

)
= O(1), (13.11)

since all terms with k > D are unaffected by the conditioning and thus vanish by
(13.10); this contradicts (13.9) for large n, since µ > 0. This contradiction shows that
σ2 > 0 for an exact constraint D=.

Alternatively, instead of using the expectation as in (13.11), one might easily show
that if n > D + `, then ξD+1, . . . , ξn can be chosen such that (13.9) does not hold.

For a constraint D, g = gD is given by a sum (4.23) of exactly constrained cases
D′=. Hence, by summing (13.7) for these D′=, it follows that (13.7) holds also for
gD (with µ replaced by µD). This leads to a contradiction exactly as above. �

Theorem 13.1 shows that, except in trivial cases, the asymptotic variance σ2 > 0
for a subsequence count Nn(w;D), and thus (13.4) yields a non-degenerate limit, and
thus really shows asymptotic normality. By the same proof, see also Remark 3.10,
Theorem 13.1 extends to linear combinations of different subsequence counts (in the
same random string Ξn), but in this case, it may happen that σ2 = 0, and then (13.4)
has a degenerate limit and thus yields only convergence in probability to 0. (We
consider only linear combinations with coefficients not depending on n.) One such
degenerate example with constrained subsequence counts is discussed in Example 8.6.
There are also degenerate examples in the unconstrained case. In fact, the general
theory of degenerate (in this sense) U -statistics based on independent (Xi)

∞
1 is well

understood; for symmetric U -statistics this case was characterized by [27] and studied
in detail by [57], and their results were extended to the asymmetric case relevant here
in [35, Chapter 11.2]. In Appendix A we apply these general results to string matching
and give a rather detailed treatment of the degenerate cases of linear combinations of
unconstrained subsequence counts. See also [19] for further algebraic aspects of both
non-degenerate and degenerate cases.

Problem 13.2. Appendix A considers only the unconstrained case. Example 8.6
shows that for linear combinations of constrained pattern counts, there are further
possibilities to have σ2 = 0. It would be interesting to extend the results in Appen-
dix A and characterize these cases, and also to obtain limit theorems for such cases,
extending Theorem A.4 (in particular the case k = 2); note again that the limit
in Example 8.6 is of a different type than the ones occuring in unconstrained cases
(Theorem A.4). We leave this as open problems.

14. Constrained pattern matching in permutations

Consider now random permutations. As usual, we generate a random permutation
π = π(n) ∈ Sn by taking a sequence (Xi)

n
1 of i.i.d. random variables with a uniform

distribution Xi ∼ U(0, 1), and then replacing the values X1, . . . , Xn, in increasing
order, by 1, . . . , n. Then, the number Nn(τ) of occurrences of a fixed permutation
τ = τ1 · · · τ` in π is given by the U -statistic Un(f) defined by (3.1) with

f(x1, . . . , x`) :=
∏

16i<j6`

1{xi < xj ⇐⇒ τi < τj}. (14.1)
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Similarly, for any constraint D = (d1, . . . , d`−1), we have for the number of constrained
occurrences of τ , with the same f given by (14.1),

Nn(τ ;D) = Un(f ;D). (14.2)

Hence, Theorems 3.8 and 3.9 yield the following result showing asymptotic nor-
mality of the number of (constrained) occurrences. As said in the introduction, the
unconstrained case was shown by Bóna [7], the case d1 = · · · = d`−1 = 1 by Bóna [9]
and the general vincular case by Hofer [29]; we extend it to general constrained cases.
The fact that σ2 > 0 was shown in [29] (in vincular cases); we give a shorter proof
based on Theorem 8.4. Again, the theorem holds also for the exactly constrained
case, with µD= = 1/`! and some σ2(τ ;D=).

Theorem 14.1 (largely Bóna [7, 9] and Hofer [29]). For any fixed permutatation
τ ∈ S` and constraint D = (d1, . . . , d`−1), as n→∞,

Nn(τ ;D)− µD
b! n

b

nb−1/2
d−→ N

(
0, σ2

)
(14.3)

for some σ2 = σ2(τ ;D) > 0 and

µD :=
1

`!

∏
dj<∞

dj . (14.4)

Furthermore, all moments converge in (14.3).
Moreover, if ` > 2, then σ2 > 0.

Proof. This is similar to the proof of Theorem 13.1. By (14.2), the convergence (14.3)
is an instance of (3.21) together with (3.8). The formula (14.4) follows from (3.11)
since µ := E f(X1, . . . , X`) by (14.1) is the probability that X1, . . . , X` have the same
order as τ1, . . . , τ`, i.e., 1/`!. Moment convergence follows by Theorem 3.15.

Finally, suppose that ` > 2 but σ2 = 0. Then Theorem 8.4 says that (8.20) holds,
and thus, for each j and each n > D, the sum Sn(gj) is independent of XD+1, . . . , Xn;
we want to show that this leads to a contradiction. We choose again j = 1, but we
now consider two cases separately.

Case 4: d1 <∞. Recall the notation in (4.11)–(4.14), and note that in this case

`1 > 1, t11 = 0, t12 = d1, v1 = 0. (14.5)

Assume for definiteness that τ1 > τ2. (Otherwise, we may exchange < and > in the
argument below.) Then (14.1) implies that

f(x1, . . . , x`) = 0 if x1 < x2. (14.6)

Consider first the exact constraint D=. Then gD= is given by (4.18). Hence, (14.6)
and (14.5) imply that

gD=(y1, . . . , yb) = 0 if y1 = (y1,k)
M
k=1 with y1,1 < y1,1+d1 . (14.7)

In particular,

gD=(y1, . . . , yb) = 0 if y1,1 < y1,2 < · · · < y1,M . (14.8)

By (4.23), the same holds for the constraint D. Hence, (6.1) shows that, for g = gD,

g1(y1) = −µD if y1,1 < y1,2 < · · · < y1,M . (14.9)
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Consequently, on the event X1 < · · · < Xn+D, we have, recalling (4.8) and M = D+1,
g1(Yk) = g1(Xk, . . . , Xk+D) = −µD for every k ∈ [n], and thus

Sn(g1) = −nµD if X1 < · · · < Xn+D. (14.10)

On the other hand, as noted above, the assumption σ2 = 0 implies that Sn(g1) is
independent of XD+1, . . . , Xn. Consequently, (14.10) implies that a.s.

Sn(g1) = −nµD if X1 < · · · < XD < Xn+1 < · · · < Xn+D. (14.11)

However, in analogy with (13.10)–(13.11), we have E g1(Yk) = 0 by (6.4), and thus

E
(
Sn(g1) | X1 < · · · < XD < Xn+1 < · · · < Xn+D

)
=

n∑
k=1

E
(
g1(Xk, . . . , Xk+D) | X1 < · · · < XD < Xn+1 < · · · < Xn+D

)
= O(1), (14.12)

since all terms with D < k 6 n − D are unaffected by the conditioning and thus
vanish. But (14.12) contradicts (14.11) for large n, since µD > 0. This contradiction
shows that σ2 > 0 when ` > 2 and d1 <∞.

Case 5: d1 =∞. In this case, `1 = 1. Consider again first D=. Since (Xi) are i.i.d.,
then (4.18) and (6.1) yield, choosing ji := (D + 1)i, say,

g1(y1) = E g
(
y1, Yj2 , . . . , Yjb

)
− µ = E f

(
y11, X2, . . . , X`

)
− µ = f1(y11). (14.13)

(With µ = 1/`!.) Thus, recalling (4.8),

Sn(g1) =
n∑
k=1

g1(Yk) =
n∑
k=1

f1(Xk). (14.14)

By Theorem 8.4, the assumption σ2 = 0 thus implies that the final sum in (14.14) is
independent of XD+1, for any n > D+ 1. Since (Xi) are independent, this is possible
only if f1(XD+1) = c a.s. for some constant c, i.e., if f1(x) = c for a.e. x ∈ (0, 1).

However, by (14.1), f
(
x,X2, . . . , X`

)
= 1 if and only if τ1 − 1 prescribed Xj are

in (0, x) and in a specific order, and the remaining `− τ1 ones are in (x, 1) and in a
specific order. Hence, (6.1) yields

f1(x) =
1

(τ1 − 1)! (`− τ1)!
xτ1−1(1− x)`−τ1 − µ. (14.15)

Since ` > 2, f1(x) is a non-constant polynomial in x.
This is a contradiction, and shows that σ2 > 0 also when d1 =∞. �

Remark 14.2. Although, σ2 > 0 for each pattern count Nn(τ ;D) with ` > 1, non-
trivial linear combinations might have σ2 = 0, and thus variance of lower order, even
in the unconstrained case. (Similarly to the case of patterns in strings in Section 13
and Appendix A.) In fact, for the unconstrained case, it is shown in [40] that for
permutations τ of a given length `, the `! counts Nn(τ) converge jointly, after nor-
malization as above, to a multivariate normal distribution of dimension only (`−1)2,
meaning that there is a linear space of dimension `!− (`− 1)2 of linear combinations
that have σ2 = 0. This is further analyzed in [18], where the spaces of linear combi-
nations of Nn(τ) having variance O

(
n2`−r

)
are characterized for each r = 1, . . . , `−1,

using the representation theory of the symmetric group. In particular, the highest
degeneracy, with variance Θ

(
n`+1

)
, is obtained for the sign statistic Un(sgn), where

sgn(x1, . . . , x`) is the sign of the permutation defined by the order of (x1, . . . , xn);
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in other words, Un(sgn) is the sum of the signs of the
(
n
`

)
subsequences of length

` of a random permutation π(n) ∈ Sn. For ` = 3, the asymptotic distribution of
n−(`+1)/2Un(sgn) is of the type in (A.19), see [21] and [40, Remark 2.7]. For larger
`, the asymptotic distribution can by the methods in Appendix A be expressed as
a polynomial of degree ` − 1 in infinitely many independent normal variables, as in
(A.17); however, we do not know any concrete such representation.

We expect that, in analogy with Example 8.6, for linear combinations of constrained
pattern counts, there are further possibilities to have σ2 = 0. We have not pursued
this, and we leave it as an open problem to characterize these cases with σ2 = 0;
moreover, it would also be interesting to extend the results of [18] characterizing
cases with higher degeneracies to constrained cases. �

15. Further comments

We discuss here briefly some possible extensions of the present work. We have not
pursued them, and they are left as open problems.

15.1. Mixing and Markov input. We have in this paper studied U -statistics based
on a sequence (Xi) that is allowed to be dependent, but only under the rather strong
assumption of m-dependence (partly motivated by our application to constrained U -
statistics). It would be interesting to extend the results to weaker assumptions on
(Xi), for example that it is stationary with some type of mixing property. (See e.g.
[12] for various mixing conditions and central limit theorems under some of them.)

Alternatively (or possibly as a special case of mixing conditions), it would be
interesting to consider (Xi) that form a stationary Markov chain (under suitable
assumptions).

In particular, it seems interesting to study constrained U -statistics under such
assumptions, since the mixing or Markov assumptions typically imply strong depen-
dence for sets of variables Xi with small gaps between the indices, but not if the gaps
are large.

Markov models are popular models for random strings. Substring counts, i.e.,
the completely constrained case of subsequence counts (see Remark 1.2) have been
treated for Markov sources by e.g. [53], [46] and [31].

A related model for random strings is a probabilistic dynamic source, see e.g. [31,
Section 1.1]. For substring counts, asymptotic normality has been shown by [11]. For
(unconstrained or constrained) subsequence counts, asymptotic results on mean and
variance are special cases of [10] and [31, Theorem 5.6.1]; we are not aware of any
results on asymptotic normality in this setting.

15.2. Generalized U-statistics. Generalized U -statistics (also called multi-sample
U -statistics are defined similarly to (3.1), but are based on two (for simplicity) se-
quences (Xi)

n1
1 and (Yj)

n2
1 of random variables, with the sum in (3.1) replaced by a

sum over all i1 < · · · < i`1 6 n1 and j1 < · · · < j`2 6 n2, and f now a function
of `1 + `2 variables. Limit theorems, including asymptotic normality, under suitable
conditions are shown in [61], and extensions to asymmetric cases are sketched in [35,
Example 11.24]. We do not know any extensions to m-dependent or constrained
cases, but we expect that such extensions are straightforward.
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Appendix A. Linear combinations for unconstrained subsequence counts

As promised in Section 13, we consider here unconstrained subsequence counts in
a random string Ξn with i.i.d. letters, normalized as in Theorem 13.1, and study
further the case of linear combinations of such normalized counts (with coefficients
not depending on n); in particular, we study in some detail such linear combinations
that are degenerate in the sense that the asymptotic variance σ2 = 0.

The results are based on the orthogonal decomposition introduced in the symmet-
ric case by Hoeffding [28], see also Rubin and Vitale [57]; this is extended to the
asymmetric case in [35, Chapter 11.2], but the treatment there uses a rather heavy
formalism, and we therefore give here a direct treatment in the present special case.
(This case is somewhat simpler than the general case since we only have to consider
finite-dimensional vector spaces below, but otherwise the general case is similar.) See
also [19], which contains a much deeper algebraic study of the asymptotic variance
σ2(f) and the vector spaces below, and in particular a spectral decomposition that
refines (A.9).

Fix A and the random string (ξi)
∞
1 . Assume, as in Section 13, that p(x) > 0 for

every x ∈ A. Let A := |A|, the number of different letters.
We fix also ` > 1 and consider all unconstrained subsequence counts Nn(w) with

|w| = `. There are A` such words w, and it follows from (13.2) and (13.1) that the
linear combinations of these counts are precisely the asymmetric U -statistics (3.1) for
all f : A` → R, by the relation∑

w∈A`
f(w)Nn(w) = Un(f). (A.1)

Note that Theorem 3.8 applies to every Un(f) and thus (3.18) and (3.19) hold for
some σ2 = σ2(f) > 0. (As said above, this case of Theorem 3.8 with i.i.d. Xi, i.e.,
the case m = 0, is treated also in [35, Corollary 11.20] and [37].)

Let V be the linear space of all functions f : A` → R. Thus dimV = A`. Similarly,
let W be the linear space of all functions h : A → R, i.e., all functions of a single
letter; thus dimW = A. Then V can be identified with the tensor product W⊗`, with
the identification

h1 ⊗ · · · ⊗ h`(x1, . . . , x`) =
∏̀
1

hi(xi). (A.2)

We regard V as a (finite-dimensional) Hilbert space with inner product

〈f, g〉V := E
[
f(Ξn)g(Ξn)

]
, (A.3)

and, similarly, W as a Hilbert space with inner product

〈h, k〉W := E
[
h(ξ1)k(ξ1)

]
. (A.4)

Let W0 be the subspace of W defined by

W0 := {1}⊥ = {h ∈W : 〈h, 1〉W = 0} = {h ∈W : Eh(ξ1) = 0}. (A.5)

Thus, dimW0 = A− 1.
For a subset B ⊆ A, let VB be the subspace of V spanned by all functions h1⊗· · ·⊗h`

as in (A.2) such that hi ∈ W0 if i ∈ B, and hi = 1 if i /∈ B. In other words, if we for
a given B define W ′i := W0 when i ∈ B and W ′i = R when i /∈ B, then

VB = W ′1 ⊗ · · · ⊗W ′` ∼= W
⊗|B|
0 . (A.6)
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It is easily seen that these 2A subspaces of V are orthogonal, and that we have an
orthogonal decomposition

V =
⊕
B⊆A

VB. (A.7)

Furthermore, for k = 0, . . . , `, define

Vk :=
⊕
|B|=k

VB. (A.8)

Thus, we have also an orthogonal decomposition (as in [28] and [57])

V =
⊕̀
k=0

Vk. (A.9)

Note that, by (A.6) and (A.8),

dimVB = (A− 1)|B|, dimVk =

(
`

k

)
(A− 1)k. (A.10)

Let ΠB and Πk =
∑
|B|=k ΠB be the orthogonal projections of V onto VB and Vk.

Then, for any f ∈ V , we may consider its components Πkf ∈ Vk.
First, V0 is the 1-dimensional space of constant functions in V . Trivially, if f ∈ V0,

then Un(f) is non-random, so VarUn(f) = 0 for every n, and σ2(f) = 0. More
interesting is that for any f ∈ V , we have

Π0f = E f(ξ1, . . . , ξ`) = µ. (A.11)

Next, it is easy to see that taking B = {i} yields the projection fi defined by (6.1),
except that Π{i}f is defined as a function on A`; to be precise,

Π{i}f(x1, . . . , x`) = fi(xi). (A.12)

Recalling (A.1), this leads to the following characterization of degenerate linear com-
binations of unconstrained subsequence counts.

Theorem A.1. With notations and assumptions as above, if f : A` → R, then the
following are equivalent.

(i) σ2(f) = 0.
(ii) fi = 0 for every i = 1, . . . , `.

(iii) Π1f = 0.

Proof. The equivalence (i) ⇐⇒ (ii) is a special case of Theorem 8.1; as said above,
this special case is also given in [37, Corollary 3.5].

The equivalence (ii)⇐⇒ (iii) follows by (A.8) and (A.12), which give

Π1f = 0 ⇐⇒ Π{i}f = 0 ∀i ⇐⇒ fi = 0 ∀i. (A.13)

�

Note that (A.8) and (A.12) also yield

Π1f(x1, . . . , x`) =
∑̀
i=1

Π{i}f(x1, . . . , x`) =
∑̀
i=1

fi(xi). (A.14)
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Corollary A.2. The A` different unconstrained subsequence counts Nn(w) with w ∈
A` converge jontly, after normalization as in (13.4), to a centered multivariate normal

distribution in RA` whose support is a subspace of dimension `(A− 1).

Proof. By Remark 3.10, we have joint convergence in Theorem 13.1 to some cen-

tered multivariate normal distribution in V = RA` . Let L be the support of this
distribution; then L is a subspace of V . Let f ∈ V . Then, by Theorems 13.1 and
A.1,

f ⊥ L ⇐⇒
∑
w∈A`

f(w)
Nn(w)− ENn(w)

n`−1/2
d−→ 0 ⇐⇒ σ2(f) = 0

⇐⇒ Π1f = 0 ⇐⇒ f ⊥ V1. (A.15)

Hence L = V1, and the result follows by (A.10). �

What happens in the degenerate case when Π1f = 0 and thus σ2(f) = 0? For
symmetric U -statistics, this was considered by Hoeffding [27] (variance) and Rubin
and Vitale [57] (asymptotic distribution), see also Dynkin and Mandelbaum [16].
Their results extend to the present asymmetric situation as follows. We make a final
definition of a special subspace of V : let

V>k :=
⊕̀
i=k

Vi = {f ∈ V : Πif = 0 for i = 0, . . . , k − 1}. (A.16)

In particular, V>1 consists of all f with E f(Ξn) = 0. Note also that f∗ in (6.3) by
(A.11) and (A.14) equals f −Π0f −Π1f ∈ V>2.

Lemma A.3. Let 0 6 k 6 `. If f ∈ V>k, then EUn(f)2 = O
(
n2`−k

)
. Moreover, if

f ∈ V>k \ V>k+1, then EUn(f)2 = Θ
(
n2`−k

)
.

Proof. This is easily seen using the expansion (4.3) without the constraint D, and
similar to the symmetric case in [27]; cf. also (in the more complicated m-dependent
case) the cases k = 1 in (4.1) and k = 2 in (6.10). We omit the details. �

We can now state a general limit theorem that also include degenerate cases.

Theorem A.4. Let k > 1 and suppose that f ∈ V>k. Then

nk/2−`Un(f)
d−→ Z, (A.17)

where Z is some polynomial of degree k in independent normal variables (possibly
infinitely many). Moreover, Z is not degenerate unless f ∈ V>k+1.

Proof. This follows by [35, Theorem 11.19]. As noted in [35, Remark 11.21], it can
also be reduced to the symmetric case in [57] by the following trick. Let (ηi)

∞
1 be an

i.i.d. sequence, independent of (ξi)
∞
1 , with ηi ∼ U(0, 1); then

Un
(
f ; (ξi)

) d
=

∑*

i1,...,i`6n

f
(
ξi1 , . . . , ξi`

)
1{ηi1 < · · · < ηi`}, (A.18)

where
∑∗ denotes summation over all distinct i1, . . . , i` ∈ [n], and the sum in (A.18)

can be regarded as a symmetric U -statistic based on (ξi, ηi)
∞
1 . The result (A.17) then

follows by [57]. �
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Remark A.5. The case k = 1 in Theorem A.4 is just a combination of Theorem 13.1
(in the unconstrained case) and Theorem A.1; then Z is simply a normal variable.
When k = 2, there is a canonical representation (where the number of terms is finite
or infinite)

Z =
1

2(`− 2)!

∑
i

λi(ζ
2
i − 1), (A.19)

where ζi are i.i.d. N(0, 1) random variables and λi are the non-zero eigenvalues
(counted with multiplicity) of a compact self-adjoint integral operator on L2(A ×
[0, 1], ν×dt), where ν := L(ξ1) is the distribution of a single letter and dt is Lebesgue
measure; the kernel K of this integral operator can be constructed from f by applying
[35, Corollary 11.5(iii)] to the symmetric U -statistic in (A.18). We omit the details,
but note that in the particular case k = ` = 2, this kernel K is given by

K
(
(x, t), (y, u)

)
= f(x, y)1{t < u}+ f(y, x)1{t > u}, (A.20)

and thus the integral operator is

h 7→ Th(x, t) := E
∫ t

0
f(ξ1, x)h(ξ1, u) du+ E

∫ 1

t
f(x, ξ1)h(ξ1, u) du. (A.21)

When k > 3, the limit Z can be represented as a multiple stochastic integral [35,
Theorem 11.19], but we do not know any canonical representation of it. See also [57]
and [16]. �

We give two simple examples of limits in degenerate cases; in both cases k =
2. The second example shows that although the space V has finite dimension, the
representation (A.19) might require infinitely many terms. (Note that the operator
T in (A.21) acts in an infinite-dimensional space.)

Example A.6. Let Ξn be a symmetric binary string, i.e., A = {0, 1} and p(0) =
p(1) = 1/2. Consider

Nn(00) +Nn(11)−Nn(01)−Nn(10) = Un(f), (A.22)

with

f(x, y) := 1{xy = 00}+ 1{xy = 11} − 1{xy = 01} − 1{xy = 10}
=
(
1{x = 1} − 1{x = 0}

)(
1{y = 1} − 1{y = 0}

)
. (A.23)

For convenience, we change notation and consider instead the letters ξ̂i := 2ξi − 1 ∈
{±1}; then f corresponds to

f̂(x̂, ŷ) := x̂ŷ. (A.24)

Thus

Un
(
f ; (ξi)

)
= Un

(
f̂ ; (ξ̂i)

)
=

∑
16i<j6n

ξ̂iξ̂j =
1

2

( n∑
i=1

ξ̂i

)2

−
n∑
i=1

ξ̂2i


=

1

2

(
n∑
i=1

ξ̂i

)2

− n

2
. (A.25)

By the central limit theorem, n−1/2
∑n

i=1 ξ̂i
d−→ ζ ∼ N(0, 1), and thus (A.25) implies

n−1Un(f)
d−→ 1

2(ζ2 − 1). (A.26)
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This is an example of (A.17), with k = ` = 2 and limit given by (A.19), in this case
with a single term in the sum and λ1=1.

Note that in this example, the function f is symmetric, so (A.22) is an example
of a symmetric U -statistic and thus the result (A.26) is also an example of the limit
result in [57]. �

Example A.7. Let A = {a, b, c, d}, with ξi having the symmetric distribution p(x) =
1/4 for each x ∈ A. Consider

Nn(ac)−Nn(ad)−Nn(bc) +Nn(bd) = Un(f), (A.27)

with, writing 1y(x) := 1{x = y},

f(x, y) :=
(
1a(x)− 1b(x)

)(
1c(x)− 1d(x)

)
(A.28)

Then, Π0f = Π1f = 0 by symmetry, so f ∈ V>2 = V2 (since ` = 2).
Consider the integral operator T on L2(A × [0, 1]) defined by (A.21). Let h be

an eigenfunction with eigenvalue λ 6= 0, and write hx(t) := h(x, t). The eigenvalue
equation Th = λh then is equivalent to, using (A.21) and (A.28),

λha(t) =
1

4

∫ 1

t

(
hc(u)− hd(u)

)
du, (A.29)

λhb(t) =
1

4

∫ 1

t

(
−hc(u) + hd(u)

)
du, (A.30)

λhc(t) =
1

4

∫ t

0

(
ha(u)− hb(u)

)
du, (A.31)

λhd(t) =
1

4

∫ t

0

(
−ha(u) + hb(u)

)
du. (A.32)

These equations hold a.e., but we can redefine hx(t) by these equations so that they
hold for every t ∈ [0, 1]. Moreover, although originally we assume only hx ∈ L2[0, 1],
it follows from (A.29)–(A.32) that the functions hx(t) are continuous in t, and then
by induction that they are infinitely differentiable on [0, 1]. Note also that (A.29) and
(A.30) yield hb(t) = −ha(t), and similarly hd(t) = −hc(t). Hence, we may reduce the
system to

λha(t) =
1

2

∫ 1

t
hc(u) du, (A.33)

λhc(t) =
1

2

∫ t

0
ha(u) du. (A.34)

By differentiation, for t ∈ (0, 1),

h′a(t) = − 1

2λ
hc(t), (A.35)

h′c(t) =
1

2λ
ha(t). (A.36)

Hence, with ω := 1/(2λ),

h′′c (t) = −ω2hc(t). (A.37)
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Furthermore, (A.34) yields hc(0) = 0, and thus (A.37) has the solution (up to a
constant factor that we may ignore)

hc(t) = sinωt = sin
t

2λ
. (A.38)

By (A.36), we then obtain

ha(t) = cosωt = cos
t

2λ
. (A.39)

However, (A.33) also yields ha(1) = 0 and thus we must have cos(1/2λ) = 0; hence

λ =
1

(2N + 1)π
, N ∈ Z. (A.40)

Conversely, for every λ of the form (A.40), the argument can be reversed to find an
eigenfunction h with eigenvalue λ. It follows also that all these eigenvalues are simple.
Consequently, Theorem A.4 and (A.19) yield

n−1Un(f)
d−→ 1

2π

∞∑
N=−∞

1

2N + 1
(ζ2N − 1) =

1

2π

∞∑
N=0

1

2N + 1
(ζ2N − ζ2−N−1) (A.41)

where, as above, ζN are i.i.d. and N(0, 1). A simple calculation, using the product
formula for cosine [17, §12], [47, 4.22.2], shows that the moment generating function
of the limit distribution Z in (A.41) is

E esZ =
1

cos1/2(s/2)
, |Re s| < π. (A.42)

It can be shown that Z
d
= 1

2

∫ 1
0 B1(t) dB2(t) if B1(t) and B2(t) are two independent

standard Brownian motions; this is, for example, a consequence of (A.42) and the
calculation, using [13] or [54, page 445] for the final equality,

E es
∫ 1
0 B1(t) dB2(t) = EE

[
es

∫ 1
0 B1(t) dB2(t) | B1

]
= E e

s2

2

∫ 1
0 B1(t)2 dt

= cos−1/2(s), |Re s| < π/2. (A.43)

We omit the details, but note that this representation of the limit Z is related to
the special form (A.28) of f ; we may, intuitively at least, interpret B1 and B2 as
limits (by Donsker’s theorem) of partial sums of 1a(ξi) − 1b(ξi) and 1c(ξi) − 1d(ξi).

In fact, in this example it is possible to give a rigorous proof of n−1Un(f)
d−→ Z by

this approach; again we omit the details. �
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decomposable random variables with applications to random graphs. J. Combin.
Theory Ser. B 47 (1989), no. 2, 125–145.

[4] Edward A. Bender & Fred Kochman: The distribution of subword counts is
usually normal. European J. Combin. 14 (1993), no. 4, 265–275.

[5] Patrick Billingsley: The invariance principle for dependent random variables.
Trans. Amer. Math. Soc. 83 (1956), 250–268.



50 SVANTE JANSON

[6] Gunnar Blom: Some properties of incomplete U -statistics. Biometrika 63 (1976),
no. 3, 573–580.
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