
UNCOVERING A GRAPH

SVANTE JANSON

Abstract. Uncover the vertices of a given graph, deterministic or random, in
random order; we consider both a discrete-time and a continuous-time version.
We study the evolution of the number of visible edges, and show convergence
after normalization to a Gaussian process. This problem was studied by Hackl,
Panholzer, and Wagner for the case when the graph is a random labelled tree;
we generalize their result to more general graphs, including both other classes of
random and non-random trees, and denser graphs. The results are similar in all
cases, but some differences can be seen depending on the size of the average degree
and of the variance of the vertex degrees.

1. Introduction

Let G be a (finite) graph, deterministic or random, and uncover its vertices one
by one, in uniformly random order; we say that a vertex becomes visible when it
is uncovered. This yields a growing sequence of (random) induced subgraphs of G,
and we are interested in the evolution of this sequence. In particular, we study in
this paper the evolution of the number of edges in these subgraphs, regarded as a
stochastic process. More precisely, we consider a sequence of graphs Gn with order
|Gn| “ n, and study the asymptotic behaviour of this stochastic process as n Ñ 8,
under suitable conditions. (See Section 2 for more details, and for definitions of
notation used below.) The methods extend to the number of other small subgraphs,
see Section 9.

This question (among others) was studied by Hackl, Panholzer and Wagner [12]
for the case when G is a random labelled tree. They showed that the stochastic
process given by the number of visible edges, after suitable rescaling, converges
to a continuous Gaussian process, which resembles a Brownian bridge but with
a somewhat different distribution; see Example 4.1. Our main result is that this
extends to a wide class of deterministic and random trees and graphs, see Section 3.

Remark 1.1. If G is a random graph with vertex set rns “ t1, . . . , nu, we may
alternatively consider uncovering the vertices in the given order. (Actually, this
is the formulation used in [12].) For a random graph with a distribution that is
invariant under permutations of the vertices (and in particular for the random tree
in [12]), this is obviously equivalent to taking the vertices in random order, and we
will for convenience use only the formulation above. △

We will consider two versions of the problem. In the first, the vertices are uncov-
ered at fixed times (as in [12]); in the second, they are uncovered at random times
which are independent for different vertices. The two versions are related by a simple
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random change of time. We find it interesting to give results for both versions, and
see their similarities and differences under different conditions on the graphs Gn.

The second version means that at every given time t, each vertex is uncovered
with some probability p “ pptq independently of all other vertices; in other words,
this is site percolation on the graph G, regarded as a stochastic process where p
increases from 0 to 1. There is a large literature on site percolation on various finite
and infinite graphs, see e.g. Grimmett [10]; much of it concerns global properties,
but we do not know any references studying the local properties studied here.

Our method of analysis is based on the second version, with random times. (The
method in [12] for random labelled trees is very different, and is based on a remark-
able exact formula for a multivariate generating function.) The main part of our
proofs are done for the case when the graph G is deterministic and the uncovering
times are random. By standard methods we then randomize and get results for
random G, and also derandomize and get results for fixed uncovering times.

Our method is a variant of methods used since a long time for the study of Erdős–
Rényi random graphs. Recall that Erdős and Rényi in their seminal papers [8; 9]
on random graphs considered the sequence of graphs obtained by uncovering the
edges of the complete graph Kn in random order; the problem studied here is thus
the “dual” vertex analogue (for an arbitrary graph G). As is well known, it is often
easier to consider the random time version of the Erdős–Rényi random graph process,
where edges are added (or uncovered) at independent, uniform random times. (This
process was introduced by Stepanov [30, 31], although there with exponential times.)
See further e.g. [23, p. 4]. We will here use a vertex version of a method used for
these random graph processes in [15; 16]; the method is based on a martingale limit
theorem for continuous-time martingales by Jacod and Shiryaev [14].

Notation and some other preliminaries are given in Section 2. The main theorems
are stated in Section 3. A number of examples are given in Section 4, both for
their own sake and to illustrate various features of the results. Proofs are given in
Sections 5–7; Section 5 contain further preliminaries: Section 6 contains the basic
technical work including a decomposition of the continuous-time process using some
martingales that are defined and studied there. The proofs are then completed in a
rather straightforward manner in Section 7. Section 8 gives, as a corollary, for the
case of trees a result on the number of components in the visible subgraph. Section 9
briefly discusses extensions to the number of other small subgraphs.

The appendices give some background results used in the main part of the paper,
for which we have not found any references; the results in the appendices are stated
in rather general forms for future reference. Appendix A shows how results for
the discrete-time version can be obtained from continuous-time result. Appendix B
shows results on vertex degrees for some random trees that are used in examples in
Section 4.

Acknowledgement. I thank Stephan Wagner for interesting discussions.

2. Notation and preliminaries

2.1. General (mainly standard) notation. We denote the size (number of ele-
ments) of a (finite) set A by |A|.

If H and G are graphs, then hompH,Gq denotes the number of homomorphisms
H Ñ G, i.e., the number of (labelled, not necessarily induced) copies of H in G.
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Cn is a cycle with n vertices, Pn is a path with n vertices, Kℓ,m is a complete
bipartite graph with ℓ ` m vertices.

C denotes unspecified constants that may vary from one occurrence to the next.
Unspecified limits are as n Ñ 8.
We use standard O and o notation; furthermore, an ! bn means the same as

an “ opbnq.

We use
p

ÝÑ for convergence in probability, and
d

ÝÑ for convergence in distribution
of random variables. Moreover, if Xn is a sequence of random variables and an
is a sequence of positive numbers, then Xn “ oppanq means that Xn{an

p
ÝÑ 0

as n Ñ 8, and Xn “ Oppanq means that for every ε ą 0, there exists C ă 8

such that P
`

|Xn| ą Can
˘

ă ε for all n. (This is called that Xn{an is bounded in
probability or tight.) For stochastic processes pXnptqqtPJ defined on some interval
J , we write Xnptq “ o˚

ppanq and Xnptq “ O˚
ppanq when suptPJ |Xnptq| “ oppanq and

suptPJ |Xnptq| “ Oppanq, respectively.
LpXq denotes the distribution of a random variable X.
W ˝ptq denotes a Brownian bridge, i.e., a continuous Gaussian process on r0, 1s

with mean 0 and covariance function

Cov
`

W ˝psq,W ˝ptq
˘

“ sp1 ´ tq, 0 ď s ď t ď 1. (2.1)

For typographical reasons, we write vectors as row vectors. The transpose of v is
denoted v1. The covariance matrix CovpXq of a random vector X, for simplicity as-
sumed centred, is thus E pXX 1q, and similarly CovpX,Y q “ E pXY 1q for two centred
random vectors X and Y .

2.2. Notation for our problem. Let G be a deterministic or random graph with
vertex set V pGq “ rns “ t1, . . . , nu and edge set E “ EpGq. (Thus the number of
vertices is n and the number of edges is |E|.) As usual, we denote (potential) edges
by ij, where i, j P rns (with i ‰ j) are the endpoints. We sometimes write i „ j
instead of ij P E.

In the first version (discrete-time) of our problem, we uncover the vertices in
uniformly random order as v1, . . . , vn; we say that vertex vk becomes visible at time
k, and we let 9Lk be the number of edges visible at time k (meaning that both
endpoints are visible),1 i.e.,

9Lk :“ |
␣

pi, jq : 1 ď i ă j ď k and vivj P E
(

|, 0 ď k ď n. (2.2)

In the second version (random times), we instead give each vertex i a random time
Ti when it becomes visible; we assume that T1, . . . , Tn are independent and have the
uniform distribution Up0, 1q. We let Lptq be the number of edges visible at time t,
i.e.,

Lptq :“ |
␣

ij P E : Ti ď t and Tj ď t
(

|, 0 ď t ď 1. (2.3)

In the case when G is a random graph, we assume that the random permutation
v1, . . . , vn and the random times T1, . . . , Tn are independent of G.

We note that there is a natural coupling of the two versions. The random times
T1, . . . , Tn are a.s. distinct, and we will tacitly assume in the sequel that this is
the case. We may then let vk be the kth vertex that becomes visible; this yields

1To distinguish the two versions, we use a dot in our notation 9L for the discrete-time process,

and also later for continuous-time limits 9Z of such processes, and other quantities related to 9L.
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a uniformly random permutation of the vertices as required above. We will always
assume that we have coupled the two versions in this way.

To express this coupling in formulas, let

Nptq :“
n
ÿ

i“1

1tTi ď tu, 0 ď t ď 1, (2.4)

i.e., the number of vertices visible at time t. Furthermore, let

τk :“ inftt : Nptq ě ku, k “ 1, . . . , n, (2.5)

i.e., the time when the kth vertex becomes visible. Then

9Lk “ Lpτkq. (2.6)

We will do most of the analysis for Lptq, and then use (2.6) to derive corresponding

results for 9Lk.
We introduce some further notation. We denote the degree of vertex i by di, and

let as usual

∆ :“ max
1ďiďn

di. (2.7)

(Although we will for emphasis also write maxi di sometimes.) We further define

d̄ :“
1

n

n
ÿ

i“1

di, (2.8)

χ :“
1

n

n
ÿ

i“1

d2i , (2.9)

i.e., the first and second moments of the degree of a randomly chosen vertex in G.
In particular, we note that

|E| “
1

2

n
ÿ

i“1

di “
nd̄

2
. (2.10)

Our theorems are stated as limits for a sequence Gpnq of graphs as above, with
V pGpnqq “ rns. We then add a superscript pnq to the notation for all variables relating

to Gpnq; however, this may be omitted when it is clear from the context.

2.3. The Skorohod topology. We state our main results as convergence of (con-
tinuous-time) stochastic processes, defined on r0, 1s. In the proofs we will also show
auxiliary results with convergence of stochastic processes defined on the half-open
interval r0, 1q. All our continuous-time stochastic processes will be right-continuous
with left limits everywhere; such functions are often called càdlàg.

We denote left limits by fpt´q :“ limsÕt fpsq, and jump sizes by ∆fptq :“ fptq ´

fpt´q.
In general, for any interval J Ď R, let DpJq be the space of càdlàg functions

f : J Ñ R. We equip DpJq, as usual, with the Skorohod topology ; a general definition
is given in [16, §2] but is a bit technical, and for our purposes it suffices to note that
the topology is Polish (i.e., can be defined by a separable and complete metric), and
that if fn, f P DpJq (n P N) and f is continuous, then fn Ñ f in DpJq (i.e., in
the Skorohod topology) if and only if fn Ñ f uniformly on every compact subset
of J . (All limits considered below will be continuous; thus the Skorohod topology
can be seen as a substitute for the uniform topology, which is non-separable and
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has technical problems with measurability, see [4, §18].) See also e.g. [4; 14; 24] for
details. (These references treat only J “ r0, 1s or J “ r0,8q; the latter is equivalent
to r0, 1q by a change of time).

More generally, we may also define the space DpJq for vector-valued functions;
this enables us to talk about joint convergence in DpJq of several processes.

Note that convergence in Dr0, 1s is substantially stronger than convergence in
Dr0, 1q. We will use both. When nothing is said explicitly, we mean convergence in
Dr0, 1s.

3. Main results

We state our main results in this section. Proofs are given in Section 7. We use
the notation in Section 2; in particular, recall that Epnq :“ EpGpnqq. We state the
results in three different theorems, with different conditions on the vertex degrees.
Actually, the first two theorems (Theorems 3.1 and 3.5) are special cases of the third
theorem (Theorem 3.6), but we have chosen to present (and prove) them separately,
in order to illustrate different features of the results (and proofs); this also gives
slightly simpler statements of the first two theorems.

We begin with the sparse case, with |Epnq| “ Opnq. This includes the random
labelled tree studied in [12]. Moreover, the sparse case is some sense the most
interesting case, where (as we will see below) different contributions to the result
turn out to be of the same order, and therefore interact.

Theorem 3.1. Let Gpnq be a sequence of deterministic or random graphs with
V pGpnqq “ rns. Assume also that for some (non-random) constants d˚, χ˚ P r0,8q,
we have, as n Ñ 8,

d̄pnq :“
1

n

n
ÿ

i“1

d
pnq

i “
2|Epnq|

n

p
ÝÑ d˚, (3.1)

χpnq :“
1

n

n
ÿ

i“1

`

d
pnq

i

˘2 p
ÝÑ χ˚, (3.2)

n´1{2 max
i

d
pnq

i
p

ÝÑ 0. (3.3)

(i) Then, in Dr0, 1s,

n´1{2
`

9L
pnq

tntu ´ t2|Epnq|
˘ d

ÝÑ 9Zptq, (3.4)

where 9Zptq is a continuous Gaussian process on r0, 1s with E 9Zptq “ 0 and
covariance function, for 0 ď s ď t ď 1,

Cov
`

9Zpsq, 9Zptq
˘

“ 9σps, tq :“
d˚

2
s2p1 ´ tq2 ` γ˚s

2tp1 ´ tq, (3.5)

where γ˚ :“ χ˚ ´ d2˚.
(ii) Similarly, in Dr0, 1s,

n´1{2
`

Lpnqptq ´ t2|Epnq|
˘ d

ÝÑ Zptq, (3.6)

where Zptq is a continuous Gaussian process on r0, 1s with EZptq “ 0 and
covariance function, for 0 ď s ď t ď 1,

Cov
`

Zpsq, Zptq
˘

“ σps, tq :“
d˚

2
s2p1 ´ tq2 ` χ˚s

2tp1 ´ tq. (3.7)
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The condition (3.3) on the maximum degree is necessary, see Example 4.9.

Remark 3.2. Note that the left-hand sides of (3.1) and (3.2) are the first and

second moments of the degree distribution in Gpnq; thus our assumptions say that
these moments are asymptotically d˚ and χ˚, respectively; as a consequence the
constant γ˚ in (3.5) is the asymptotic variance of the degree distribution. △

A special case is when Gpnq is a tree (as in [12]). Then |Epnq| “ n ´ 1, and thus
(3.1) always holds with d˚ “ 2, so we only have to verify (3.2) and (3.3); we state
this as a corollary.

Corollary 3.3. Let Gpnq be a sequence of deterministic or random trees with
V pGpnqq “ rns. Assume also that (3.2) and (3.3) hold. Then (3.4)–(3.5) and (3.6)–

(3.7) hold, with d˚ “ 2, γ˚ “ χ˚ ´ 4, and |Epnq| “ n ´ 1 (which may be replaced by
n).

Remark 3.4. We see from (3.5), and in more detail from the proof in Section 7, that

the limit process 9Zptq in (3.4) can be regarded as consisting of two components: the
second term in 9σps, tq comes from the randomness of the degrees of the vertices that
are visible and first term comes from additional randomness in the structure of the
visible subgraph. In continuous time, the last term in σps, tq in (3.7) includes also a
term d2˚s

2tp1´tq coming from the randomness of the number of visible vertices, which
contributes a third component to the limit. More precisely, the proofs show that for

finite n, we can decompose the processes 9L
pnq

tntu ´ t2|Epnq| and Lpnqptq ´ t2|Epnq| into

two or three components (+ smaller error terms) with the origins just described.
Note that in the sparse case these three contributions to the processes are of the
same order, unlike in other cases discussed below; this makes the sparse case more
complicated, and therefore is a sense more interesting, than more dense cases. △

We next consider regular graphs. The statement below includes both the sparse
case and denser cases. We state the regular case separately, since the case of regular
graphs is special, and somewhat simpler than others, because there is no randomness
in the degrees of the visible vertices, and thus one of the three contributions discussed
in Remark 3.4 disappears. The sparse case (with the degree dpnq bounded, which is

essentially equivalent to a constant degree dpnq) is a special case of Theorem 3.1, but
the conclusions are written in a somewhat different (but equivalent) form. In denser

cases, with dpnq Ñ 8, note that the normalizing factors in (3.8) and (3.10) are of dif-
ferent orders. This is because in the continuous-time version, the third contribution
discussed in Remark 3.4 (which does not appear for the discrete-time version) is of
larger order than the others, and thus dominates the limit. This also means that in
the dense case, the limit for the continuous-time version (Theorem 3.5(iii)) is rather
uninteresting and determined solely by the number of visible vertices.

SJ

Theorem 3.5. Let Gpnq be a sequence of deterministic or random graphs with
V pGpnqq “ rns. Assume also that each Gpnq is regular, with (non-random) degree

dpnq ě 1, and that dpnq “ opnq.

(i) Then, in Dr0, 1s,

pndpnqq´1{2
`

9L
pnq

tntu ´ t2|Epnq|
˘ d

ÝÑ 9Zptq, (3.8)
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where 9Zptq is a continuous Gaussian process on r0, 1s with E 9Zptq “ 0 and
covariance function, for 0 ď s ď t ď 1,

Cov
`

9Zpsq, 9Zptq
˘

“ 9σps, tq :“
1

2
s2p1 ´ tq2. (3.9)

(ii) If furthermore dpnq Ñ d˚ ď 8, then, in Dr0, 1s,

pn1{2dpnqq´1
`

Lpnqptq ´ t2|Epnq|
˘ d

ÝÑ Zptq, (3.10)

where Zptq is a continuous Gaussian process on r0, 1s with EZptq “ 0 and
covariance function, for 0 ď s ď t ď 1,

Cov
`

Zpsq, Zptq
˘

“ σps, tq :“
1

2d˚

s2p1 ´ tq2 ` s2tp1 ´ tq. (3.11)

(iii) In particular, if dpnq Ñ 8, then (3.10) holds with Zptq “ tW ˝ptq for a Brownian
bridge W ˝ptq, and thus, for 0 ď s ď t ď 1,

Cov
`

Zpsq, Zptq
˘

“ s2tp1 ´ tq. (3.12)

The condition dpnq “ opnq is necessary in Theorem 3.5, at least for part (i), see
Example 4.9; see also Example 4.11 where this condition is violated and a non-normal
limit appears.

Finally, we give a more general version. It is easily seen that Theorems 3.1 and 3.5
are special cases, with βn “ n1{2 and βn “ pndpnqq1{2, respectively. We see also that
the sizes of the first two contributions discussed in Remark 3.4 are governed by λ1

and λ2 in (3.13)–(3.14); any of these may vanish (see Example 4.8), and then only the
other contributes to the limit for the discrete-time version. Similarly, for the continu-
ous-time version, the third contribution is governed by α. We will see in Example 4.8
that more or less arbitrary combinations of λ1, λ2, and α may occur. (However, see
Remark 3.7 below.) Hence, different combinations of the three components discussed
in Remark 3.4 may dominate in different examples. In particular, in dense cases, for
the continuous-time version we typically have α “ 8, and then (Theorem 3.6(ii)b) we
have, as in the regular case, a rather uninteresting limit determined by the number of
visible vertices, which dominates the contributions coming from the structure of the
visible subgraph. Here, however, the condition for this is a little more complicated.

Theorem 3.6. Let Gpnq be a sequence of deterministic or random graphs with
V pGpnqq “ rns, and let βn be a sequence of positive constants with βn “ opnq. Assume
also that for some (non-random) constants λ1, λ2 P r0,8q, we have, as n Ñ 8,

2|Epnq|

β2
n

“
nd̄pnq

β2
n

p
ÝÑ λ1, (3.13)

1

β2
n

n
ÿ

i“1

`

d
pnq

i ´ d̄pnq
˘2 p

ÝÑ λ2, (3.14)

β´1
n max

i
d

pnq

i
p

ÝÑ 0. (3.15)

(i) Then, in Dr0, 1s,

β´1
n

`

9L
pnq

tntu ´ t2|Epnq|
˘ d

ÝÑ 9Zptq, (3.16)
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where 9Zptq is a continuous Gaussian process on r0, 1s with E 9Zptq “ 0 and
covariance function, for 0 ď s ď t ď 1,

Cov
`

9Zpsq, 9Zptq
˘

“ 9σps, tq :“
λ1

2
s2p1 ´ tq2 ` λ2s

2tp1 ´ tq. (3.17)

(ii) Suppose further that, for some non-random constant α P r0,8s,

n1{2d̄pnq{βn
p

ÝÑ α. (3.18)

(a) If 0 ď α ă 8, then, in Dr0, 1s,

β´1
n

`

Lpnqptq ´ t2|Epnq|
˘ d

ÝÑ Zptq, (3.19)

where Zptq is a continuous Gaussian process on r0, 1s with EZptq “ 0 and
covariance function, for 0 ď s ď t ď 1,

Cov
`

Zpsq, Zptq
˘

“ σps, tq :“
λ1

2
s2p1 ´ tq2 ` pλ2 ` α2qs2tp1 ´ tq. (3.20)

(b) If α “ 8, then, in Dr0, 1s,

pn1{2d̄pnqq´1
`

Lpnqptq ´ t2|Epnq|
˘ d

ÝÑ Zptq, (3.21)

where Zptq “ tW ˝ptq for a Brownian bridge W ˝ptq, and thus, for 0 ď s ď

t ď 1,

Cov
`

Zpsq, Zptq
˘

“ σps, tq :“ s2tp1 ´ tq. (3.22)

The condition (3.15) on the maximum degree is necessary for Theorem 3.6(i) and
(ii)a, see Example 4.9.

Remark 3.7. The conditions (3.13) and (3.18) imply

d̄pnq p
ÝÑ α2{λ1 (3.23)

unless α “ λ1 “ 0. Hence, we can have λ1 ą 0 and α “ 0 only when d̄pnq p
ÝÑ 0,

which is a rather extreme (and perhaps less interesting) case when necessarily most
vertices are isolated.

Furthermore, the condition (3.14) may also be written

1

β2
n

´

n
ÿ

i“1

pd
pnq

i q2 ´ npd̄pnqq2
¯

p
ÝÑ λ2. (3.24)

In particular, when d̄pnq p
ÝÑ 0, and assuming (3.13), (3.14) is equivalent to

1

β2
n

n
ÿ

i“1

pd
pnq

i q2
p

ÝÑ λ2. (3.25)

It follows that in the case d̄pnq p
ÝÑ 0, we must have λ2 ě λ1. In particular, if λ1 ą 0

and α “ 0, then λ2 ě λ1 ą 0. △

Remark 3.8. The limit processes 9Zptq and Zptq in the theorems above all are
centred Gaussian, with covariance functions of the type CovpZpsq, Zptqq “ s2φptq
(0 ď s ď t ď 1), where φptq “ ap1 ´ tq2 ` btp1 ´ tq for some a, b ě 0. As noted in a
special case in [12], this means that they can be represented as

φptqW
`

t2{φptq
˘

, 0 ď t ă 1, (3.26)

where W ptq is a standard Brownian motion (Wiener process). △
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Remark 3.9. For the discrete-time version 9Lk, we thus extend it to continuous time
by considering 9Lttu, t P r0, ns; we then scale time to r0, 1s and consider 9Ltntu in our
theorems. As is well known from many other problems, an alternative would be to
extend 9Lk to r0, ns by linear interpolation to a continuous process 9Lt as in [12]; it

follows immediately that the limit results above hold also if we replace 9Ltntu by 9Lnt;

moreover, then the results could be stated as convergence (after rescaling) of 9Lnt

in the space Cr0, 1s of continuous functions on r0, 1s, since for continuous processes,
convergence in Cr0, 1s is equivalent to the convergence in Dr0, 1s considered in the
present paper. (We have chosen to use Dr0, 1s and the formulations above with
9Ltntu, at least partly because it is convenient to use discontinuous processes in our
proofs.) △

4. Examples

In our first examples, Gpnq is a tree, so we can use Corollary 3.3.

Example 4.1. Let us first revisit the case studied by Hackl, Panholzer and Wagner
[12], where Gpnq is a random labelled tree. It is well known that the asymptotic
degree distribution is 1 ` Pop1q, and it is easily seen that also all moments converge

(given Gpnq, in probability), see Remark B.4. In particular, (3.2) holds with χ˚ “

E pξ ` 1q2 “ 5, and (3.3) holds as a consequence of the convergence of the third
moment of the degree distribution, or by the argument in Section B.2. (In fact, more

strongly, ∆pnq “ opplog nq, and a very precise result is known, see [26] and [7, Remark
3.14].) See also Example 4.2 for a generalization. Consequently, Corollary 3.3 shows

that (3.4)–(3.7) hold, with γ˚ “ χ˚ ´4 “ 1; thus the limits Zptq and 9Zptq are centred
Gaussian processes with covariance functions

Cov
`

9Zpsq, 9Zptq
˘

“ s2p1 ´ tq2 ` s2tp1 ´ tq “ s2p1 ´ tq, (4.1)

Cov
`

Zpsq, Zptq
˘

“ s2p1 ´ tq2 ` 5s2tp1 ´ tq. (4.2)

The limit 9Zptq with covariance function (4.1) was found by [12, Theorem 3], which
inspired the present work. △

Example 4.2. More generally, let Gpnq be a conditioned Galton–Watson tree with n
vertices, defined by conditioning a Galton–Watson tree T with offspring distributed
as a random variable ξ with values in t0, 1, . . . u, see Appendix B.2 and e.g. [20].

Assume that E ξ “ 1 and 0 ă Var ξ ă 8. Then the asymptotic outdegree distri-
bution is given by ξ [20, Theorem 7.11], and the asymptotic degree distribution is
thus 1 ` ξ. We will verify in Appendix B.2 that (3.2) and (3.3) hold, with

χ˚ “ E pξ ` 1q2 “ Var ξ ` 4, (4.3)

Corollary 3.3 thus applies and yields (3.4)–(3.7), with

γ˚ “ χ˚ ´ 4 “ Var ξ. (4.4)

Some well known examples of conditioned Galton–Watson trees are

(i) The random labelled tree in Example 4.1, with ξ „ Pop1q and γ˚ “ 1.
(ii) The random binary tree, with ξ „ Binp2, 12q and γ˚ “ 1

2 .
(iii) The random ordered (plane) tree, with ξ „ Gep1{2q and γ˚ “ 2.

See e.g. [2], [6], [7], and [20, Section 10], where also further examples are given, △
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Example 4.3. Let Gpnq be a random binary search tree. All outdegrees are 0, 1, or
2, and thus all degrees are 1, 2, or 3. The proportion of vertices of each type tends
in probability to 1{3, see e.g. [5, Theorem 2], [3, Section 3.3], and [13, Example 6.2].
Since there is only a finite number of possible vertex degrees, this implies immediately
that (3.2) holds with χ˚ “ p1 ` 4 ` 9q{3 “ 14{3. Furthermore, (3.3) is trivial.
Consequently, Corollary 3.3 shows that (3.4)–(3.7) hold, with γ˚ “ χ˚ ´4 “ 2{3. △

Example 4.4. Let Gpnq be a random recursive tree. The asymptotic outdegree
distribution is geometric Gep1{2q, just as for random ordered trees in Example 4.2,
see e.g. [25], [3, Section 3.2], [18, Theorem 1], [7, Theorem 6.8], and [13, Example
6.1]. Furthermore, if ξ P Gep1{2q, then (3.2) and (3.3) hold, with χ˚ “ E pξ ` 1q2 “

Var ξ`4 “ 6; see Appendix B.3 for a detailed verification. (In fact, ∆pnq “ Opplog nq,
see [7, Theorem 6.12] for a precise result.) Consequently, Corollary 3.3 applies, with
γ˚ “ Var ξ “ 2, and yields (3.4)–(3.7) with exactly the same limits as for the random
ordered tree in Example 4.2. (This coincidence is thus because the two types of
random trees have the same asymptotic degree distribution. In other respects, the
trees are quite different.) △

Example 4.5. Let Gpnq “ Pn, a path of length n. (Thus Gpnq is non-random.) This
case was studied in [19], in the analysis of a problem by [1] which we briefly discuss
in Section 8. It is obvious that (3.1)–(3.3) hold, with d˚ “ 2 and χ˚ “ 4. Hence,
Theorem 3.1 (or Corollary 3.3) applies and shows (3.4)–(3.7), with γ˚ “ χ˚ ´d2˚ “ 0.

Alternatively, let Gpnq “ Cn, a cycle of length n. This differs from Pn only in
a single edge, and thus 9Lk and Lptq differ by at most 1 between the two graphs;
consequently, we have the same limit results for Pn and Cn. Indeed, Theorem 3.5
applies to Cn with d˚ “ 2, which gives the same results as just obtained for Pn

(although written with somewhat different normalizations). △

Example 4.6. Let Gpnq be the random graph Gpn,mnq, where mn are given with
1 ! mn !

`

n
2

˘

. In this case, our problem is essentially trivial, since by definition,
Gpn,mnq has exactly mn edges, which form a uniformly random subset of size mn in
the set of all

`

n
2

˘

possible edges. By symmetry, we may as well uncover the vertices

in order 1, 2, . . . , and then 9L
pnq

k is the number of edges seen in the first
`

k
2

˘

possible
positions (in the order the possible edge positions are uncovered). This number
thus has a hypergeometric distribution. Moreover, the functional limit theorem
for sampling from a finite population [4, Theorem 24.1] implies easily that, with
pn :“ mn{

`

n
2

˘

Ñ 0, in Dr0, 1s,

1
b

`

n
2

˘

pnp1 ´ pnq

´

9L
pnq

tntu ´
tntuptntu ´ 1q

npn ´ 1q
mn

¯

d
ÝÑ W ˝pt2q (4.5)

and thus

1
?
mn

`

9L
pnq

tntu ´ t2mn

˘ d
ÝÑ W ˝pt2q. (4.6)

The limit process is thus a time-changed Brownian bridge.
As an illustration of our results, we show how this also follows from the theorems

above, more precisely Theorem 3.6. (If mn “ Θpnq, we may also use Theorem 3.1.)

We take βn :“
?
mn. We have d̄pnq “ 2mn{n, and thus (3.13) holds trivially with

λ1 “ 2. We see also that (3.18) holds with α “ 2λ1{2 if mn{n Ñ λ P r0,8s. We claim
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that (3.14) holds with λ2 “ 2, and that (3.15) holds. Then Theorem 3.6 applies, and
(3.17) yields

9σps, tq “ s2p1 ´ tq2 ` 2s2tp1 ´ tq “ s2p1 ´ t2q, 0 ď s ď t ď 1, (4.7)

which shows that 9Zptq
d
“ W ˝pt2q (as processes). Hence, (3.16) yields (4.6). The

corresponding result for Lpnqptq is given by (3.19) or (3.21), depending on α.

To verify the claims, let Iij be the indicator that there is an edge ij in Gpnq. Then

n
ÿ

i“1

d2i “

n
ÿ

i“1

di `

n
ÿ

i“1

dipdi ´ 1q “ 2mn `
ÿ*

i,j,k

IijIik, (4.8)

where
ř* denotes the sum over distinct i, j, k. With our choice βn “

?
mn, the

condition (3.14), in the form (3.24), with λ2 “ 2 is thus equivalent to

m´1
n

ÿ*

i,j,k

IijIik ´
n

mn
pd̄pnqq2 “ m´1

n

ÿ*

i,j,k

IijIik ´
4mn

n

p
ÝÑ 0. (4.9)

Denote the triple sum in (4.8) and (4.9) by V . Note that V is twice the number of
copies of P3 in Gpn,mnq; the results we need are thus closely related to result on
subgraph counts (for the special case P3) in Gpn,mnq, and it seems possible (at least
for some ranges of mn) to derive what we need from known (and more advanced)
such results, see e.g. [9, Theorems 2a–2b], [28] (for Gpn, pq) and [16, Theorem 19],
but we find it easier to show it directly by calculating moments. We have (writing
m “ mn)

EV “ npn ´ 1qpn ´ 2qPpI12I13 “ 1q “ npn ´ 1qpn ´ 2q
m
`

n
2

˘

m ´ 1
`

n
2

˘

´ 1

“
4mpm ´ 1q

n ` 1
“

4m2

n
` opmq. (4.10)

A straightforward calculation, which we omit, shows that VarV “ opm2q. Hence,

V “ EV ` oppmq “
4m2

n
` oppmq, (4.11)

which shows (4.9) and thus (3.14). Finally, a similar calculation yields

E
n
ÿ

i“1

´

dipdi ´ 1q ´
EV

n

¯2
“

n
ÿ

i“1

Var
´

ÿ*

j,k

IijIik

¯

“ opm2q. (4.12)

Hence, using also (4.10) and our assumption m !
`

n
2

˘

,

∆p∆ ´ 1q ď
EV

n
`

˜

n
ÿ

i“1

´

dipdi ´ 1q ´
EV

n

¯2
¸1{2

“ opmq ` oppmq, (4.13)

which yields ∆ “ oppm1{2q and thus (3.15), completing the verification that Theo-
rem 3.6 applies and yields (4.6). △

Example 4.7. Let Gpnq be the random graph Gpn, pnq, where pn P p0, 1q and we
assume n2pn Ñ 8 and pn Ñ 0. Thus, each possible edge appears with probability
pn, independently of each other.

This example is, as the closely related preceding example, essentially trivial. When
we have uncovered k vertices, the visible subgraph is a random graph Gpk, pnq.
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Hence, 9L
pnq

k „ Bin
``

k
2

˘

, pn
˘

, and, under our conditions on pn, it follows from a
version of Donsker’s theorem for triangular arrays (easily proved by Proposition 5.4
below) that

``

n
2

˘

pn
˘´1{2

´

9L
pnq

tntu ´ t2
ˆ

n

2

˙

pn

¯

d
ÝÑ W pt2q in Dr0, 1s, (4.14)

where W ptq is a Brownian motion on r0, 1s. Since Epnq “ 9L
pnq
n , it follows that

``

n
2

˘

pn
˘´1{2

´

9L
pnq

tntu ´ t2|Epnq|

¯

d
ÝÑ W pt2q ´ t2W p1q “ W ˝pt2q. (4.15)

This follows also from (4.6) by conditioning on |Epnq|.
As in Example 4.6, we can also see this as an example of Theorem 3.6. If we

choose βn :“ p
`

n
2

˘

pnq1{2, then (3.13)–(3.15) hold with λ1 “ λ2 “ 2; this follows

from the same result for Gpn,mnq in Example 4.6 by conditioning on |Epnq|, or by
similar calculations in Gpn, pnq. Hence, Theorem 3.6 yields (4.15). In the special
case pn “ λ{n, with λ P p0,8q, we may also use Theorem 3.1. △

Example 4.8. We may construct different examples of Theorem 3.6 by choosing

vertex degrees d
pnq

1 , . . . , d
pnq
n and then, for example, taking Gpnq to be a random

graph with the given degrees. (As is well known, Gpnq can be constructed by the
configuration model, conditioned to be simple. Of course, we have to choose the

degrees such that a simple graph Gpnq exists; in particular we need
ř

i d
pnq

i to be
even.)

Note that examples of Theorem 3.6 with λ1 ą 0, λ2 “ 0, and either 0 ă α ă 8

or α “ 8 (see (3.23)) are provided by regular graphs as in Theorem 3.5, and that
examples with λ1 ą 0, λ2 ą 0, and 0 ă α ă 8 are provided by many instances of
Theorem 3.1, see the examples above.

Another interesting case is to choose the degrees such that the average degree is
roughly constant, more precisely d̄pnq Ñ d˚ for some d˚ P p0,8q, but the variance of
the degrees

γpnq :“
1

n

n
ÿ

i“1

`

d
pnq

i ´ d̄pnq
˘2

“ χpnq ´ pd̄pnqq2 Ñ 8. (4.16)

For example, let δn Ñ 0 with nδn Ñ 8, and let all degrees d
pnq

i be 2 except the first

nδn `Op1q which are t1{δnu. Then, choosing βn :“
a

nγpnq, Theorem 3.6 holds with
λ1 “ 0, λ2 “ 1, and α “ 0. Hence, in this case the second component in Remark 3.4
dominates both the others. As a result, we have the same covariance in (3.17) and
(3.20), and thus the same limit in (3.16) and (3.19).

We may also construct an example with λ1 ą 0 and α “ 0, which by Remark 3.7

implies d̄pnq p
ÝÑ 0 and λ2 ě λ1 ą 0. We may simply let Gn by the cycle Cmn plus

n ´ mn isolated vertices, where mn Ñ 8 with mn “ opnq, and take βn :“
?
mn; we

omit the simple verifications.
Finally, for given sequences an and bn of positive integers with bn ď an, let n

be even and let n{2 vertices have degree an ` bn and the other n{2 degree an ´ bn.
Choose βn :“

?
nbn; thus (3.14) holds with λ2 “ 1. Let bn be any sequence such that

1 ! bn !
?
n; it is the easy to verify that in the following three cases, the conditions

(3.13)–(3.15) and (3.18) hold with the stated parameters:

(i) If an “ b2n, then λ1 “ 1, λ2 “ 1, and α “ 8.
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(ii) If an “ bn, then λ1 “ 0, λ2 “ 1, and α “ 1.
(iii) If bn ! an ! b2n, then λ1 “ 0, λ2 “ 1, and α “ 8.

△

Example 4.9. It is easy to see that condition (3.3) on the maximum degree is
necessary in Theorem 3.1. In fact, suppose that for some fixed δ ą 0, there is
a vertex, say i “ 1, with d1 ě δn1{2. Since vertex 1 and its neighbours become
visible in uniformly random order, ∆LpT1q is uniformly distributed on t0, . . . , d1u;

hence, with probability ě 1{2, we have ∆LpT1q ě d1{2 ě pδ{2qn1{2. Consequently,

n´1{2Lptq has with large probability a macroscopic jump (at T1), and thus it cannot

converge in distribution to a continuous process. The same applies to n´1{2 9Lk.
The same argument shows that dpnq “ opnq is necessary for (3.8) in Theorem 3.5,

and that (3.15) is necessary for (3.16) and (3.19) in Theorem 3.6. △

Remark 4.10. In spite of Example 4.9, it is for some graphs Gpnq possible to obtain a
continuous limit in (3.8) or (3.16) even if dpnq “ opnq or ∆pnq “ opβnq fails, provided

we use linear interpolation of 9Lk as in Remark 3.9 instead of 9Ltntu. We give one
example in Example 4.11, and note that the limit obtained there is not Gaussian.
We have not investigated this possibility any further, but it seems that it reguires
Gpnq to be regular or almost regular (in a suitable sense); moreover, we conjecture
that limits always will be as in Example 4.11, and thus not normal. △

Example 4.11. Let Gpnq “ Kn{2,n{2, the symmetric complete bipartite graph, where

we assume that n is even. Then Gpnq is regular with degree dpnq “ n{2. Note that

this example does not satisfy the condition dpnq “ opnq in Theorem 3.5. We will
show that, indeed, Theorem 3.6 does not hold, and that we in this example have
non-normal limit distributions.

Colour the vertices of the two parts white and black, respectively; each edge has
thus one white and one black endpoint.

Let 9Wk be the number of uncovered white vertices among the first k uncovered
vertices, and let 9Yk :“ 9Wk ´ k{2. Thus, at time k there are 9Wk “ k{2 ` 9Yk visible

white vertices and 9Bk “ k ´ 9Wk “ k{2 ´ 9Yk visible black vertices; consequently,

9Lk “ pk2 ` 9Ykqpk2 ´ 9Ykq “ k2

4 ´ Ỹ 2
k . (4.17)

The random variable 9Wk has a hypergeometric distribution. Moreover, it is well
known (e.g. by [4, Theorem 24.1]) that, in Dr0, 1s, as n Ñ 8,

n´1{2p 9Wtntu ´ 9Btntuq “ 2n´1{2 9Ytntu
d

ÝÑ W ˝ptq, (4.18)

where W ˝ptq is a Brownian bridge, see Section 2.1. Consequently, we see from (4.17)
and (4.18) that, in Dr0, 1s,

n´1
´

9L
pnq

tntu ´
tntu2

4

¯

“ ´n´1p 9Y
pnq

tntuq
2 d

ÝÑ ´
1

4
W ˝ptq2. (4.19)

In this case, thus the limit process is a (negative) square of a Gaussian process, and

for a fixed t P p0, 1q, the distribution of 9Ltntu is, after normalization and change of

sign, a χ2-distribution χ2p1q. In particular, the limit distribution is not normal.

Note also that we in (4.19) cannot replace tntu2{4 by pntq2{4 “ t2|Epnq|, as we

have in (3.8); the reason is that the jumps in 9L
pnq

k and in tntu2 are of order n, and do
not disappear asymptotically with the normalization in (4.19); in (4.19) the jumps
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of the two terms cancel asymptotically, but we cannot replace one of the terms with

a continuous version. However, if we as in Remark 3.9 define 9L
pnq

t for real t P r0, ns

by linear interpolation between integers, and thus 9L
pnq

t is a continuous stochastic
process, then it follows easily from (4.19) that

n´1
`

9L
pnq

nt ´ t2|Epnq|
˘

“ n´1
´

9L
pnq

nt ´
n2t2

4

¯

d
ÝÑ ´

1

4
W ˝ptq2 (4.20)

in Dr0, 1s (and in Cr0, 1s, since here all processes are continuous). △

5. Preliminaries

5.1. Addition in the Skorohod topology. Addition is not continuous in DpJq

in general, but if fn, f, gn, g P DpJq with fn Ñ f and gn Ñ g, and furthermore f
and g are continuous, then fn ` gn Ñ f ` g. (This follows immediately from the
description in Section 2.3.) As a consequence, we have the following results, which
often will be used without comment.

Lemma 5.1. Let X, Y , Xn and Yn (n ě 1) be stochastic processes on an interval

J , with X and Y continuous a.s. If pXn, Ynq
d

ÝÑ pX,Y q in DpJq, then Xn `Yn
d

ÝÑ

X ` Y in DpJq.

Proof. By the comment above and [4, Corollary 1, p. 31]. □

Lemma 5.2. Let X, Xn and Yn (n ě 1) be stochastic processes on an interval J ,

with X continuous a.s., and suppose that Xn
d

ÝÑ X in DpJq and Yn “ o˚
pp1q. Then

Xn ` Yn
d

ÝÑ X in DpJq.

Proof. Recall that Yn “ o˚
pp1q means suptPJ |Ynptq|

p
ÝÑ 0. Hence, Yn

p
ÝÑ 0 in DpJq,

and thus pXn, Ynq
d

ÝÑ pX, 0q [4, Theorem 4.4]. Consequently, the result follows from
Lemma 5.1. □

Remark 5.3. Lemma 5.1 actually holds assuming only that either X or Y is con-
tinuous a.s.; similarly, continuity of X is not needed in Lemma 5.2. We omit the
proofs, since we need only the cases above. △

5.2. Quadratic variation of martingales. Let Mt be a continuous-time martin-
gale, defined for t P J where J is some interval r0, bs or r0, bq with 0 ă b ď 8.
Assume for convenience Mp0q “ 0.

Let ∆Mptq :“ Mptq ´ Mpt´q be the size of the jump (if any) at t. (For t P J ,
where we for completeness define ∆Mp0q :“ 0.)

We will use the quadratic variation rM,M st of a continuous-time martingale M ,
and its bilinear version, the quadratic covariation rM,M1st of two martingales M
and M1. For a general definition (which further extends beyond martingales to
semimartingales) see e.g. [14, §I.4e] or [24, p. 519], but we only need a simple case:
If the martingale Mptq a.s. has finite variation over every compact subinterval of J
(this holds trivially for the martingales defined in (6.11)–(6.13) below, since they
are piecewise smooth), then its quadratic variation is given by, see e.g. [24, Theorem
26.6(viii)],

rM,M st :“
ÿ

0ďsďt

p∆Mpsqq2, (5.1)
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and similarly, for any martingale M1 on J ,

rM,M1st :“
ÿ

0ďsďt

∆Mpsq∆M1psq. (5.2)

(The sums are formally uncountable, but there is only a countable number of non-
zero terms, since Mpsq has at most countably many jumps.)

We recall the basic identity [27, p. 73, Corollary 3]

E rM,M st “ E |Mptq|2 (5.3)

and, more generally (by polarization), provided E |Mptq|2 ă 8 and E |M1ptq|2 ă 8,

E rM,M1st :“ E
`

MptqM1ptq
˘

. (5.4)

5.3. A martingale convergence theorem. Our proofs are based on the following
convergence theorem for martingales; it is a special case of a more general theorem
by Jacod and Shiryaev [14, Theorem VIII.3.12], and the present formulation is taken
from [15, Theorem 0] and [16, Proposition 2.6], where proofs are given. (See also
[17, Proposition 9.1] for a similar version with somewhat weaker assumptions.)

Proposition 5.4. Let J be an interval r0, bs or r0, bq, 0 ă b ď 8. Assume that for

each n, M pnqptq “ pM
pnq

i ptqq
q
i“1 is a q-dimensional martingale on J with M pnqp0q “

0, and that Σptq “ pσijptqq
q
i,j“1, t P J , is a (non-random) continuous matrix-valued

function such that for every fixed t P J and 1 ď i, j ď q, we have

E
“

M
pnq

i ,M
pnq

j

‰

t
Ñ σijptq, (5.5)

Var rM
pnq

i ,M
pnq

j s
t

Ñ 0. (5.6)

Then M pnq d
ÝÑ M in DpJq as n Ñ 8, where M is a continuous q-dimensional

Gaussian process with EMptq “ 0 and covariance function

Cov
`

Mipsq,Mjptq
˘

“ E
`

MipsqMjptq
˘

“ σijpsq, s, t P J and s ď t. (5.7)

(Furthermore, the limit process Mptq is a martingale, but we have no use for this
extra property in the present paper.) Note that by (5.4), (5.5) can equivalently be

written as E
`

M
pnq

i ptqM
pnq

j ptq
˘

Ñ σijptq.
In our applications the martingales will blow up at t “ 1, making it impossi-

ble to use Proposition 5.4 directly on the closed interval r0, 1s; instead we will use
Proposition 5.4 on r0, 1q, and then obtain convergence on r0, 1s using the following
lemma.

Lemma 5.5. Suppose that M pnqptq, n ě 1, are martingales on r0, 1q such that

M pnqptq
d

ÝÑ Mptq in Dr0, 1q for some continuous stochastic process Mptq. Suppose
furthermore that

E
∣∣M pnqptq

∣∣2 ď Cp1 ´ tq´a (5.8)

for some a ě 0, uniformly in n ě 1 and t P r0, 1q. Let b ą a{2 and define ĂM pnqptq :“

p1 ´ tqbM pnqptq and ĂMptq :“ p1 ´ tqbMptq for t P r0, 1q, and ĂM pnqp1q “ ĂMp1q :“

0. Then, a.s., ĂM pnqp1´q “ ĂMp1´q “ 0, and thus a.s. ĂM pnq P Dr0, 1s and ĂM is
continuous on r0, 1s; moreover,

ĂM pnqptq
d

ÝÑ ĂMptq (5.9)

in Dr0, 1s.
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Proof. First, for any N ě 1, Doob’s inequality [24, Proposition 7.16] and (5.8) imply

E sup
1´2´Nďtď1´2´N´1

|ĂM pnqptq|2 ď 2´2bN E sup
0ďtď1´2´N´1

|M pnqptq|2

ď 2´2bN4E |M pnqp1 ´ 2´N´1q|2

ď C2aN´2bN “ C2´p2b´aqN , (5.10)

and thus

E sup
1´2´Nďtă1

|ĂM pnqptq|2 ď C
8
ÿ

ℓ“N

2´p2b´aqℓ ď C2´p2b´aqN . (5.11)

Letting N Ñ 8 yields, by Fatou’s lemma,

E lim sup
tÕ1

|ĂM pnqptq|2 “ E lim
NÑ8

sup
1´2´Nďtă1

|ĂM pnqptq|2 ď C lim
NÑ8

2´p2b´aqN

“ 0, (5.12)

and thus ĂM pnqp1´q :“ limtÕ1
ĂM pnqptq “ 0 a.s. as asserted. Moreover, since (5.10)

holds uniformly in n, it follows (by Fatou’s lemma again) that it holds for ĂMptq too,

and thus the same argument shows that a.s. ĂMp1´q “ 0, and thus ĂM is continuous.
Finally, (5.11) and Markov’s inequality imply that, for any ε ą 0 and u P r0, 1q,

sup
n

P
`

sup
uďtă1

|ĂM pnqptq| ą ε
˘

ď Cε´2p1 ´ uq2b´a, (5.13)

which tends to 0 as u Õ 1; hence [16, Proposition 2.4] applies and yields ĂM pnq d
ÝÑ ĂM

in Dr0, 1s. □

Remark 5.6. Lemma 5.5 extends to vector-valued martingales pM
pnq

i ptqq
q
i“1, where

we may have separate exponents ai and bi (with bi ą ai{2 ě 0) for different com-

ponents M
pnq

i , i “ 1, . . . , q. (Thus, ĂMiptq :“ p1 ´ tqbiMiptq.) To see this, note that

the proof above shows (5.13) for each component ĂM
pnq

i , and it follows that (5.13)

holds for ĂM pnq, with 2b ´ a replaced by minip2bi ´ aiq ą 0. This and the conver-

gence ĂM pnqptq
d

ÝÑ M pnqptq in Dr0, 1q then implies convergence in Dr0, 1s just as in
the 1-dimensional case in [16, Proposition 2.4]. (For a proof, use e.g. the Skorohod
coupling theorem [24, Theorem 4.30]; we omit the details.) △

6. A decomposition into martingales

The main idea of the proofs is to decompose Lptq as a linear combination (with
coefficients that are deterministic functions of t) of some martingales defined below,
and then to show (joint) convergence of these martingales.

In this section we consider a fixed n and construct the martingales and the decom-
position that we use; we also calculate the quadratic (co)variations of the martingales
and make some estimates of them. In Section 7, we then let n Ñ 8 and show the
desired convergence.

We thus assume throughout this section that G is a fixed, deterministic graph on
rns. Thus E “ EpGq is a fixed set, and the vertex degrees di are deterministic.

As said in the introduction, we use a vertex version of the method in [15; 16]. We
define, for i P rns, the random function

Iiptq :“ 1tTi ď tu, 0 ď t ď 1. (6.1)
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Thus Iiptq is the indicator of the event that vertex i is visible at time t. We define
further

rIiptq :“ Iiptq ´ E Iiptq “ Iiptq ´ t, 0 ď t ď 1, (6.2)

qIiptq :“ p1 ´ tq´1
rIiptq “

Iiptq ´ t

1 ´ t
, 0 ď t ă 1. (6.3)

Note that rIip0q “ rIip1q “ 0, and that

E qIiptq “ E rIiptq “ 0. (6.4)

Furthermore,

E qIiptq
2 “ p1 ´ tq´2 E rIiptq

2 “ p1 ´ tq´2 Var Iiptq “
t

1 ´ t
, (6.5)

and, when i ‰ j, by independence,

E
`

qIiptqqIjptq
˘

“ E qIiptqE qIjptq “ 0. (6.6)

Let Ft be the σ-field generated by tIipsq : i P rns and s ď tu. The martingales
below are martingales with respect to the filtration pFtqt.

Lemma 6.1. qIiptq is a martingale for t P r0, 1q, for every i P rns.

More generally, for any sequence 1 ď i1 ă ¨ ¨ ¨ ă ir ď n, the product
śr

j“1
qIij ptq is

a martingale on r0, 1q.

Proof. (After [16, Lemma 2.1]; see also [15, Lemma 2.1].) It is easy to see that qIi is

a Markov process with E
`

qIiptq | Fs

˘

“ qIipsq when 0 ď s ď t ă 1, which implies that
Iiptq is a martingale.

The final sentence follows because the collections of random variable tqIiptqutPr0,1s,
i P rns, are independent of each other. □

We have by (2.3) and (6.1)–(6.2) (summing over unordered pairs ij)

Lptq “
ÿ

ijPE

IiptqIjptq “
ÿ

ijPE

`

rIiptq ` t
˘`

rIjptq ` t
˘

“
ÿ

ijPE

rIiptqrIjptq `

n
ÿ

i“1

ÿ

j:ijPE

rIiptqt `
ÿ

ijPE

t2

“
ÿ

ijPE

rIiptqrIjptq ` t
n
ÿ

i“1

dirIiptq ` t2|E|. (6.7)

We define, for t P r0, 1s,

rQptq :“
ÿ

ijPE

rIiptqrIjptq, (6.8)

rSptq :“
n
ÿ

i“1

dirIiptq, (6.9)

rNptq :“
n
ÿ

i“1

rIiptq “

n
ÿ

i“1

Iiptq ´ nt “ Nptq ´ nt, (6.10)
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and further, for t P r0, 1q, recalling (6.3),

qQptq :“
ÿ

ijPE

qIiptqqIjptq “ p1 ´ tq´2
rQptq, (6.11)

qSptq :“
n
ÿ

i“1

diqIiptq “ p1 ´ tq´1
rSptq, (6.12)

qNptq :“
n
ÿ

i“1

qIiptq “ p1 ´ tq´1
rNptq. (6.13)

By Lemma 6.1, qQptq, qSptq and qNptq are martingales on r0, 1q.
We can now rewrite (6.7) as

Lptq “ rQptq ` trSptq ` t2|E| (6.14)

“ p1 ´ tq2 qQptq ` tp1 ´ tqqSptq ` t2|E|, (6.15)

where the second line is meaningful only for t P r0, 1q.
The main idea in our proofs is to use the decomposition (6.14)–(6.15) together

with limit theorems for rQ and rZ (and rN , for reasons that will be seen later), or

(essentially equivalently) for the martingales qQ, qS and qN , which we obtain from
Proposition 5.4 and calculations of quadratic (co)variations.

6.1. Quadratic variations. To find the quadratic (co)variations, we note that Iiptq

and rIiptq have jumps `1 at t “ Ti; hence qIiptq has a jump p1 ´ Tiq
´1 at Ti (and no

other jump). It follows from (6.11)–(6.13) that qQptq, qSptq and qNptq have jumps only
at the points Ti, i “ 1, . . . , n, and that

∆ qQpTiq “ p1 ´ Tiq
´1

ÿ

j„i

qIjpTiq, (6.16)

∆qSpTiq “ dip1 ´ Tiq
´1, (6.17)

∆ qNpTiq “ p1 ´ Tiq
´1. (6.18)

Hence, (5.1)–(5.2) yield

r qQ, qQst “

n
ÿ

i“1

1tTi ď tup1 ´ Tiq
´2
´

ÿ

j„i

qIjpTiq

¯2
, (6.19)

rqS, qSst “

n
ÿ

i“1

1tTi ď tud2i p1 ´ Tiq
´2, (6.20)

r qN, qN st “

n
ÿ

i“1

1tTi ď tup1 ´ Tiq
´2. (6.21)

r qQ, qSst “

n
ÿ

i“1

1tTi ď tup1 ´ Tiq
´2di

ÿ

j„i

qIjpTiq, (6.22)

r qQ, qN st “

n
ÿ

i“1

1tTi ď tup1 ´ Tiq
´2

ÿ

j„i

qIjpTiq, (6.23)

rqS, qN st “

n
ÿ

i“1

1tTi ď tudip1 ´ Tiq
´2. (6.24)
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We easily calculate the expectations. Since the Ti P Up0, 1q are independent, we
obtain from (6.19)–(6.24), recalling (6.4)–(6.6),

E r qQ, qQst “

n
ÿ

i“1

ż t

0
p1 ´ sq´2 E

´

ÿ

j„i

qIjpsq

¯2
ds “

n
ÿ

i“1

ż t

0
p1 ´ sq´2

ÿ

j„i

E qIjpsq2 ds

“

n
ÿ

i“1

ż t

0
di

s

p1 ´ sq3
ds “

n
ÿ

i“1

di ¨
1

2

t2

p1 ´ tq2
“ |E|

t2

p1 ´ tq2
. (6.25)

E rqS, qSst “

n
ÿ

i“1

ż t

0
d2i p1 ´ sq´2 ds “

n
ÿ

i“1

d2i ¨
t

1 ´ t
, (6.26)

E r qN, qN st “

n
ÿ

i“1

ż t

0
p1 ´ sq´2 ds “ n

t

1 ´ t
, (6.27)

E r qQ, qSst “

n
ÿ

i“1

ż t

0
p1 ´ sq´2di E

ÿ

j„i

qIjpsq ds “ 0, (6.28)

E r qQ, qN st “

n
ÿ

i“1

ż t

0
p1 ´ sq´2 E

ÿ

j„i

qIjpsq ds “ 0, (6.29)

E rqS, qN st “

n
ÿ

i“1

ż t

0
dip1 ´ sq´2 ds “

n
ÿ

i“1

di ¨
t

1 ´ t
“ 2|E|

t

1 ´ t
. (6.30)

We also need estimates of the variances of the quadratic (co)variations. (We do
not bother to calculate the variances exactly, although this clearly can be done.) For
simplicity, we consider a fixed t. (It is easily seen that the constants below can be
taken bounded for t P r0, t0s for any t0 ă 1, but that they blow up as t Ñ 1.)

Recall that hompC4, Gq is the number of (labelled) copies of C4 in G.

Lemma 6.2. For each fixed t P r0, 1q, we have, with constants C that depend on t,

Var r qQ, qQst ď C
n
ÿ

i“1

d3i . (6.31)

Var rqS, qSst ď C
n
ÿ

i“1

d4i , (6.32)

Var r qN, qN st ď Cn, (6.33)

Var r qQ, qSst ď C
n
ÿ

i“1

d4i , (6.34)

Var r qQ, qN st ď C
n
ÿ

i“1

d2i , (6.35)

Var rqS, qN st ď C
n
ÿ

i“1

d2i . (6.36)

Proof. To begin with the simplest case, (6.21) shows that r qN, qN st is the sum of n
independent random variables, each bounded by p1 ´ tq´2. Hence each term has

variance ď p1 ´ tq´4, and thus Var r qN, qN st ď np1 ´ tq´4, which we simplify to (6.33).
The same argument also gives (6.32) and (6.36).
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Next, we write (6.19) as

r qQ, qQst “

n
ÿ

i“1

ÿ

j„i

Aij `
ÿ

i,j,k:j„i„k

Bijk, (6.37)

where in the second sum we assume j ‰ k, and we let

Aij :“ 1tTi ď tup1 ´ Tiq
´2

qIjpTiq
2, (6.38)

Bijk :“ 1tTi ď tup1 ´ Tiq
´2

qIjpTiqqIkpTiq1tj ‰ ku. (6.39)

We estimate the variances of the two sums separately. Note that (for a fixed t) all
Aij and Bijk are uniformly bounded. Two variables Aij and Ai1j1 are independent
unless they have at least one common index. Hence, using symmetry,

Var
´

ÿ

i,j:i„j

Aij

¯

ď C
∣∣tpi, j, i1, j1q P rns4 : i „ j, i1 „ j1, ti, ju X ti1, j1u ě 1u

∣∣
ď C

∣∣tpi, j, j1q P rns3 : i „ j, i „ j1u
∣∣

“ C
n
ÿ

i“1

d2i . (6.40)

For Bijk, we first note that E pBijk | Ti, Tjq “ 0 since E pqIkpTiq | Tiq “ 0 by (6.4);
thus EBijk “ 0. Similarly, if, say, k R ti1, j1, k1u, then, by conditioning on Tℓ for all
ℓ ‰ k, we have E pBijkBi1j1k1q “ 0. Hence, if E pBijkBi1j1k1q ‰ 0, then each of j, k, j1, k1

equals one of the other five indices. Since we assume that i, j, k are distinct, as well as
i1, j1, k1, this is possible only if either ti, j, ku “ ti1, j1, k1u or

∣∣ti, j, kuXti1, j1, k1u
∣∣ “ 2,

and in the latter case furthermore ti, j, ku X ti1, j1, k1u “ tj, ku “ tj1, k1u, and thus
j, i, k, i1 form a cycle C4 in G. In the first case, there are at most 6 choices of i1, j1, k1

for each pi, j, kq. Consequently, we obtain, using (6.40),

Var
´

ÿ

i,j,k:k„i„j

Bijk

¯

ď C
∣∣tpi, j, kq P rns3 : k „ i „ ju

∣∣ ` C hompC4, Gq

“ C
n
ÿ

i“1

d2i ` C hompC4, Gq. (6.41)

It follows from (6.37), (6.40) and (6.41) that

Var r qQ, qQst ď C
n
ÿ

i“1

d2i ` C hompC4, Gq. (6.42)

The inequality (6.31) then follows because by an inequality by Sidorenko [29] (see
also [22]),

hompC4, Gq ď hompP4, Gq ď hompK1,3, Gq ď

n
ÿ

i“1

d3i . (6.43)

Alternatively, this follows because we have

hompC4, Gq ď hompP4, Gq ď
ÿ

i,j: i„j

didj ď
ÿ

i,j: i„j

1
2

`

d2i ` d2j
˘

“
ÿ

i,j: i„j

d2i

“

n
ÿ

i“1

d3i . (6.44)
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Similarly, we write (6.23) as

r qQ, qN st “

n
ÿ

i“1

ÿ

j„i

Dij , (6.45)

where

Dij :“ 1tTi ď tup1 ´ Tiq
´2

qIjpTiq, (6.46)

noting that (for a given t), the random variables Dij are uniformly bounded; further-
more, Dij and Di1j1 are independent unless they have at least one common index.
Consequently, as in (6.40),

Var r qQ, qN st “ Var
´

ÿ

i,j:i„j

Dij

¯

ď C
n
ÿ

i“1

d2i . (6.47)

Finally, we have, with Dij as in (6.46),

r qQ, qSst “

n
ÿ

i“1

ÿ

j„i

diDij , (6.48)

and it follows similarly, using symmetry as in (6.40),

Var r qQ, qSst ď C
ÿ

i„j, i1„j1, ti,juXti1,j1uě1

didi1

ď C
ÿ

i,j,j1: i„j, i„j1

pdi ` djqpdi ` dj1q. (6.49)

It is easily seen that this sum can be estimated by C
ř

|EpHq|ď4 hompH,Gq, summing

over connected graphs H with at most 4 edges. Consequently, using again Sidorenko’s
inequality [29; 22] (or a more complicated version of (6.44), which we leave to the
reader)

Var r qQ, qSst ď C
ÿ

|EpHq|ď4

hompH,Gq ď C hompK1,4, Gq “ C
n
ÿ

i“1

d4i . (6.50)

This completes the proof of (6.31)–(6.36). □

We will also use a version where we “normalize” rSptq and qSptq by subtracting the
average degree d̄ from the degrees in the definition. We define, cf. (6.9) and (6.12),

rRptq :“
n
ÿ

i“1

pdi ´ d̄qrIiptq “ rSptq ´ d̄ rNptq, (6.51)

qRptq :“
n
ÿ

i“1

pdi ´ d̄qqIiptq “ p1 ´ tq´1
rRptq “ qSptq ´ d̄ qNptq. (6.52)

Then qRptq is a martingale on r0, 1q, with quadratic (co)variation, similarly to (6.20)–
(6.23),

r qR, qRst “

n
ÿ

i“1

1tTi ď tupdi ´ d̄q2p1 ´ Tiq
´2, (6.53)

r qQ, qRst “

n
ÿ

i“1

1tTi ď tup1 ´ Tiq
´2pdi ´ d̄q

ÿ

j„i

qIjpTiq, (6.54)
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r qR, qN st “

n
ÿ

i“1

1tTi ď tup1 ´ Tiq
´2pdi ´ d̄q. (6.55)

Hence, or by (6.52) and (6.26)–(6.30), recalling (2.8),

E r qR, qRst “

n
ÿ

i“1

pdi ´ d̄q2 ¨
t

1 ´ t
, (6.56)

E r qQ, qRst “ 0, (6.57)

E r qR, qN st “

n
ÿ

i“1

pdi ´ d̄q ¨
t

1 ´ t
“ 0. (6.58)

Lemma 6.3. For each fixed t P r0, 1q, we have, with constants C that depend on t,

Var r qR, qRst ď C
n
ÿ

i“1

pdi ´ d̄q4, (6.59)

Var r qQ, qRst ď C∆2
n
ÿ

i“1

pdi ´ d̄q2, (6.60)

Var r qR, qN st ď C
n
ÿ

i“1

pdi ´ d̄q2. (6.61)

Proof. First, (6.59) and (6.61) follow from (6.53) and (6.55) since the terms in the
sums are independent, similarly to (6.32) and (6.33) in Lemma 6.2.

Next, by (6.52), (6.45), and (6.48),

r qQ, qRst “ r qQ, qSst ´ d̄r qQ, qN st “

n
ÿ

i“1

ÿ

j„i

pdi ´ d̄qDij , (6.62)

with Dij defined in (6.46). Recall that for a fixed t, the random variables Dij are
uniformly bounded, and that Dij and Di1j1 are independent unless they have at least
one common index. Hence, similarly to (6.49), it follows that

Var r qQ, qRst ď C
ÿ

i„j, i1„j1, ti,juXti1,j1uě1

|di ´ d̄| |di1 ´ d̄|

ď C
ÿ

i,j,j1: i„j, i„j1

p|di ´ d̄| ` |dj ´ d̄|qp|di ´ d̄| ` |dj1 ´ d̄|q

“ C
ÿ

i

d2i |di ´ d̄|2 ` C
ÿ

i,j:i„j

di|di ´ d̄||dj ´ d̄| `
ÿ

i

´

ÿ

j„i

|dj ´ d̄|

¯2
.

(6.63)

The first sum on the right-hand side of (6.63) is clearly at most ∆2
řn

i“1pdi ´ d̄q2.
The second sum is

ď ∆
ÿ

i,j:i„j

`

|di ´ d̄|2 ` |dj ´ d̄|2
˘

“ ∆
ÿ

i

di|di ´ d̄|2 ` ∆
ÿ

j

dj |dj ´ d̄|2

ď 2∆2
ÿ

i

|di ´ d̄|2. (6.64)
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Finally, the third sum is, by the Cauchy–Schwarz inequality,

ď
ÿ

i

di
ÿ

j„i

|dj ´ d̄|2 ď ∆
ÿ

j

dj |dj ´ d̄|2 ď ∆2
ÿ

j

|dj ´ d̄|2. (6.65)

Combining these estimates, we obtain (6.60). □

7. Proofs of convergence and main theorems

We are now prepared to show convergence of the martingales defined in Section 6,
and then to prove the theorems in Section 3. Although Theorems 3.1 and 3.5 can
be proved as special cases of Theorem 3.6, we have chosen to give separate proofs
of the three theorems, using the same general method but with some variations;
this illustrates the differences between the cases. We begin with the sparse case
in Theorem 3.1, which shows the main ideas without unnecessary complications.
We first state a lemma, where we assume that the graphs Gpnq are non-random.
(Thus the assumptions (3.1)–(3.3) are replaced by their non-random counterparts
(7.1)–(7.3).)

In this section we use convergence in both Dr0, 1q and Dr0, 1s. For processes
defined on r0, 1s, we will always use convergence in Dr0, 1s, even when this is not
explicitly said.

Lemma 7.1. Assume that Gpnq is a sequence of non-random graphs with V pGpnqq “

rns such that, as in Theorem 3.1,

1

n

n
ÿ

i“1

d
pnq

i “
2|Epnq|

n
Ñ d˚ P r0,8q, (7.1)

1

n

n
ÿ

i“1

pd
pnq

i q2 Ñ χ˚ P r0,8q, (7.2)

∆pnq :“ max
i

d
pnq

i “ opn1{2q. (7.3)

(i) Then, in Dr0, 1q,

n´1{2
`

qQpnqptq, qSpnqptq, qN pnqptq
˘ d

ÝÑ qZptq “
`

qZQptq, qZSptq, qZNptq
˘

, (7.4)

where qZptq is a continuous Gaussian process on r0, 1q with E qZptq “ 0 and
covariance function, for 0 ď s ď t ă 1,

Cov
`

qZpsq, qZptq
˘

“ E
`

qZpsq qZptq1
˘

“ qΣpsq :“

¨

˚

˝

d˚

2
s2

p1´sq2
0 0

0 χ˚
s

1´s d˚
s

1´s
0 d˚

s
1´s

s
1´s

˛

‹

‚

. (7.5)

(ii) Similarly, in Dr0, 1s,

n´1{2
`

rQpnqptq, rSpnqptq, rN pnqptq
˘ d

ÝÑ rZptq “
`

rZQptq, rZSptq, rZNptq
˘

, (7.6)

where rZptq is a continuous Gaussian process on r0, 1s with E rZptq “ 0 and
covariance function, for 0 ď s ď t ď 1,

Cov
`

rZpsq, rZptq
˘

“ rΣps, tq :“

¨

˝

d˚

2 s2p1 ´ tq2 0 0
0 χ˚sp1 ´ tq d˚sp1 ´ tq
0 d˚sp1 ´ tq sp1 ´ tq

˛

‚. (7.7)



24 SVANTE JANSON

Proof. (i): Consider the vector-valued martingale on r0, 1q defined by

M pnqptq “
`

M
pnq

Q ptq,M
pnq

S ptq,M
pnq

N ptq
˘

:“ n´1{2
`

qQpnqptq, qSpnqptq, qN pnqptq
˘

. (7.8)

For any fixed t P r0, 1q, (6.25)–(6.30) together with (7.1)–(7.2) and (7.5) show that
the matrix of quadratic covariations has expectation

E rM pnq, pM pnqq1st Ñ qΣptq, (7.9)

while Lemma 6.2 shows that for each i, j P tQ,S,Nu we have, for the corresponding
qX, qY P t qQ, qS, qNu, using (7.2)–(7.3),

Var
“

M
pnq

i ,M
pnq

j

‰

t
“ Var

`

n´1r qXpnq, qY pnqst
˘

ď Cn´2
´

n
ÿ

i“1

`

d
pnq

i

˘4
` n

¯

ď Cn´2p∆pnqq2
n
ÿ

i“1

`

d
pnq

i

˘2
` Cn´1 Ñ 0. (7.10)

Hence, Proposition 5.4 applies and yields the result.
(ii): Convergence in Dr0, 1q follows immediately from (i) and the relations (6.11)–

(6.13), defining rZQptq :“ p1´tq2 qZQptq, rZSptq :“ p1´tq qZSptq, and rZNptq :“ p1´tq qZNptq

for t P r0, 1q. We define further rZQp1q :“ rZSp1q :“ rZNp1q :“ 0; continuity of rZptq at
t “ 1 and convergence in Dr0, 1s then follows by Lemma 5.5 and Remark 5.6, taking
aQ “ bQ “ 2 and aS “ bS “ aN “ bN “ 1 and recalling (5.3) and (6.25)–(6.27). □

Remark 7.2. In particular, rZNptq has covariance function sp1´tq for 0 ď s ď t ď 1,

and is thus a Brownian bridge W ˝ptq, see (2.1). The convergence of n´1{2
rN pnqptq “

n´1{2pN pnqptq ´ ntq to a Brownian bridge is a well-known fact, since by (2.4),

n´1N pnqptq is the empirical distribution function of the i.i.d. uniformly distributed
random variables Ti, i P rns; see e.g. [4, Theorems 16.4 and 13.1]. This holds for any

graphs Gpnq (without any conditions on the degrees), since the edges do not affect

N pnqptq, and therefore this result for rN pnqptq will return in other proofs below. △

Proof of Theorem 3.1. Assume first that the graphs Gpnq are non-random. In par-
ticular, the variables in (3.1)–(3.3) are non-random, and the limits there are thus
usual limits of real numbers. Hence, Lemma 7.1 applies. We prove first the contin-
uous-time result (ii), and then use it to derive the discrete-time result (i).

Gpnq non-random, (ii): By (6.14) and Lemma 7.1(ii), using also Lemma 5.1,

n´1{2
`

Lpnqptq ´ t2|Epnq|
˘

“ n´1{2
`

rQpnqptq ` trSpnqptq
˘ d

ÝÑ Zptq :“ rZQptq ` t rZSptq
(7.11)

in Dr0, 1s. The process Zptq is clearly continuous and Gaussian, with mean EZptq “

0 and covariance function, using (7.6)–(7.7),

Cov
`

Zpsq, Zptq
˘

“ Cov
`

rZQpsq, rZQptq
˘

` stCov
`

rZSpsq, rZSptq
˘

“
d˚

2
s2p1 ´ tq2 ` χ˚s

2tp1 ´ tq. (7.12)

This proves (3.6)–(3.7).

Gpnq non-random, (i): The proof just given for (ii) shows that the result (7.11)

holds jointly with n´1{2
rNptq

d
ÝÑ rZNptq. Hence, we can apply Theorem A.1, with

9X
pnq

k :“ 9Lkptq, Xpnqptq :“ Lpnqptq, W ptq “ rZNptq, an “ n´1{2, bn “ 2|Epnq|, fptq “
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t2{2, and thus c “ limnÑ8 2|Epnq|{n “ d˚. This yields (3.4) with 9Zptq :“ Zptq ´

d˚t rZNptq, and (A.5) yields the covariance function (3.5).

Gpnq random: Finally, consider the general case when Gpnq may be random. By
the Skorohod coupling theorem [24, Theorem 4.30], we may for convenience assume

that the limits in (3.1)–(3.3) hold a.s. We then condition on the sequence pGpnqq8
1 ,

and note that thus a.s. the deterministic case just proved applies to the sequence.
Hence, a.s. the conclusions (3.4) and (3.6) hold conditionally on pGpnqq8

1 . Since the
limits have distributions determined by (3.5) and (3.7) which do not depend on the

sequence pGpnqq8
1 , it follows that (3.4) and (3.6) hold unconditionally too. □

We turn to the regular case, again beginning with a lemma for non-random Gpnq.

Lemma 7.3. Assume that Gpnq is a sequence of non-random graphs with V pGpnqq “

rns such that, as in Theorem 3.5, Gpnq is regular with degree 1 ď dpnq “ opnq. Then
rSpnqptq “ dpnq

rN pnqptq and qSpnqptq “ dpnq
qN pnqptq. Furthermore:

(i) We have, in Dr0, 1q,
`

pndpnqq´1{2
qQpnqptq, n´1{2

qN pnqptq
˘ d

ÝÑ qZptq “
`

qZQptq, qZNptq
˘

, (7.13)

where qZQptq and qZNptq are independent continuous Gaussian processs on r0, 1q

with means 0 and covariance functions, for 0 ď s ď t ă 1,

Cov
´

qZQpsq, qZQptq
¯

“
1

2

s2

p1 ´ sq2
, (7.14)

Cov
´

qZNpsq, qZNptq
¯

“
s

1 ´ s
. (7.15)

(ii) Similarly, in Dr0, 1s,
`

pndpnqq´1{2
rQpnqptq, n´1{2

rN pnqptq
˘ d

ÝÑ rZptq “
`

rZQptq, rZNptq
˘

, (7.16)

where rZQptq and rZNptq are independent continuous Gaussian processs on r0, 1q

with means 0 and covariance functions, for 0 ď s ď t ď 1,

Cov
´

rZQpsq, rZQptq
¯

“
1

2
s2p1 ´ tq2, (7.17)

Cov
´

rZNpsq, rZNptq
¯

“ sp1 ´ tq. (7.18)

Proof. Since Gpnq is regular with d
pnq

i “ dpnq for every i P rns, it follows from (6.9)–

(6.10) and (6.12)–(6.13) that rSpnqptq “ dpnq
rN pnqptq and qSpnqptq “ dpnq

qN pnqptq.

The rest of the proof is similar to the proof of Lemma 7.1. We ignore qSpnq and
define now

M pnqptq “
`

M
pnq

Q ptq,M
pnq

N ptq
˘

:“
`

pndpnqq´1{2
qQpnqptq, n´1{2

qN pnqptq
˘

. (7.19)

For any fixed t P r0, 1q, (6.25), (6.27) and (6.29) together with |Epnq| “ ndpnq{2 show
that the matrix of quadratic covariations has expectation

E rM pnq, pM pnqq1st “ Σptq :“

˜

1
2

t2

p1´tq2
0

0 t
1´t

¸

(7.20)

(in this case an identity for all n), while Lemma 6.2 shows that

Var rM
pnq

Q ,M
pnq

Q st “ Var
`

pndpnqq´1r qQpnq, qQpnqst
˘

ď pndpnqq´2Cnpdpnqq3
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“ Cdpnq{n “ op1q, (7.21)

Var rM
pnq

Q ,M
pnq

N st “ Var
`

pn2dpnqq´1{2r qQpnq, qN pnqst
˘

ď pn2dpnqq´1Cnpdpnqq2

“ Cdpnq{n “ op1q, (7.22)

Var rM
pnq

N ,M
pnq

N st “ Var
`

n´1r qN pnq, qN pnqst
˘

ď n´2Cn “ Cn´1 “ op1q, (7.23)

Hence, Proposition 5.4 applies and yields (i), with Covp qZptqq “ Σptq in (7.20). The

independence of qZQ and qZN follows from the fact that the matrix Σptq is diagonal,

and thus all covariances Cov
`

qZQpsq, qZNptq
˘

“ Var qZQpsq (0 ď s ď t) vanish.
Finally, (ii) follows as in the proof of Lemma 7.1 by Lemma 5.5 and Remark 5.6,

using (6.25) and (6.27). □

Proof of Theorem 3.5. As in the proof of Theorem 3.1, we may by conditioning as-
sume that each Gpnq is non-random. Then Lemma 7.3 applies. As in the proof of
Theorem 3.1, we first consider continuous time, but this time we cannot derive (i)
from (ii), since the normalizing factors are different; hence we derive instead first the
intermediate continuous-time result (7.25) below.

(i): The decomposition (6.14) yields, noting that rSpnqptq “ dpnq
rN pnqptq by Lemma 7.3

and |Epnq| “ ndpnq{2 by (2.10), and using also (6.10),

Lpnqptq ´
dpnq

2n
N pnqptq2 “ rQpnqptq ` tdpnq

rN pnqptq ` t2
ndpnq

2
´

dpnq

2n

`

rN pnqptq ` nt
˘2

“ rQpnqptq ´
dpnq

2n
rN pnqptq

2
. (7.24)

As a consequence of (7.16), we have supt | rN pnqptq| “ Op

`

n1{2
˘

; recall that we write

this as rN pnqptq “ O˚
p

`

n1{2
˘

. Hence, (7.24) implies, using dpnq “ opnq, (7.16), and
Lemma 5.2,

pndpnqq´1{2
´

Lpnqptq ´
dpnq

2n
N pnqptq2

¯

“ pndpnqq´1{2
rQpnqptq ` O˚

pppdpnqq1{2n´1{2q

“ pndpnqq´1{2
rQpnqptq ` o˚

pp1q

d
ÝÑ rZQptq. (7.25)

Furthermore, (7.16) implies that (7.25) holds jointly with n´1{2pN pnqptq ´ ntq
d

ÝÑ

rZNptq. Thus by Theorem A.1 (with bn “ fptq “ c “ 0), or in this simple case directly
by substituting τtntu for t in (7.25),

pndpnqq´1{2
´

9Ltntu ´
dpnq

2n
tntu2

¯

d
ÝÑ rZQptq. (7.26)

Furthermore, we have

dpnq

2n
tntu2 ´ t2|Epnq| “

dpnq

2n

`

tntu2 ´ pntq2
˘

“ Opdpnqq “ o
`

pndpnqq1{2
˘

, (7.27)

and thus (7.26) implies (3.8) with 9Zptq “ rZQptq. Hence, (3.9) holds by (7.17).
(ii) and (iii): It follows from (2.8), (6.10) and (7.16) that

1

n1{2dpnq

´dpnq

2n
N pnqptq2 ´ t2|Epnq|

¯

“
1

2n3{2

`

N pnqptq2 ´ n2t2
˘
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“
1

2n3{2

`

rN pnqptq2 ` 2nt rN pnqptq
˘

d
ÝÑ t rZNptq. (7.28)

Furthermore, this holds jointly with (7.25) and its consequence

pn1{2dpnqq´1
´

Lpnqptq ´
dpnq

2n
N pnqptq2

¯

d
ÝÑ d

´1{2
˚

rZQptq. (7.29)

Combining (7.29) and (7.28) yields

1

n1{2dpnq

`

Lpnqptq ´ t2|Epnq|
˘ d

ÝÑ Zptq :“ d
´1{2
˚

rZQptq ` t rZNptq. (7.30)

This proves (3.10), and (7.17)–(7.18) imply that the covariance function is given by
(3.11); when d˚ “ 8 this simplifies to (3.12), and we see also directly from (7.30)

that in this case Zptq “ t rZNptq “ tW ˝ptq, see Remark 7.2. □

Finally, we treat the general case in Theorem 3.6, again beginning with a lemma.

Lemma 7.4. Assume that Gpnq is a sequence of non-random graphs with V pGpnqq “

rns and that βn is a sequence of positive constants such that, as in Theorem 3.6, for
some constants λ1, λ2 P r0,8q, we have, as n Ñ 8,

βn “ opnq, (7.31)

2|Epnq|

β2
n

“
nd̄pnq

β2
n

Ñ λ1, (7.32)

1

β2
n

n
ÿ

i“1

`

d
pnq

i ´ d̄pnq
˘2

Ñ λ2, (7.33)

∆pnq “ opβnq. (7.34)

(i) Then, in Dr0, 1q,
`

β´1
n

qQpnqptq, β´1
n

qRpnqptq, n´1{2
qN pnqptq

˘ d
ÝÑ qZptq “

`

qZQptq, qZRptq, qZNptq
˘

, (7.35)

where qZQptq, qZRptq, and qZNptq are independent continuous Gaussian processes
on r0, 1q with means 0 and covariance functions, for 0 ď s ď t ă 1,

Cov
´

qZQpsq, qZQptq
¯

“
λ1

2

s2

p1 ´ sq2
, (7.36)

Cov
´

qZRpsq, qZRptq
¯

“ λ2
s

1 ´ s
, (7.37)

Cov
´

qZNpsq, qZNptq
¯

“
s

1 ´ s
. (7.38)

(ii) Similarly, in Dr0, 1s,
`

β´1
n

rQpnqptq, β´1
n

rRpnqptq, n´1{2
rN pnqptq

˘ d
ÝÑ rZptq “

`

rZQptq, rZRptq, rZNptq
˘

, (7.39)

where rZQptq, rZRptq, and rZNptq are independent continuous Gaussian processes
on r0, 1s with means 0 and covariance functions, for 0 ď s ď t ď 1,

Cov
´

rZQpsq, rZQptq
¯

“
λ1

2
s2p1 ´ tq2, (7.40)

Cov
´

rZRpsq, rZRptq
¯

“ λ2sp1 ´ tq, (7.41)
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Cov
´

rZNpsq, rZNptq
¯

“ sp1 ´ tq. (7.42)

Proof. This is similar to the proofs of Lemmas 7.1 and 7.3. We now define the
martingale

M pnqptq “
`

M
pnq

Q ptq,M
pnq

R ptq,M
pnq

N ptq
˘

:“
`

β´1
n

qQpnqptq, β´1
n

qRpnqptq, n´1{2
qN pnqptq

˘

.

(7.43)

For any fixed t P r0, 1q, (6.25), (6.27), (6.29) and (6.56)–(6.58) together with (7.32)–
(7.33) show that the matrix of quadratic covariations has expectation

E rM pnq, pM pnqq1st Ñ qΣptq :“

¨

˚

˝

λ1
2

t2

p1´tq2
0 0

0 λ2
t

1´t 0

0 0 t
1´t

˛

‹

‚

. (7.44)

Similarly, Lemmas 6.2 and 6.3 together with (7.31)–(7.34) show that (omitting su-

perscripts pnq for convenience), for any fixed t P r0, 1q,

Var rMQ,MQst “ β´4
n Var r qQ, qQst ď Cβ´4

n

n
ÿ

i“1

d3i

ď Cβ´4
n ∆2

n
ÿ

i“1

di “ C
´ ∆

βn

¯2
¨

2|E|

β2
n

Ñ 0, (7.45)

Var rMR,MRst “ β´4
n Var r qR, qRst ď Cβ´4

n

n
ÿ

i“1

pdi ´ d̄q4

ď Cβ´4
n ∆2

n
ÿ

i“1

pdi ´ d̄q2 “ C
´ ∆

βn

¯2
¨

1

β2
n

n
ÿ

i“1

pdi ´ d̄q2 Ñ 0, (7.46)

Var rMN,MNst “ n´2 Var r qN, qN st ď Cn´1 Ñ 0, (7.47)

Var rMQ,MRst “ β´4
n Var r qQ, qRst ď Cβ´4

n ∆2
n
ÿ

i“1

pdi ´ d̄q2 Ñ 0, (7.48)

Var rMQ,MNst “ β´2
n n´1 Var r qQ, qN st ď Cβ´2

n

1

n

n
ÿ

i“1

d2i

“ Cβ´2
n

´ 1

n

n
ÿ

i“1

pdi ´ d̄q2 ` d̄2
¯

ď
C

n
` C

ˆ

βn
n

¨
nd̄

β2
n

˙2

Ñ 0, (7.49)

Var rMR,MNst “ β´2
n n´1 Var r qR, qN st ď Cn´1β´2

n

n
ÿ

i“1

pdi ´ d̄q2 ď Cn´1 Ñ 0. (7.50)

Hence, Proposition 5.4 applies and yields the result; the three components of the

limit process are independent since the matrix qΣptq in (7.44) is diagonal.
Finally, (ii) follows as in the proof of Lemma 7.1 by Lemma 5.5 and Remark 5.6,

using (6.25), (6.27), and (6.56) together with (7.32)–(7.33). □

Proof of Theorem 3.6. As in the proof of Theorems 3.1 and 3.5, we may by condi-
tioning assume that Gpnq are non-random. Then Lemma 7.4 applies. As in the proof
of Theorem 3.5, we first consider continuous time and derive an intermediate result.
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(i): We now use (6.51) and (2.10) to write the decomposition (6.14) as

Lpnqptq “ rQpnqptq ` t rRpnqptq ` td̄pnq
rN pnqptq ` t2

nd̄pnq

2
. (7.51)

Hence, using also (6.10), cf. the regular case (7.24) where rRpnqptq “ 0,

Lpnqptq ´
d̄pnq

2n
N pnqptq2 “ Lpnqptq ´

d̄pnq

2n

`

rN pnqptq ` nt
˘2

“ rQpnqptq ` t rRpnqptq ´
d̄pnq

2n
rN pnqptq

2
. (7.52)

As a consequence of (7.39), we have rN pnqptq “ O˚
p

`

n1{2
˘

. Hence, (7.52) implies,

using d̄pnq ď ∆pnq “ opβnq, (7.39), and Lemma 5.2,

β´1
n

´

Lpnqptq ´
d̄pnq

2n
N pnqptq2

¯

“ β´1
n

rQpnqptq ` β´1
n t rRpnqptq ` O˚

ppd̄pnq{βnq

“ β´1
n

rQpnqptq ` tβ´1
n

rRpnqptq ` o˚
pp1q

d
ÝÑ rZQptq ` t rZRptq. (7.53)

Furthermore, (7.39) implies that (7.53) holds jointly with n´1{2pN pnqptq ´ ntq
d

ÝÑ

rZNptq. Thus by Theorem A.1 (with bn “ fptq “ c “ 0), or directly by substituting
τtntu for t in (7.53),

β´1
n

´

9Ltntu ´
d̄pnq

2n
tntu2

¯

d
ÝÑ 9Zptq :“ rZQptq ` t rZRptq. (7.54)

Furthermore, we have

d̄pnq

2n
tntu2 ´ t2|Epnq| “

d̄pnq

2n

`

tntu2 ´ pntq2
˘

“ Opd̄pnqq “ Op∆pnqq “ o
`

βn
˘

, (7.55)

and thus (7.54) implies (3.16). We have (3.17) by (7.40)–(7.41).
(ii): By (2.8), (6.10) and (7.39), we have, as in (7.28),

1

n1{2d̄pnq

´ d̄pnq

2n
N pnqptq2 ´ t2|Epnq|

¯

“
1

2n3{2

`

rN pnqptq2 ` 2nt rN pnqptq
˘

d
ÝÑ t rZNptq. (7.56)

(The case d̄pnq “ 0 is trivial and may be excluded.) Furthermore, this holds jointly
with (7.53).

(ii)a: If α ă 8, then (3.18) and (7.56) imply

1

βn

´ d̄pnq

2n
N pnqptq2 ´ t2|Epnq|

¯

d
ÝÑ αt rZNptq, (7.57)

jointly with (7.53). Consequently, recalling also (2.8), (3.19) holds with

Zptq :“ 9Zptq ` αt rZN “ rZQptq ` t rZRptq ` αt rZN. (7.58)

The covariance function (3.20) follows from (7.40)–(7.42).

(ii)b: If α “ 8, then βn “ oppn1{2d̄pnqq. In this case, Lpnqptq is dominated by the
contribution from (7.56). More precisely, (7.53) now implies

1

n1{2d̄pnq

´

Lpnqptq ´
d̄pnq

2n
N pnqptq2

¯

d
ÝÑ 0, (7.59)
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which together with (7.56) yields (3.21) with Zptq :“ t rZNptq. By Remark 7.2, rZNptq
is a Brownian bridge W ˝ptq, and the result follows. □

8. Number of components

Consider the case when G is a tree; in this case, the visible part of the graph is

a forest. Let 9K
pnq

k and Kpnqptq be the number of components in the visible forest at
time k or t, repectively, for the discrete-time and continuous-time versions.

Theorem 8.1. Assume that Gpnq is a sequence of deterministic or random trees
with V pGpnqq “ rns, and that (3.2) and (3.3) hold. Let γ˚ :“ χ˚ ´ 4. For the number
of components in the visible forest, we then have, in Dr0, 1s,

n´1{2
`

9K
pnq

tntu ´ tp1 ´ tqn
˘ d

ÝÑ 9Zptq, (8.1)

and

n´1{2
`

Kpnqptq ´ tp1 ´ tqn
˘ d

ÝÑ Zptq, (8.2)

where 9Zptq and Zptq are continuous Gaussian processes with E 9Zptq “ EZptq “ 0
and covariance functions given by, for 0 ď s ď t ď 1,

Cov
`

9Zpsq, 9Zptq
˘

“ s2p1 ´ tq2 ` γ˚s
2tp1 ´ tq, (8.3)

as in (3.5), and

Cov
`

Zpsq, Zptq
˘

“ s2p1 ´ tq2 ` γ˚s
2tp1 ´ tq ` sp1 ´ 2sqp1 ´ tqp1 ´ 2tq. (8.4)

Proof. In the discrete-time version, at time k the visible forest has k vertices and
9L

pnq

k edges, and thus

9K
pnq

k “ k ´ 9L
pnq

k . (8.5)

Hence,

9K
pnq

tntu ´ tp1 ´ tqn “ ´
`

9L
pnq

tntu ´ t2n
˘

` Op1q. (8.6)

Corollary 3.3 applies and thus (3.4)–(3.7) hold, with d˚ “ 2 and thus γ˚ “ χ˚ ´ 4.

Hence, (8.1) follows from (8.6) and (3.4), together with the fact that ´ 9Zptq
d
“ 9Zptq

(as processes); the covariances (8.3) are given in (3.5).
Similarly, recalling (6.10),

Kpnqptq “ N pnqptq ´ Lpnqptq

“ ntp1 ´ tq ` rN pnqptq ´
`

Lpnqptq ´ t2|Epnq|
˘

` Op1q. (8.7)

Hence, (8.2) follows from (7.6) and (7.11) (which hold jointly), with

Zptq :“ rZNptq ´
`

rZQptq ` t rZSptq
˘

“ ´ rZQptq ´ t rZSptq ` rZNptq, (8.8)

and the covariances (8.4) follow from (8.8) and (7.7). Alternatively, (8.2) and (8.4)

follow from Theorem A.4 with an “ n´1{2, bn “ n, c “ 1 and fptq “ tp1 ´ tq. □

Remark 8.2. The case G “ Pn was studied in [19], where the results in Theorem 8.1
where proved for this case (using the same method as here), which solved a problem

from [1]. The main results in [19] concern asymptotics of the maximum maxk
9K

pnq

k

and the difference maxk
9K

pnq

k ´ 9K
pnq

rn{2s
. (Note that the maximum is attained for k
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close to n{2.) The proofs of these results in [19] are easily modified to the present
more general case, using (8.1) or (8.2); we leave the details to the reader. △

Theorem 8.1 extends easily to forests Gpnq; again the visible part is always a forest.
It would be interesting to have similar results for general graphs G, but this seems
to require different methods.

Problem 8.3. Study the number of components in the visible part of G when G is
not a forest.

9. Other small subgraphs

We have in this paper studied the evolution of the number of visible edges as a
given graph is uncovered randomly; this number equals the number of visible copies
of K2. The methods in Sections 6–7 above can be used to show similar results for
the number of visible copies of other small graphs. This does not seem to involve
any new ideas, but the calculations become long and tedious, with more cases to
treat, and since the paper already is long enough, we give only a brief sketch for one
instance, the number of K3 (triangles).

As in Section 6, we let G be a given non-random graph on rns and consider the
continuous-time version of the uncovering process. Let T ptq be the number of visible
triangles in G at time t P r0, 1s. Similarly to (6.7) we have, using (6.1)–(6.2) and
symmetry, and summing over ordered triples of distinct indices i, j, k P rns satisfying
the indicated conditions,

6T ptq “
ÿ

ij,ik,jkPE

IiptqIjptqIkptq “
ÿ

ij,ik,jkPE

`

rIiptq ` t
˘`

rIjptq ` t
˘`

rIkptq ` t
˘

“
ÿ

ij,ik,jkPE

rIiptqrIjptqrIkptq ` 3t
ÿ

ij,ik,jkPE

rIiptqrIjptq ` 3t2
ÿ

ij,ik,jkPE

rIiptq ` 6t3T p1q

“: rT1ptq ` 3t rT2ptq ` 3t2 rT3 ` 6t3T p1q, (9.1)

where T p1q is the (non-random) number of triangles in G. We define

qT1ptq :“ p1 ´ tq´3
rT1ptq “

ÿ

i,j,k:ij,ik,jkPE

qIiptqqIjptqqIkptq, (9.2)

qT2ptq :“ p1 ´ tq´2
rT2ptq “

ÿ

i,j:ijPE

δij qIiptqqIjptq (9.3)

qT3ptq :“ p1 ´ tq´1
rT3ptq “

n
ÿ

i“1

2εiqIiptq, (9.4)

where δij is the number of common neighbours of i and j, and εi is the number of
triangles in G that contain i.

Similarly to Section 6, qTℓ (ℓ “ 1, 2, 3) are martingales on r0, 1q, and (9.1) to-
gether with (9.2)–(9.4) yields a decomposition of T ptq into them. The quadratic
(co)variations and their expectations are found as in Section 6; we have for example

r qT1, qT1st “

n
ÿ

i“1

1tTi ď tup1 ´ Tiq
´2

ˆ

3
ÿ

j,k:ij,ik,jkPE

qIjptqqIkptq

˙2

(9.5)
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and as a consequence

E r qT1, qT1st “

n
ÿ

i“1

ż t

0
p1 ´ sq´2 ¨ 36εi E

`

qI1psqqI2psq
˘2

ds

“ 36
n
ÿ

i“1

εi

ż t

0

s2

p1 ´ sq4
ds

“ 12
n
ÿ

i“1

εi ¨
t3

p1 ´ tq3
“ 36T p1q

t3

p1 ´ tq3
. (9.6)

Furthermore, it seems clear that it is possible to estimate the variances of the qua-
dratic (co)variations by arguments similar to the ones in the proof of Lemma 6.2.

Then, for a sequence of graphs Gpnq with suitable hypotheses on vertex degrees
and on other small structures in Gpnq (in particular the number of triangles and
the numbers of pairs of triangles sharing one or two vertices), Proposition 5.4 and
Lemma 5.5 would apply and show joint convergence, after suitable normalization, of
qTℓptq in Dr0, 1q and of rTℓptq i Dr0, 1s, which by the decomposition (9.1) would yield
convergence of T ptq ´ t3T p1q to a Gaussian process. Furthermore, corresponding

results for 9Ttntu would follow from Theorem A.1.
We have, however, not checked the details, nor found a precise set of conditions;

we leave this to vigorous readers to explore further.

Appendix A. Derandomizing time

We consider in this appendix the problem of recovering results for a discrete-time
stochastic process such as 9Lk from results for the corresponding continuous-time
process Lptq. We adapt the method from e.g. [15; 16] to the present situation.

We state the result generally. We assume that (for each n ě 1) we have a given
set of n elements, which we may identify with rns, and that we draw its elements one
by one in random order (i.e., uniformly at random and without replacement); we

assume also that we have a discrete-time stochastic process p 9Xkqnk“0 “ p 9X
pnq

k qnk“0,

where 9Xk is the value of some variable when we have drawn k objects. In the
corresponding continuous-time model, we give, as in Section 2, each element i P rns

a random variable Ti P Up0, 1q representing the time when i is drawn; we assume

that T1, . . . , Tn are independent. Then Xptq “ Xpnqptq is the value of our variable

at time t P r0, 1s. (The variables 9Xk and Xptq may depend on other underlying
random variables too; in that case, these variables are assumed to be independent
of the order the elements are drawn and of pTiq

n
1 .)

We define Nptq “ N pnqptq and τk “ τ
pnq

k by (2.4) and (2.5), and note that, as
in (2.6), we may for each n couple the discrete-time and continuous-time processes
such that

Xptq “ 9XNptq and conversely 9Xk “ Xpτkq, (A.1)

for all t P r0, 1s and k “ 0, . . . , n, respectively. Note that the process pNptqqtPr0,1s,
which describes the collection of times tTiu

n
1 , is stochastically independent of the

order of these times, and thus of the process p 9Xkqk. Moreover, n´1Nptq is the
empirical distribution of tTiu

n
1 , and thus, as noted in Remark 7.2, it is well known,
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see e.g. [4, Theorems 16.4 and 13.1], that, as n Ñ 8,

n´1{2
`

N pnqptq ´ nt
˘ d

ÝÑ W ˝ptq in Dr0, 1s, (A.2)

where W ˝ is a Brownian bridge, see Section 2.1 and in particular (2.1). (In fact, we
have proved (A.2) as part of Lemmas 7.1, 7.3, and 7.4.)

We say that a function fptq is continuously differentiable on r0, 1s if it is continu-
ously differentiable in p0, 1q and f 1ptq extends continuously to r0, 1s.

Theorem A.1. Suppose that, for each n, p 9X
pnq

k qnk“0 and pXpnqptqqtPr0,1s are stochas-
tic processes as above; in particular we assume that (A.1) holds. Suppose also that
panq8

1 and pbnq8
1 are sequences of positive numbers, that fptq is a continuously differ-

entiable function on r0, 1s, and that
`

Zptq,W ptq
˘

tPr0,1s
is a continuous 2-dimensional

Gaussian process on r0, 1s such that, as n Ñ 8, in Dr0, 1s,

`

anpXpnqptq ´ bnfptqq, n´1{2pN pnqptq ´ ntq
˘ d

ÝÑ
`

Zptq,W ptq
˘

. (A.3)

Suppose further that n´1{2anbn Ñ c P r0,8q. Then,

an
`

9X
pnq

tntu ´ bnfptq
˘ d

ÝÑ 9Zptq :“ Zptq ´ cf 1ptqW ptq in Dr0, 1s. (A.4)

Moreover, 9Zptq is also a continuous Gaussian process on r0, 1s, it has mean E 9Zptq “

EZptq, and covariance function

Covp 9Zpsq, 9Zptqq “ CovpZpsq, Zptqq ´ c2sp1 ´ tqf 1psqf 1ptq, 0 ď s ď t ď 1. (A.5)

Remark A.2. By (A.2), (A.3) implies that pW ptqqtPr0,1s
d
“ pW ˝ptqqtPr0,1s, so W ptq

is just a Brownian bridge. Nevertheless, we keep the notation W ptq since in general
Zptq and W ptq are dependent, and their joint distribution is important in (A.4). We
may also note that (A.3) is equivalent to the limits (A.2) and

an
`

Xpnqptq ´ bnfptq
˘ d

ÝÑ Zptq (A.6)

holding jointly, for some particular coupling of Zptq and W ˝ptq (which we then denote
by W ptq). △

Proof. By replacing 9X
pnq

k , Xpnqptq, and bn by an 9X
pnq

k , anX
pnqptq, and anbn, respec-

tively, we may for convenience assume that an “ 1 for all n.
By the Skorohod coupling theorem [24, Theorem 4.30], we may assume that the

limit in (A.3) holds a.s. Since convergence in Dr0, 1s to a continuous limit is equiv-
alent to uniform convergence, this means that a.s., as n Ñ 8,

Xpnqptq “ bnfptq ` Zptq ` op1q, (A.7)

N pnqptq “ nt ` n1{2W ptq ` o
`

n1{2
˘

, (A.8)

uniformly for t P r0, 1s. In particular, substituting t “ τ
pnq

k in (A.8), we obtain, a.s.,

k “ N pnqpτ
pnq

k q “ nτ
pnq

k ` n1{2W pτ
pnq

k q ` o
`

n1{2
˘

, (A.9)

and thus

τ
pnq

k “
k

n
´ n´1{2W pτ

pnq

k q ` o
`

n´1{2
˘

, (A.10)
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uniformly for 0 ď k ď n ă 8. Since W ptq is a continuous function of t, it is bounded
(with a random bound), and thus (A.10) implies in particular that a.s.

τ
pnq

k “
k

n
` op1q uniformly in k “ 0, . . . , n. (A.11)

Furthermore, W ptq is uniformly continuous on the compact interval r0, 1s, and thus

(A.11) implies W pτ
pnq

k q´W pk{nq “ op1q, uniformly in k. Consequently, using (A.10)
again, a.s.

τ
pnq

k “
k

n
´ n´1{2W pk{nq ` o

`

n´1{2
˘

, (A.12)

and similarly, uniformly for t P r0, 1s,

τ
pnq

tntu “ t ´ n´1{2Wt ` o
`

n´1{2
˘

“ t ` op1q. (A.13)

We substitute this in (A.7) and obtain a.s., recalling (A.1) and the fact that Zptq is
uniformly continuous, and using a Taylor expansion of f ,

9X
pnq

tntu “ Xpnqpτ
pnq

tntuq “ bnf
`

τ
pnq

tntu

˘

` Zpτ
pnq

tntuq ` op1q

“ bnf
`

t ´ n´1{2W ptq ` o
`

n´1{2
˘˘

` Zptq ` op1q

“ bnfptq ´ bnf
1ptqn´1{2W ptq ` o

`

bnn
´1{2

˘

` Zptq ` op1q, (A.14)

uniformly for t P r0, 1s. The result (A.4) follows, since bnn
´1{2 “ anbnn

´1{2 Ñ c,

and in particular bnn
´1{2 “ Op1q.

Finally, we recall that, as noted above, p 9X
pnq

k qk and pN pnqptqqt are independent for
each n. Since the proof shows that the limits (A.3) and (A.4) hold jointly, we conclude

that the limits p 9Zptqq and pW ptqq are independent. Since Zptq “ 9Zptq ` cf 1ptqW ptq
by (A.4), it follows that

CovpZpsq, Zptqq “ Covp 9Zpsq, 9Zptqq ` c2f 1psqf 1ptqsp1 ´ tq, 0 ď s ď t ď 1,
(A.15)

and thus (A.5) holds. □

Remark A.3. As just noted, the proof shows that the limit (A.4) holds jointly with

(A.3), and furthermore that p 9Zptqq is independent of pW ptqq. In particular, for all

s, t P r0, 1s, we have Covp 9Zpsq,W ptqq “ 0, and thus by (A.4) and (2.1) necessarily

CovpZpsq,W ptqq “ cf 1psq CovpW psq,W ptqq “

#

cf 1psqsp1 ´ tq, 0 ď s ď t ď 1,

cf 1psqp1 ´ sqt, 0 ď t ď s ď 1.
.

(A.16)

△

We note also that a converse to Theorem A.1 holds.

Theorem A.4. Suppose that (as in Theorem A.1) p 9X
pnq

k qn0 and pXpnqptqqtPr0,1s are
stochastic processes as above, that panq8

1 and pbnq8
1 are positive numbers, and that

fptq is a continuously differentiable function on r0, 1s. Suppose further that p 9ZptqqtPr0,1s

is a continuous Gaussian process such that

an
`

9X
pnq

tntu ´ bnfptq
˘ d

ÝÑ 9Zptq in Dr0, 1s. (A.17)
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Suppose also that anbn{
?
n Ñ c P r0,8q. Then

an
`

Xpnqptq ´ bnfptq
˘ d

ÝÑ Zptq :“ 9Zptq ` cf 1ptqW ˝ptq in Dr0, 1s, (A.18)

where pW ˝ptqqtPr0,1s is a Brownian bridge independent of p 9ZptqqtPr0,1s.
Moreover, Zptq is also a continuous Gaussian process on r0, 1s, it has mean

EZptq “ E 9Zptq, and covariance function

CovpZpsq, Zptqq “ Covp 9Zpsq, 9Zptqq ` c2sp1 ´ tqf 1psqf 1ptq, 0 ď s ď t ď 1.
(A.19)

Proof. We argue as in the proof of Theorem A.1, and we may again assume an “ 1.

First, as noted above, p 9X
pnq

k qk and pN pnqptqqt are independent for each n; hence, the

limits (A.17) and (A.2) hold jointly, with independent limits p 9Zptqqt and pW ˝ptqqt.
Consequently, we may by the Skorohod coupling theorem assume that both (A.17)
and (A.2) hold a.s., and thus

9X
pnq

tntu “ bnfptq ` 9Zptq ` op1q, (A.20)

N pnqptq “ nt ` n1{2W ˝ptq ` o
`

n1{2
˘

, (A.21)

uniformly for t P r0, 1s. Consequently, a.s.,

n´1N pnqptq “ t ` n´1{2W ˝ptq ` o
`

n´1{2
˘

, (A.22)

and, using (A.1), the uniform continuity of 9Zptq, and the continuous differentiability
of f ,

Xpnqptq “ 9X
pnq

Npnqptq
“ bnf

`

n´1N pnqptq
˘

` 9Z
`

n´1N pnqptq
˘

` op1q

“ bnfptq ` bnf
1ptqn´1{2W ˝ptq ` o

`

bnn
´1{2

˘

` 9Z
`

t
˘

` op1q (A.23)

uniformly for t P r0, 1s, which yields (A.18).

The covariance formula (A.19) follows from (2.1) and the independence of p 9Zptqqt
and pW ˝ptqqt. □

Remark A.5. Theorems A.1 and A.4 extend to vector-valued 9Xk and Xptq, mutatis

mutandis; we may assume that all 9Xk and Xptq take their values in Rq for some fixed

q ě 1 (not depending on k or n), and that then also fptq and Zptq or 9Zptq take their
values in Rq. △

Remark A.6. We have assumed in Theorem A.1 that pZptq,W ptqq is a Gaussian
process, since this is the case we use. The theorem is valid (with the same proof)

for any continuous stochastic process pZptq,W ptqq, except that (of course) 9Zptq then
is not necessarily Gaussian, and that (A.5) requires that the processes have finite
variances.

Similarly, Theorem A.4 holds for any continuous stochastic process 9Zptq, with
corresponding modifications. △

Appendix B. On degree distributions in some random trees

We apply our main results to several classes of random trees in examples in Sec-
tion 4. In order to do so, we have to verify the condition (3.2), which says that the
average of the squared degrees of the vertices converges to χ˚ in probability. While
this is closely related to known results on the degree distribution in the random
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trees, we do not know any references stating precisely this result. However, in this
appendix we show that for the random trees considered in Section 4, (3.2) easily
follows from known results. We also show that the condition (3.3) on the maximum
degree holds for these trees.

Throughout this section, we assume that Gpnq (n ě 1) is some sequence of random

trees with V pGpnqq “ rns. Let Dn be the degree of a random vertex of Gpnq. Then
(3.2) can be written

E
`

D2
n | Gpnq

˘ p
ÝÑ χ˚. (B.1)

Our uncovering problem and the results for it in Section 3 are stated for unrooted
graphs and trees, but they can of course be applied also to rooted trees by regarding
them as unrooted, forgetting the choice of root. Indeed, most of our examples of
random trees in Section 4 consider rooted trees. For rooted trees, it is usually more
convenient to consider outdegrees. We assume (without loss of generality) that the

root is vertex 1, and we denote the outdegree of vertex i by d̂i. Thus

di “ d̂i ` 1ti ‰ 1u. (B.2)

Similarly, we let pDn denote the outdegree of a random vertex of Gpnq. We then have
the following simple reformulations of (3.2) and (B.1).

Lemma B.1. Suppose that Gpnq is a sequence of rooted trees with V pGpnqq “ rns,
and suppose that (3.3) holds. Then (3.2) is equivalent to

pχpnq :“
1

n

n
ÿ

i“1

`

d̂
pnq

i

˘2 p
ÝÑ pχ˚ :“ χ˚ ´ 3, (B.3)

and thus also to

E
`

pD2
n | Gpnq

˘ p
ÝÑ pχ˚. (B.4)

Proof. By (B.2), we have, using
řn

i“1 d̂
pnq

i “ n ´ 1 and (3.3),

n
ÿ

i“1

`

d
pnq

i

˘2
“

n
ÿ

i“1

´

`

d̂
pnq

i

˘2
` 2d̂

pnq

i ` 1
¯

´ 2d̂
pnq

1 ´ 1

“

n
ÿ

i“1

`

d̂
pnq

i

˘2
` 2pn ´ 1q ` n ´ 2d̂

pnq

1 ´ 1

“

n
ÿ

i“1

`

d̂
pnq

i

˘2
` 3n ` opnq. (B.5)

The result follows by dividing by n. □

B.1. Preliminaries. We let PpNq be the space of probability distributions on N “

t0, 1, . . . u. We give PpNq the standard weak topology (for the space of probability
measures on any metric space), see e.g. [4]. Thus, since N is discrete, if Xn (n ě 1)
and X are random variables with values in N, then convergence in PpNq of the
distributions

LpXnq Ñ LpXq (B.6)

means

E fpXnq Ñ E fpXq for every bounded function f : N Ñ R. (B.7)
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It is well known [11, Theorem 5.6.4] that, again since N is discrete, this is equivalent
both to convergence of point probabilities

PpXn “ dq Ñ PpX “ dq for every d P N, (B.8)

and also to convergence in total variation:

8
ÿ

d“0

∣∣PpXn “ dq ´ PpX “ dq
∣∣ Ñ 0. (B.9)

Consider now a sequence Gpnq of random trees, as usual with V pGpnqq “ rns. Then

the conditional distribution LpDn | Gpnqq is a random distribution on N, i.e. a ran-
dom element of PpNq. The equivalence of (B.6)–(B.9) above transfers to convergence
in probability of random distributions in PpNq, and in particular, in our situation,
we have the following (note that the right-hand side of (B.10) is a constant element
of PpNq):

Lemma B.2. For any random variable ζ P N, the following are equivalent:

L
`

Dn | Gpnq
˘ p

ÝÑ Lpζq, (B.10)

E
`

fpDnq | Gn

˘ p
ÝÑ E fpζq for every bounded f : N Ñ R, (B.11)

P
`

Dn “ d | Gpnq
˘ p

ÝÑ Ppζ “ dq for every fixed d P N, (B.12)
8
ÿ

d“0

∣∣PpDn “ d | Gpnqq ´ Ppζ “ dq
∣∣ p

ÝÑ 0. (B.13)

If Gpnq are rooted trees, we also have the same equivalences with pDn instead of Dn.

Proof. Using the fact that (in any metric space) a sequence converging in probability
has a subsequence converging a.s., this follows easily from the equivalence of (B.6)–
(B.9); we omit the details. □

We state a simple lemma in a general form; recall that ∆pnq denotes the maximum
degree in Gpnq. We are mainly interested in the case fpxq “ x2; note that in this
case, (B.16) and (B.17) are equivalent to (3.2) and (3.3), with χ˚ “ E fpζq “ E ζ2.

Lemma B.3. Let ζ be a random variable with values in N and let f : N Ñ r0,8q be
any function such that E fpζq ă 8. If, as n Ñ 8,

LpDn | Gpnqq
p

ÝÑ Lpζq (B.14)

and

E fpDnq Ñ E fpζq, (B.15)

then

E pfpDnq | Gpnqq
p

ÝÑ E fpζq, (B.16)

fp∆pnqq{n
p

ÝÑ 0. (B.17)

If Gpnq are rooted trees, we also have the same equivalences with pDn instead of Dn

and p∆pnq :“ maxi d̂
pnq

i ě ∆pnq ´ 1 instead of ∆pnq.
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Proof. We use truncations. For M ě 0, let fM pxq :“ fpxq ^ M . Then each fM is
bounded, and thus by (B.14) and Lemma B.2,

E pfM pDnq | Gpnqq
p

ÝÑ E fM pζq. (B.18)

Furthermore, taking the expectation in (B.18), we obtain by dominated convergence
(for convergence in probability, see e.g. [11, Theorem 5.5.4]), again because fM is
bounded,

E fM pDnq Ñ E fM pζq. (B.19)

We have fM pDnq ď fpDnq and thus, using Markov’s inequality, for any ε ą 0.

P
“

E pfpDnq | Gpnqq ´ E pfM pDnq | Gpnqq ą ε
‰

“ P
“

E pfpDnq ´ fM pDnq | Gpnqq ą ε
‰

ď ε´1 E
“

E pfpDnq ´ fM pDnq | Gpnqq
‰

“ ε´1 E
“

fpDnq ´ fM pDnq
‰

. (B.20)

Hence, by (B.15) and (B.19),

lim sup
nÑ8

P
“

E pfpDnq | Gpnqq ´ E pfM pDnq | Gpnqq ą ε
‰

ď ε´1 lim sup
nÑ8

E
“

fpDnq ´ fM pDnq
‰

“ ε´1
`

E fpζq ´ E fM pζq
˘

. (B.21)

By monotone convergence,

E fM pζq Ñ E fpζq as M Ñ 8, (B.22)

and thus

lim
MÑ8

lim sup
nÑ8

P
“

E pfpDnq | Gpnqq ´ E pfM pDnq | Gpnqq ą ε
‰

“ 0. (B.23)

We have, for any ε ą 0,

P
“∣∣E pfpDnq | Gpnqq ´ E fpζq

∣∣ ą 3ε
‰

ď P
“∣∣E pfpDnq | Gpnqq ´ E pfM pDnq | Gpnqq

∣∣ ą ε
‰

` P
“
∣∣E pfM pDnq | Gpnqq ´ E fM pζq

∣∣ ą ε
‰

` P
“∣∣E fM pζq ´ E fpζq

∣∣ ą ε
‰

(B.24)

Taking first the limsup as n Ñ 8, and then letting M Ñ 8, we see from (B.23),
(B.18), and (B.22) that the right-hand side tends to 0, which yields (B.16). (Alter-
natively, since convergence in probability to a constant is the same as convergence
in distribution to the same constant, [4, Theorem 4.2] shows that (B.22) and (B.23)
enable us to let M Ñ 8 in (B.18), which yields (B.16).)

Moreover, P
`

Dn “ ∆pnq | Gpnq
˘

ě 1{n, and thus, for any M ě 0,

fp∆pnqq ď fp∆pnqq ´ fM p∆pnqq ` M ď nE
`

fpDnq ´ fM pDnq | Gpnq
˘

` M. (B.25)

Hence, for any ε ą 0 and M ě 0, we have for n ą 2M{ε,

Prfp∆pnqq{n ą εs ď P
“

E
`

fpDnq ´ fM pDnq | Gpnq
˘

ą ε{2
‰

, (B.26)

and consequently,

lim sup
nÑ8

Prfp∆pnqq{n ą εs ď lim sup
nÑ8

P
“

E
`

fpDnq ´ fM pDnq | Gpnq
˘

ą ε{2
‰

. (B.27)
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This holds for every M ě 0, and thus (B.23) shows that

lim
nÑ8

P
`

fp∆pnqq{n ą ε
˘

“ 0 (B.28)

for every ε ą 0, which is (B.17).

The proof for pDpnq is the same. □

B.2. Conditioned Galton–Watson trees. Let, as in Example 4.2, Gpnq be a con-
ditioned Galton–Watson tree with n vertices defined with offspring distributed as a
random variable ξ P N with E ξ “ 1 and 0 ă Var ξ ă 8. Recall that this means that
Gpnq is obtained by conditioning a Galton–Watson tree T on having exactly n ver-
tices, where in T , every vertex has a number of children distributed as independent
copies of ξ; see e.g. [20]. We denote the distribution of ξ by Lpξq P PpNq; this is
known as the offspring distribution.

We regard the trees Gpnq and T as rooted and ordered.
It is well known that the asymptotic degree distribution of Gpnq is the offspring

distribution Lpξq, i.e., pDn
d

ÝÑ ξ as n Ñ 8; moreover, this holds also (in probability)

conditioned on Gpnq, i.e.,

Lp pDn | Gpnqq
p

ÝÑ Lpξq, (B.29)

see [20, Theorem 7.11(ii)]. (The notation is different there, but [20, Theorem 7.11(ii)]

is equivalent to Pp pDn “ d | Gpnqq
p

ÝÑ Ppξ “ dq, which is equivalent to (B.29) by
Lemma B.2.) Furthermore, let fpxq :“

`

x
2

˘

“ xpx ´ 1q{2. Then,

E
`

fp pDnq | Gpnq
˘

“
1

n

n
ÿ

i“1

d̂ipd̂i ´ 1q

2
. (B.30)

Denote the sum in (B.30) by Υn, and note that if t is the rooted tree consisting of a

root with two children, then Υn is the number of subtrees of Gpnq that are isomorphic
to t, where we consider general subtrees, and consider each subtree as rooted with
the same parent-child relations as in Gpnq. This number Υn is treated (for general
rooted and ordered trees t) in [21, Theorem 1.1], which shows, in particular, that
under our conditions E ξ “ 1 and E ξ2 ă 8, we have

Υn

n

p
ÝÑ E

ξpξ ´ 1q

2
“ E fpξq, (B.31)

and

E
Υn

n
ÝÑ E

ξpξ ´ 1q

2
“ E fpξq. (B.32)

By (B.30), these are precisely (B.16) and (B.15), for pDn, with ζ “ ξ. Since trivially

EDn “ pn´1q{n Ñ 1 “ E ξ, (B.15) is trivial for pDn and fpxq “ x. Hence, still taking
ζ “ ξ, it follows by linearity that (B.15) holds also for fpxq “ x2, and thus, recalling

(B.29), Lemma B.3 shows (B.16) and (B.17) for pDn and fpxq “ x2. By linearity
again, we may also take fpxq “ px`1q2 in (B.16), which (using (B.17)) easily is seen
to be equivalent to (B.16) for Dn with fpxq “ x2 and ζ “ ξ ` 1. Consequently, we
have (3.2) and (3.3), with χ˚ “ E pξ ` 1q2. Since d˚ “ 2 “ E pξ ` 1q, it follows that

γ˚ :“ χ˚ ´ d2˚ “ Var pξ ` 1q “ Var ξ. (B.33)
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Remark B.4. It follows similarly from [21] (by taking t as a star with a root of
degree k ď r) that for any integer r ě 2, if E ξr ă 8, then

1

n

n
ÿ

i“1

d̂ri “ E
`

pDr
n | Gpnq

˘ p
ÝÑ E ξr, (B.34)

1

n

n
ÿ

i“1

dri “ E
`

Dr
n | Gpnq

˘ p
ÝÑ E pξ ` 1qr. (B.35)

In other words, the moments of the (out)degree distribution converge to the moments
of ξ or ξ ` 1, provided the latter moments are finite. △

B.3. The random recursive tree. Let now Gpnq be a random recursive tree. It is
well known that the asymptotic outdegree distribution is geometric Gep1{2q; more-

over, this holds conditioned on Gpnq in the sense (B.12), see e.g. [25], [3, Section 3.2],
[18, Theorem 1], [7, Theorem 6.8], and [13, Example 6.1]. Hence, Lemma B.2 shows

that (B.10)–(B.13) hold for pDn with ζ “ ξ „ Gep1{2q; consequently they also hold
for the total degree Dn with ζ “ ξ ` 1.

We next verify (B.15), again first taking fpxq :“
`

x
2

˘

“ xpx ´ 1q{2. Since Gpnq is

constructed with vertices added in increasing order, fpd̂iq is the number of pairs pj, kq

with i ă j ă k ď n such that ij and ik are edges. Hence, since Ppj „ iq “ 1{pj ´ 1q

for j ą i, and these events for different j are independent,

nE fp pDnq “

n
ÿ

i“1

E fpd̂iq “
ÿ

1ďiăjăkďn

Ppj „ i and k „ iq “
ÿ

1ďiăjăkďn

1

pj ´ 1qpk ´ 1q

“
ÿ

2ďjăkďn

1

k ´ 1
“

ÿ

3ďkďn

k ´ 2

k ´ 1
“ n ` Oplog nq. (B.36)

Consequently, E fp pDnq Ñ 1, which verifies (B.15) since E fpξq “ 1
2pE ξ2 ´ E ξq “

1
2pVar pξq ` 1 ´ 1q “ 1.

We have shown (B.15) with f “ xpx ´ 1q{2, and, as in Section B.2, it follows by
linearity that (B.15) holds also for fpxq “ x2, and furthermore that (B.15)–(B.17)
hold for Dn and fpxq “ x2. Hence, (3.2) and (3.3) hold, with χ˚ “ E pξ ` 1q2.

Remark B.5. A similar calculation shows that (B.15) holds for pDn and fpxq :“
`

x
r

˘

for any integer r ě 2; it follows that (B.15) holds also for fpxq “ xr, and

thus Lemma B.3 shows that all moments of the outdegree distribution (given Gpnq)
converge in probability to the corresponding moments of ξ „ Gep1{2q. Hence, all
moments of the degree distribution Dn converge in probability to the corresponding
moments of ξ ` 1. △
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