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Abstract. We present an analysis of the depth-first search algorithm in a random
digraph model with independent outdegrees having an arbitrary distribution with
finite variance. The results include asymptotics for the distribution of the stack
index and depths of the search. The search yields a series of trees of finite size
before and after the exploration of a giant tree. Our analysis mainly concerns
the giant tree. Most results are first order. This analysis proposed by Donald
Knuth in his next to appear volume of The Art of Computer Programming gives
interesting insight in one of the most elegant and efficient algorithm for graph
analysis due to Tarjan.

1. Introduction

This paper is a continuation of our earlier paper [5], which studies a special case
using a simpler method. The motivation of both paper is a new section in Donald
Knuth’s The Art of Computer Programming [6], which is dedicated to Depth-First
Search (DFS) in a digraph. The DFS is an important computing tool dedicated
to the exploration of large unstructured dataset, mostly organised as large directed
graphs, and the DFS is the fundation of the daily crawling process of the graph of
the Web performed by Google [9]. Briefly, the DFS starts with an arbitrary vertex,
and explores the arcs from that vertex one by one. When an arc is found leading
to a vertex that has not been seen before, the DFS explores the arcs from it in the
same way, in a recursive fashion, before returning to the next arc from its parent.
This eventually yields a tree containing all descendants of the the first vertex (which
is the root of the tree). If there still are some unseen vertices, the DFS starts again
with one of them and finds a new tree, and so on until all vertices are found. We
refer to [6] for details as well as for historical notes. (See also S1–S2 in Section 2.)
Note that the digraphs in [6] and here are multi-digraphs, where loops and multiple
arcs are allowed. (Although in our random model they are few and usually not
important.) The DFS algorithm generates a spanning forest (the depth-first forest)
in the digraph, with all arcs in the forest directed away from the roots. Our main
purpose is to study the properties of the depth-first forest, starting with a random
digraph G; in particular we study the distribution of the stack index and the depth
of vertices in the depth-first forest.

The random digraph model that we consider has n vertices and a given outde-
gree distribution P. The outdegrees (number of outgoing arcs) of the n vertices
are independent random numbers with this distribution. The endpoint of each arc
is uniformly selected at random among the n vertices, independently of all other
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arcs. (Therefore, an arc can loop back to the starting vertex, and multiple arcs can
occur.) We consider asymptotics as n Ñ 8 for a fixed outdegree distribution. In
[5], we studied the case when the outdegree distribution is geometric. In the present
paper, we generalise this and let P be an arbitrary distribution; however, we assume
throughout the paper that the outdegree distribution P has a finite second moment.

Remark 1.1. Related results are proved by Enriquez, Faraud and Ménard [3] for
DFS in an undirected Erdős–Rényi graph Gpn, λ{nq; the case when λ “ 1 ` ε for
small ε ą 0 is studied further by another argument by Diskin and Krivelevich [2].
DFS in the random digraph Dpn, pq has also been considered previously, for example
in the proof of [7, Theorem 3]. Although this is for a different random graph model,
DFS on Gpn, λ{nq is the same as DFS on the Erdős–Rényi digraph Dpn, λ{nq, which
is essentially the same as the digraph studied in the present paper with outdegree
distribution Popλq. Hence, the main result of [3], which shows convergence of the
depth profile in the depth-first forest to a certain deterministic limit, is essentially
the special case P “ Popλq of our result for the depths (Theorem 3.2). The proofs
are quite different. See also Enriquez, Faraud, Ménard and Noiry [4], where related
results are given for the (undirected) configuration model.

We analyze the process dptq of depths of the vertices, in the order they are found
by the DFS. For the geometric outdegree distribution studied in [5], dptq is a Markov
chain, which was used in our proofs. For general outdegree distributions, this is no
longer true. We show in Section 2 that we can use the size Iptq of the stack of arcs
kept by the DFS as a substitute; this is a Markov chain, and we obtain limit results
for the stack size with deviation in OL2pn1{2q. (See Section 1.1 below for notation.)
In a second step (Section 3), this is used to derive limit results for the depths dptq,
but the results obtained are within deviation in oppnq which is close to the order of
the result. We give also an alternative approach in Section 4 where the depths dptq
are analysed directly by a different method; the results there are preliminary and
less complete, but it seems that this method yields sharper results that the method
in Section 3, with deviation within Oppnβq with β arbitrary close to 4{5; thus the
worst case error is now negligible compared to the main order.

Many details and further results will be given in the forthcoming full paper.

1.1. Some notation. We denote the given outdegree distribution by P. We let η
denote random variables with this distribution. In particular, we denote the outde-
gree of vertex v by ηpvq. Recall that our standing assumption is that these outdegrees
are i.i.d. (independent and identically distributed) with ηpvq „ P. We let vt denote
the t-th vertex found by the DFS, and simplify notation by letting ηt :“ ηpvtq be
its outdegree. It follows from the construction of the DFS that also the random
variables ηt, t “ 1, . . . , n are i.i.d. with distribution P; this fundamental property
will be used repeatedly without further mention.

We assume throughout that the second moment E η2 ă 8. This is essential for
some results (e.g. results on asymptotic normality), but we conjecture that many
results hold assuming only that the first moment E η ă 8.

The mean outdegree, i.e., the expectation E η of P, is denoted by λ. In analogy
with branching processes, we say that the random digraph is subcritical if λ ă 1,
critical if λ “ 1, and supercritical if λ ą 1.

Let dpvq be the depth of vertex v, and let dptq :“ dpvtq.
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As usual, w.h.p. means with high probability, i.e., with probability 1 ´ op1q as
n Ñ 8.

For random variables Xn and positive numbers an, we write Xn “ oppanq if,

as n Ñ 8, Xn{an
p

ÝÑ 0, i.e., if for every ε ą 0, we have Pp|Xn| ą εanq Ñ 0.
Furthermore, Xn “ Oppanq means that the family tXn{anu is bounded in probability,
i.e., if for every ε ą 0 there exists C such that Pp|Xn| ą Canq ă ε for all n. Xn “

oL2panq means E
“

|Xn{an|2
‰

Ñ 0, and Xn “ OL2panq means E
“

|Xn{an|2
‰

“ Op1q.
Geppq denotes the geometric distribution with parameter p P p0, 1s; thus ξ „ Geppq

means that ξ is a random variable with

Ppξ “ kq “ p1 ´ pqkp, k “ 0, 1, 2, . . . (1.1)

We write x` :“ maxpx, 0q.

2. Stack index analysis

As said above, unlike the special case P “ Gep1 ´ pq studied in [5], in general
the depth dptq does not follow a Markov chain. Therefore, we instead first consider
the stack index Iptq defined below, which does evolve as a Markov chain; many
arguments for Iptq below are similar to arguments for dptq in [5, Section 2].

The DFS can be regarded as keeping a stack of unexplored arcs, for which we have
seen the start vertex but not the endpoint. The stack evolves as follows:

S1. If the stack is empty, pick a new vertex v that has not been seen before (if
there is no such vertex, we have finished). Otherwise, pop the last arc from the
stack, and reveal its endpoint v (which is uniformly random over all vertices).
If v already is seen, repeat.

S2. (v is now a new vertex) Reveal the outdegree ηpvq of v and add to the stack
ηpvq new arcs from v, with unspecified endpoints. GOTO S1.

Let Iptq be the size of the stack when vt is found (but before we add the arcs from
vt). After vt is found, and the ηt arcs from vt have been added to the stack, the
stack size is thus Iptq ` ηt. We next perform step S1 one or several times. As long
as the stack is not empty, we find each time an already seen vertex with probability
t{n, and in this case we repeat S1. Hence, conditioned on Iptq and ηt, for k ě 1, the
probability that S1 is performed exactly k times is

´ t

n

¯k´1´

1 ´
t

n

¯

, (2.1)

provided 1 ď k ď Iptq ` ηt, and if none of these events occur, then S1 is repeated a
last time and a new vertex is picked that will be the root of a new tree in the depth-
first forest (unless we have finished the DFS). Note that (2.1) equals the probability
Ppξ “ kq with ξt „ Gep1 ´ t{nq, see (1.1). Thus, we can write

Ipt` 1q “
`

Iptq ` ηt ´ 1 ´ ξt
˘`
, 1 ď t ă n, (2.2)

where ξt „ Gep1 ´ t{nq is a random variable independent of the history; more
precisely, the random variables ηt p1 ď t ď nq and ξt p1 ď t ă nq are all independent.
We start the stochastic recursion (2.2) with Ip1q “ 0.

We define

ζt :“ ηt ´ ξt ´ 1. (2.3)
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Thus, (2.2) can be written Ipt` 1q “
`

Iptq ` ζt
˘`

. We see also that, for 1 ď t ă n,

vt`1 is a root ðñ Iptq ` ζt ă 0 ðñ Ipt` 1q ą Iptq ` ζt. (2.4)

Note that the random variables ζt are independent, but have different distributions.
We define also

rIptq :“
t´1
ÿ

i“1

pηi ´ 1 ´ ξiq “

t´1
ÿ

i“1

ζi (2.5)

and

I˚ptq :“ min
1ďjďt

rIpjq. (2.6)

It follows from the recursion (2.2) and induction that

Iptq “ rIptq ´ I˚ptq. (2.7)

By (2.5) and (2.7),

rIpt` 1q “ rIptq ` ζt “ I˚ptq ` Iptq ` ζt (2.8)

and thus it follows from (2.4) and (2.6) that, for 1 ď t ă n,

vt`1 is a root ðñ Iptq ` ζt ă 0 ðñ rIpt` 1q ă I˚ptq ðñ I˚pt` 1q ă I˚ptq.
(2.9)

Obviously, v1 is also a root, with Ip1q “ rIp1q “ I˚p1q “ 0.
We have

E ζt “ E ηt ´ E ξt ´ 1 “ λ´
t{n

1 ´ t{n
´ 1 “ λ´

1

1 ´ t{n
. (2.10)

Hence, uniformly in t{n ď θ˚ for any fixed θ˚ ă 1,

E rIptq “

t´1
ÿ

i“1

E ζi “ pt´ 1qλ´

t´1
ÿ

i“1

1

1 ´ i{n
“ nrιpt{nq `Op1q, (2.11)

where

rιpθq :“

ż θ

0

´

λ´
1

1 ´ x

¯

dx “ λθ ` logp1 ´ θq. (2.12)

Let, as in [5],

θ0 :“
`

1 ´ λ´1
˘`

“

#

1 ´ λ´1, λ ą 1,

0, λ ď 1,
(2.13)

and let θ1 is the largest root in r0, 1q of rιpθ1q “ 0; thus

logp1 ´ θ1q “ ´λθ1 (2.14)

and θ1 equals the survival probability of a Bienayme–Galton–Watson (BGW) process
with Popλq offspring distribution. Define

rι`pθq :“ rrιpθqs` “

#

λθ ` logp1 ´ θq, 0 ď θ ď θ1,

0, θ1 ď θ ď 1,
(2.15)

It is easy to see that if λ ď 1, then rι`pθq “ 0 for all θ P r0, 1s, while if λ ą 1, then
rι`pθq ą 0 for 0 ă θ ă θ1 (where 0 ă θ1 ă 1), with a maximum at θ0 “ 1 ´ λ´1.
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We now can argue similarly to [5], using Iptq instead of dptq. The proof of [5,
Theorem 2.4] applies with very minor differences, and yields:

Theorem 2.1. Suppose that the outdegree distribution has finite variance. Then

max
1ďtďn

∣∣Iptq ´ nrι`pt{nq
∣∣ “ OL2pn1{2q. (2.16)

Furthermore, for every ε ą 0, we also have

max
1ďtďp1´εqn

∣∣rIptq ´ nrιpt{nq
∣∣ “ OL2pn1{2q. (2.17)

We can use Theorem 2.1 to show the following results, extending [5, Theorems
4.1 and 4.3] to general outdegree distributions. The proofs are similar to the ones in
[5]; details will be given in the full paper.

Theorem 2.2. Suppose that the outdegree distribution has finite variance. Let N be
the number of trees in the depth-first forest. Then

N “ ψn`OL2pn1{2q, (2.18)

where

ψ :“ 1 ´ θ1 ´
λ

2
p1 ´ θ1q2. (2.19)

Figure 1 shows the parameter ψ as a function of the average degree λ.

Figure 1. ψ, as function of λ.

Theorem 2.3. Suppose that the outdegree distribution has finite variance. Let T1

be the largest tree in the depth-first forest.

(i) If λ ď 1, then |T1| “ oppnq.
(ii) If λ ą 1, then the largest tree in the depth-first forest has order |T1| “ θ1n `

OL2pn1{2q. Furthermore, the second largest tree has order |T2| “ oppnq.

More precise results will be given in the full paper.
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3. Stack size and depth

We can recover the depth of the vertices from the stack size process, or more

precisely, from the process rIptq defined above; this uses a method that has been used
by several authors in the study of other random trees, see for example [8, (1.1)] and
[1, Proposition 4].

When vertex vt is found by the DFS, the stack consist of all future arcs from the
ancestors of vt in the depth-first forest. Hence, the stack size Iptq is the total number
of future arcs from the ancestors of vt. As the DFS continues, it first explores the
descendants of vt. During this period, the ancestors of vt are still ancestors of the
current vertex, and their future arcs remain the same as when vt was found. Hence, if
vs is a descendant of vt, then Ipsq ě Iptq. Moreover, we then also have I˚psq “ I˚ptq

by (2.9), since no new root has been found, and thus, by (2.7), rIpsq ě rIptq. On
the other hand, when the DFS has finished exploring decendants of vt, then it has
explored all arcs from vt and the DFS next backtracks to the ancestors of vt by
exploring the future edges of the ancestors of vt one by one. If another vertex vu
is found in this way, then Ipuq ă Iptq; furthermore, I˚puq “ I˚ptq as above, and

thus rIpuq ă rIptq. Finally, if no further new vertex is found in the same tree as vt,
then the DFS next finds a new root vu; in this case, Ipuq “ 0 ď Iptq, and, by (2.9),

I˚puq ă I˚ptq. Hence, rIpuq ă rIptq holds in this case too. This leads to the following
characterisation. (Details will be given in the full paper.)

Lemma 3.1. (i) For any s, t P rns, vs is a descendant of vt if and only if s ą t and

min
tďiďs

rIpiq “ rIptq. (3.1)

(ii) For any t ě 1, the ancestors of vt are the vertices vs corresponding to the

weak right-to-left minima of prIpsqq1ďsďt, excluding s “ t. Hence the depth dptq of vt
is the number of such right-to-left minima.

Let Gηpzq :“
ř

k Ppη “ kqzk be the probability generating function of η. For
θ P r0, 1s, let ηθ be a random variable obtained by thinning the outdegree η and
keeping each arc with probability 1 ´ θ, independently; thus ηθ has probability
generating function

Gηθpzq “ Gη

`

θ ` p1 ´ θqz
˘

“ Gη

`

1 ´ p1 ´ θqp1 ´ zq
˘

. (3.2)

Note that the number of outgoing arcs from vt to vertices that are not discovered
earlier has the distribution of ηθ with θ “ t{n. Let ρpθq be the survivability proba-
bility that the Bienayme–Galton–Watson (BGW) process with offspring distribution
ηθ has infinite size. It satisfies the identity:

1 ´ ρpθq “ Gηθp1 ´ ρpθqq “ Gη

`

θ ` p1 ´ θqp1 ´ ρpθqq
˘

“ Gη

`

1 ´ p1 ´ θqρpθq
˘

. (3.3)

We have E ηθ “ p1 ´ θqλ. Hence, if p1 ´ θqλ ą 1, then ρpθq ą 0; otherwise ρpθq “ 0.
Define

rℓpθq :“

ż θ

0
ρpxq dx, 0 ď θ ď θ0, (3.4)

and

rℓ`pθq :“

$

’

&

’

%

rℓpθq “
şθ
0 ρpxq dx, 0 ď θ ď θ0,

rℓpqθq, where qθ P p0, θ0q and rιpqθq “ rιpθq, θ0 ă θ ă θ1,

0, θ1 ď θ ď 1.

(3.5)



DEPTH-FIRST SEARCH PERFORMANCE IN RANDOM DIGRAPHS 7

If λ ď 1, this simply means rℓpθq :“ 0 for all θ P r0, 1s.
Using Lemma 3.1 and Theorem 2.1 we can obtain the following result; the detailed

argument (given in the full paper) is unfortunately rather long.

Theorem 3.2. We have

max
1ďtďn

∣∣dptq ´ nrℓ`pt{nq
∣∣ “ oL2pnq. (3.6)

4. Depth analysis

In this section we sketch an alternative approach where we study the depth di-
rectly, without using the stack index. Details will be given in the full paper. In
particular, for simplicity we approximate below generating functions and other quan-
tities by their limits as n Ñ 8, sometimes omitting careful estimates of the errors.
We consider only the case λ ą 1, since otherwise there is no giant tree and the depth
dt is small for all t.

Recall that the outdegree η has the p.g.f. Gηpzq “
ř

k Ppη “ kqzk, and that at
time t, the number of outgoing arcs from vt that lead to vertices not already seen
has the distribution ηθ with p.g.f. Gηθpzq “ η pθ ` p1 ´ θqzq, see (3.2).

4.1. Splitting the giant tree. Recall the definitions of θ0 and θ1 from (2.13)–
(2.14). It is easily seen that these are, roughly, the proportions of discovered nodes
when we find the top of the giant tree, and when we leave the giant tree, respectively.
Let ε P p0, 1q be a fixed number which will be specified later. We divide the interval
r0, nθ1s into three intervals: Un “ r0, θ0n ´ n1´εs called the climbing zone, Dn “

rθ0n` n1´ε, θ1ns, called the descending zone, and the band Bn “ rθ0n´ n1´ε, θ0n`

n1´εs, called the neutral zone.
For t P Un, we say that vt is a ladder vertex if for all t1 P Un: t1 ą t ñ dpt1q ě dptq.

In other words, t is a right minimum of the function dptq in U . For an integer i, we
define d´1

1 piq as the last integer t in Un such that dptq “ i (provided such a t exists);
note that then vt is a ladder vertex. Also, we say that t is an up-time if vt is a ladder
vertex and t is the first time it is visited.

As a property of DFS, the ladder vertices are also revisited in the descending zone.
Let v be a ladder vertex visited at time t in the climbing zone. When revisited the
depth would be back at dptq, see Figure 2.

4.2. Average interval between two up-times. Assume that t P Un is an up-time
of a ladder vertex vt with depth dptq “ i. Then (assuming that vt is not the last
ladder vertex) the next up-time t1 finds the next ladder vertex vt1 . Clearly, vt1 must
be a child of vt in the DFS, so its depth dpt1q “ i ` 1, and it is the first child such
that the DFS does not return to vt before the end of Un. Given an up-time t, the
future events in Un, including the value of t1, are independent of the past history of
the DFS. If we ignore the variation of θ in the interval rt, t1s, then the DFS there can
be regarded as a BGW tree Tθ (rooted at vt) with offspring distribution ηθ; since
we assume that θ ă θ0, the BGW tree Tθ is supercritical. We denote by gθpzq the
generating function of the total number of vertices in Tθ when the number is finite;
it satisfies the fixed point equation:

gθpzq “ zGηθpgθpzqq. (4.1)

thus gθp1q “ 1 ´ ρpθq, the BGW tree extinction probability in (3.3).



8 PHILIPPE JACQUET AND SVANTE JANSON

Figure 2. The DFS in the giant tree: the climbing phase (left) and
the descending phase (right) through ladder vertices.

We denote by Hpz, θq the probability generating function of the number of visited
nodes in the subtrees of the root of Tθ before hitting an infinite subtree, under the
condition that the root has indeed an infinite subtree. Let H 1 denote the derivative
with respect to the first variable z.

Theorem 4.1. We have the identity

Hpz, θq “ 1 `
z ´ 1

1 ´ gθpzq
(4.2)

and thus the expectated number of visited nodes in the BGW tree is

H 1p1, θq “
1

1 ´ gθp1q
“

1

ρpθq
“ Oppθ0 ´ θq´1qq. (4.3)

The p.g.f. of the number of visited vertices between two consecutive up-times t and
t1 is thus asymptotically, with θ “ t{n

H

ˆ

z, θ ˘O
´ 1

npθ0 ´ θq2

¯

˙

(4.4)

and the average number of new visited vertices is H 1p1, θq `O
`

1
npθ0´θq4

˘

.

Proof. If k is the number of children of the root in the BGW tree Tθ, then the gener-
ating function of the number of subtrees before finding an infinite one is

ř

ℓăk z
ℓp1 ´

ρpθqqℓρpθq. The generating function of the number of visited vertices in the BGW
tree before finding an infinite subtree is thus zρpθq

ř

ℓăkpgθpzqqℓ. Summing over the
offspring distribution we get the unconditional generating function

z
ρpθq

1 ´ gθpzq
pGηθp1q ´Gηθpgθpzqqq “

ρpθq

1 ´ gθpzq
pz ´ gθpzqq

“ ρpθq

ˆ

z ´ 1

1 ´ gθpzq
` 1

˙

. (4.5)

To get the p.g.f. Hpz, θq of the number of discovered nodes conditioned on Tθ having
at least one infinite subtree, one must divide by ρpθq, which is the probability that
the BGW tree is infinite. The error term comes from the fact that the fraction
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of discovered vertices varies during the interval in the proportion of the size of the
interval divided by n. If we look at the generating function Hpz, θq it turns out (see
the appendix) that the interval multiplied by pθ0 ´ θq2 is bounded in probability,
thus a variation of θ of order O

`

pθ0 ´ θq´2{n
˘

. □

Let ∆i be the time interval between two consecutive up-times t and t1 such that
dptq “ i. To get the number upt, t1q of up-times in an interval pt, t1s one must find
the probability that ∆i ` ∆i`1 ` ¨ ¨ ¨ ` ∆i`k ď t1 ´ t. Since the up-times are renewal
points in the interval Un, we have, given that t is an up-time,

"

Pp∆i ` ∆i`1 ` ¨ ¨ ¨ ` ∆i`k ą t1 ´ tq “ Ppupt, t1q ă kq

Pp∆i ` ∆i`1 ` ¨ ¨ ¨ ` ∆i`k ď t1 ´ tq “ Ppupt, t1q ě kq.
(4.6)

Thus by Chebychev’s inequality, we have the Chernoff type bounds

@x ą 0 :

"

Ppupt, t1q ă kq ď Hpex, t{nqke´pt1´tqx

Ppupt, t1q ě kq ď Hpe´x, t1{nqkept1´tqx (4.7)

The estimate of these probabilities will come from an easy application of generating
functions.

Lemma 4.2. When the quantity θ is smaller than but close to θ0, we have ρpθq “

1´gθp1q “ 2λ3

λ2
pθ0 ´θq`Oppθ0 ´θq2q where λ2 “ G2

ηp1q. Furthermore the generating

function gθpzq has a radius of convergence which is 1 ` λ4

2λ2
pθ0 ´ θq2 `Oppθ0 ´ θq3q,

and for z such that |z ´ 1| ! pθ0 ´ θq2 we have

gθpzq “ 1 ´ 2
λ3

λ2
pθ0 ´ θq `

z ´ 1

λpθ0 ´ θq
`O

´

pz ´ 1q2

pθ0 ´ θq3
` pθ0 ´ θq2

¯

. (4.8)

Hpz, θq “ 1 `
λ2pz ´ 1q

2λ3pθ0 ´ θq
`O

´

pz ´ 1q2

pθ0 ´ θq3
` pθ0 ´ θq2

¯

(4.9)

H 1p1, θq “
λ2

2λ3pθ0 ´ θq
`Op1q. (4.10)

Proof. In Appendix A. □

Lemma 4.3. Let ε ą 0 and 1´ε
2 ă α ă 1 ´ ϵ. For a,A ą 0 there exist B ą 0 and

C ą 0 such that for t ă t1 P Un with an1´ε ď t1 ´ t ď An1´ε we have

P
ˆ

upt, t1q ě
1

H 1p1, θq
pt1 ´ t`Bnαq

˙

ă expp´Cn2α´1´εq, (4.11)

P
ˆ

upt, t1q ă
1

H 1p1, θ1q
pt1 ´ t´Bnαq

˙

ă expp´Cn2α´1´εq. (4.12)

Proof. Now t and t1 can be within n1´ε from nθ0 which has an impact on the estimate
of logHpex, θq. For the super-critical BGW tree, we know from Lemma 4.2 and its
proof that H 1p1, θq “ Oppθ0 ´ θq´1q and that, for |x| ! pθ0 ´ θq2,

Hpex, θq ď exp

ˆ

xH 1p1, θq `D
x2

pθ0 ´ θq3

˙

(4.13)

for some D ą 0.
For (4.11), let t1 ´ t “ kH 1p1, θq ´ Bnα for some B ą 0 and 0 ă α ă 1 ´ ε.

Thus k “ 1
H 1p1,θq

pt1 ´ t ´ Bnαq which makes k of the order n1´εpθ0 ´ θq Á n1´2ε.
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We use the estimates (4.7). The quantity Hpex, θqke´pt1´tqx in (4.7) is smaller than

expp Dkx2

pθ0´θq3
´ Bxnαq, since the terms in kxH 1p1, θq cancel. The minimal value of

this quantity is reached for x “ B
2Dkn

αpθ0 ´ θq3 which is of order B
2Dpt1´tqn

αpθ0 ´

θq3H 1p1, θq À nα´1`εpθ0 ´ θq2 ! pθ0 ´ θq2. This minimal value is expp´ B2

4kD pθ0 ´

θq3H 1p1, θqn2αq ď expp´Cn2α´1´εq for some C ą 0.
The proof of (4.12) is essentially the same. □

At this point it is tempting to take the optimal value for α to be p1 ´ εq{2 with ε
close to 0. But in fact this would ignore that the quantities H 1p1, θq and H 1p1, θ1q may
differ by a factor bounded away from 1, which would introduce an error greater than
the term Bnα. This in fact reduce the possibilities for 1 ´ ε and α for a consistent
deviation probability. The values ε “ 1{5 and α “ 3{5 seem to be the limiting values
that we can achieve as we show next.

Theorem 4.4. For all β ą 4
5 for all t P Un we have dptq “ n

şt{n
0 ρpθqdθ ` oppnβq.

Proof. Assume first that t is an up-time, and that there is an increasing sequence of
up-times (not necessarily consecutive) t0, t1, . . . , tℓ with t0 “ 0 and tℓ “ t with the
constraint that for all i ă ℓ: ti`1´ti ď An1´ε. Since up0, tq “

ř

i upti, i` 1q, it turns

out that the probability that there exists i such that upti, ti`1q ą 1
H 1p1,ti{nq

pti`1 ´

ti `Bnαq is smaller than n expp´Cn2α´1´εq as shown in Lemma 4.3. Therefore with

high probability
ř

i upti, ti`1q ď
ř

i
ti`1´ti

H 1p1,ti{nq
`Opnα`εq, provided that 2α´1´ε ą 0.

Similarly with high probability
ř

i upti, ti`1q ě
ř

i
ti`1´ti

H 1p1,ti`1{nq
´ Opnα`εq. Since

both

ÿ

i

ti`1 ´ ti
H 1p1, ti{nq

“ n

ż t{n

0

dθ

H 1p1, θq
`Opn1´εq (4.14)

ÿ

i

ti`1 ´ ti
H 1p1, ti`1{nq

“ n

ż t{n

0

dθ

H 1p1, θq
´Opn1´εq (4.15)

it follows that with high probability up0, tq “ n
şt{n
0

dθ
H 1p1,θq

` Opn1´εq ` Opnα`εq,

provided that 2α ´ 1 ´ ε ą 0. The smallest error order is when 1 ´ ε “ α ` ε, thus
when 1 ´ ε “ α ` ε ą 4{5.

When t is not an up-time, the same result holds since the extra depth explored
after the last up-time is Oppn2εq, well within the error term Opnβq. □

4.3. Average interval between two down times. During the descent phase of
the giant tree (i.e. the values of t in Dn), the DFS revisits all ladder vertices met
during the ascending phase. The process consists of exploring the remaining outgoing
neighbours of the ladder vertices that have not been visited during the ascending
phase.

We notice that given the ladder times, the remaining outdegrees of the ladder
vertices form a sequence of independent random variable.

Let t the time at which a ladder vertex is again revisited. Let t1 be the first
time at which it was visited during the ascending period, thus dpt1q “ dptq. Let
θ “ t{n P pθ0, θ1q and upθq “ t1{n. We have the following theorem.
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Theorem 4.5. The p.g.f. of the remaining degree is asymptotically

η̃θpzq “ p1 ´ upθqq
Gηpzq ´ 1 ` ρpupθqq

z ´ 1 ` p1 ´ upθqqρpupθqq
. (4.16)

Proof. Let η̃θ,kpzq be the generating function of the remaining degree of the vertex
vt assuming the latter has outdegree k. Then, asymptotically,

η̃θ,kpzq “
ÿ

ℓăk

p1 ´ apupθqq
ℓ apupθqqzk´1´ℓ (4.17)

“ apupθqq
zk ´ p1 ´ apupθqqqk

z ´ 1 ` apupθqq
(4.18)

where apθq “ p1´θqρpθq is the probability that a new vertex has not yet been visited
and is the root of an infinite BGW tree.

Summing over all outdegrees weighted by their probabilities we get the uncon-

ditional generating function of the remaining outdegree: apupθqq
Gηpzq´Gηp1´apupθqqq

z´1`apupθqq

which is equal to apupθqq
Gηpzq´1`ρpupθqq

z´1`apupθqq
since (3.3) yields Gηp1´apupθqqq “ Gηupθq

`

1´

ρpupθqq
˘

“ 1´ρpupθqq. The above expression has value ρpupθqq at z “ 1 and therefore
must be divided by this factor in order to get the p.g.f. η̃θpzq. □

The “down-times” in Dn bear some symmetries with the up-times in Un, with
time reversed.

Theorem 4.6. The p.g.f. of the number of visited vertices between two consecutive
down-times is asymptotically

Hθpzq “ p1 ´ upθqq

gθpzq

z ´ 1 ` ρ pupθqq

p1 ´ θqpgθpzq ´ 1q ` p1 ´ upθqqρ pupθqq
(4.19)

and the average number of visited vertices is H
1

θp1q “ 1
ρpupθqq

λ´ 1
1´upθq

1
1´θ

´λ
.

Proof. We have Hθpzq “ η̃θpθ` p1 ´ θqgθpzqq, which simplifies using (3.2) and (4.1).
□

Let ∆̄i be the number of new visited nodes between two consecutive down-times t
and t1 such that dpt1q “ i. To get the number dpt, t1q of down-times between t and t1

we use the renewal property of the sequence of down-times. With a similar reasoning
as in (4.6)–(4.7) we get

"

Pp∆̄i ` ∆̄i´1 ` ¨ ¨ ¨ ` ∆̄i´k ą t1 ´ tq “ Ppdpt, t1q ă kq

Pp∆̄i ` ∆̄i´1 ` ¨ ¨ ¨ ` ∆̄i´k ď t1 ´ tq “ Ppdpt, t1q ě kq.
(4.20)

and

@x ą 0 :

"

Ppdpt, t1q ă kq ď p∆̄t1{npexqqke´pt1´tqx

Ppdpt, t1q ě kq ď p∆̄t{npe´xqqkept1´tqx.
(4.21)

We have a theorem whose proof is absolutely similar to the proof of Theorem 4.4:

Theorem 4.7. For all β ą 4
5 with high probability for all t P Dn we have dptq “

n
şθ1
t{n

dθ

H
1

θp1q
`Opnβq.
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For θ P rθ0, θ1s, define pℓpθq “
şθ1
θ

dτ

H
1

θp1q
. Since dptq “ dpt1q, where asymptotically

t{n “ θ P rθ0, θ1s and t1{n “ upθq P r0, θ0s, we obtain from Theorems 4.4 and 4.7,
recalling (3.4),

pℓpθq “

ż upθq

0
ρpxq dx “ rℓpupθqq. (4.22)

Theorem 4.8. We have the identity upθq “ qθ in (3.5).

Proof. Theorem 4.6 yields

pℓ1pθq “ ´
1

H
1

θp1q
“ ´

ρpupθqq

λ´ 1
1´upθq

1 ´ p1 ´ θqλ

1 ´ θ
. (4.23)

Furthermore rℓ1pθq “ ρpθq by (3.4). Hence, (4.22) implies

dupθq

dθ
“

pℓ1pθq

rℓ1pupθqq
“

1
1´θ ´ λ
1

1´upθq
´ λ

. (4.24)

Similarly, the identity rιpqθq “ rιpθq in (3.5) yields, recalling (2.12),

dqθ

dθ
“

rι1pθq

rι1pqθq
“

1
1´θ ´ λ
1

1´qθ
´ λ

. (4.25)

Since upθ0q “ qθ0 “ θ0, the differential equations (4.24) and (4.25) have the same

solution. We call the function θ ÞÑ qθ the mirror function; note that it only depends
of average outdegree without any further consideration on the details of the outdegree

distribution. All computations done we have qθ “ 1 ` 1
λW´1

`

´p1 ´ θqepθ´1qλ
˘

using
the branch W´1p¨q of the Lambert W function, see Figure 3 for λ “ 2. □

Figure 3. The mirror function for λ “ 2.

Remark 4.9. Theorems 3.2 and 4.7 show that pℓpθq “ rℓ`pθq for θ P rθ0, θ1s. Fur-

thermore, the identity upθq “ qθ follows also directly from Theorem 3.2 and (3.5)
together with dptq “ dpt1q.
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5. An example

We take the example of a constant outdegree. In the case of outdegree 2, Gηpzq “

z2, λ “ 2, and θ0 “ 1
2 . Consider for simplicity only θ P r0, θ0s. Then, (3.3) has the

explicit solution ρpθq “ 1 ´

´

θ
1´θ

¯2
, and Theorems 2.1 and 3.2 show that if t{n Ñ θ,

then

1

n
Iptq

L2

ÝÑ rι`pθq “ 2θ ` logp1 ´ θq, (5.1)

1

n
dptq

L2

ÝÑ rℓ`pθq “ ´2 logp1 ´ θq ´
θ

1 ´ θ
, (5.2)

In the case of higher constant outdegree, say 8, ρ must be calculated from the implicit
formula (3.3), for θ ď θ0 “ 1´ 1

8 . Larger outdegrees can be treated similarly. Figure 4
displays the average depth and index for constant outdegree 2 and 8. We notice that
for η “ 2, the stack size is smaller than the depth. This might be a surprise because
at each new discovered node the stack stores the whole set of outgoing arcs, while
the depth increases by at most 1. The reason is that in this case η “ 2, and thus,
although the stack keeps all unexplored arcs for all ancestors, this is at most one arc
for each ancestor and many ancestor have no arc left. For η larger this disappears,
and the stack size becomes larger than the depth.

6. Conclusion

We have presented an analysis of the Depth-First Search algorithm by Tarjan in
a model of random graphs recently introduced by Don Knuth. We have presented
a version of the stack model which can be analyzed as a Markov chain and is much
easier to analyse than the real depth. The latter requires new insights in a model of
Bienaymé–Galton–Watson trees with a varying extinction probability, in particular
when close to the sub-critical case.

Figure 4. The limit of 1
nIptq (dashed) and 1

ndptq (solid) as functions
of θ “ t{n for θ P r0, θ0s, for the example η “ 2 (left), η “ 8 (right).
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Appendix A

Proof of Lemma 4.2. We want first to determine the first fixed point gθp1q of Gηθ .
We have the expansion

Gηpyq “ 1 ` λpy ´ 1q `
λ2
2

py ´ 1q2 `Oppy ´ 1q3q (A.1)

where λ2 is G2
ηp1q. Thus

Gηθpyq “ Gηpθ ` p1 ´ θqyq “ 1 ` p1 ´ θqλpy ´ 1q ` p1 ´ θq2
λ2
2

py ´ 1q2 `Oppy ´ 1q3q

(A.2)

We look at the fixed point equation Gηθpyq ´ y “ 0 which is equivalent to

λpθ0 ´ θqpy ´ 1q `
λ2p1 ´ θq2

2
py ´ 1q2 `Oppy ´ 1q3q “ 0 (A.3)

The natural root is 1 but the other root is 1 ´ 2 λpθ0´θq

λ2p1´θq2
`Oppθ0 ´ θq2q which yields

the claimed result since 1
1´θ “ λ`Opθ0 ´ θq.

To determine the function gθpzq one must solve the equation zGηθpyq “ y which
writes:

1 ´
1

z
` p1 ` λpθ0 ´ θq ´

1

z
qpy ´ 1q `

λ2p1 ´ θq2

2
py ´ 1q2 `Oppy ´ 1q3q “ 0. (A.4)
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Retaining only the second order (the extra order will be in Oppθ0 ´ θq3q we get an

equation which is degenerate when
`

1 ` λpθ0 ´ θq ´ 1
z

˘2
´ 2λ2p1 ´ θq2p1 ´ 1

z q “ 0,

i.e. when 1´ 1
z “

λ2pθ0´θq2

2λ2p1´θq2
`Oppθ0 ´θq3q. In the above expression we can substitute

p1 ´ θq with 1
λ to a Oppθ0 ´ θq3q error term.

Assuming |z ´ 1| ! pθ0 ´ θq2 we have the expression of the root y “ gθpzq:

y “ 1 ´ 2
λ3

λ2
pθ0 ´ θq `

z ´ 1

λpθ0 ´ θq
`O

´

pz ´ 1q2

pθ0 ´ θq3
` pθ0 ´ θq2

¯

. (A.5)

Now the expression of Hpz, θq satisfies

Hpz, θq “ 1 `
z ´ 1

1 ´ gθpzq
(A.6)

“ 1 `
z ´ 1

2λ3

λ2
pθ0 ´ θq ´ z´1

λpθ0´θq
`O

`

pz´1q2

pθ0´θq3
` pθ0 ´ θq2

˘

(A.7)

“ 1 `
λ2pz ´ 1q

2λ3pθ0 ´ θq

¨

˝

1

1 ´
λ2pz´1q

2λ4pθ0´θq2
`O

`

pz´1q2

pθ0´θq4
` pθ0 ´ θq

˘

˛

‚ (A.8)

“ 1 `
λ2pz ´ 1q

2λ3pθ0 ´ θq
`

λ22pz ´ 1q2

4λ7pθ0 ´ θq3
`O

´

|z ´ 1|3

pθ0 ´ θq5
` |z ´ 1|

¯

(A.9)

“ 1 `
λ2pz ´ 1q

2λ3pθ0 ´ θq
`O

´

pz ´ 1q2

pθ0 ´ θq3
` |z ´ 1|

¯

(A.10)

In particular,

H 1p1, θq “
λ2

2λ3pθ0 ´ θq
`Op1q. (A.11)

Since the terms added after the unity are small compared to 1 we can equivalently
state that

Hpz, θq “ exp

ˆ

λ2pz ´ 1q

2λ3pθ0 ´ θq
`O

´

pz ´ 1q2

pθ0 ´ θq3
` |z ´ 1|

¯

˙

. (A.12)

We also have by (4.2), still assuming |z ´ 1| ! pθ0 ´ θq2,

Hpz, θq ´ 1 ´ pz ´ 1qH 1p1, θq “
z ´ 1

1 ´ gθpzq
´

z ´ 1

1 ´ gθp1q

“ pz ´ 1q
gθpzq ´ gθp1q

`

1 ´ gθpzq
˘`

1 ´ gθp1q
˘ (A.13)

Furthermore, by taking the derivative of the fixed point equation zGηθpgθpzqq “

gθpzq, we find, using (A.2) and (A.5),

g1
θpzq “

Gηθpgθpzqq

1 ´ zG1
ηθ

pgθpzqq
“

gθpzq{z

´λpθ0 ´ θq ´ p1 ´ θq2λ2pgθpzq ´ 1q ` op|θ0 ´ θ|2q

“
1

λpθ0 ´ θq ` op|θ0 ´ θ|2q
“ O

`

pθ0 ´ θq´1
˘

. (A.14)

Thus (A.13) and the mean-value theorem together with (A.5) yield

Hpz, θq ´ 1 ´ pz ´ 1qH 1p1, θq “ O
`

|z ´ 1|2{pθo ´ θq3
˘

. (A.15)
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We can rewrite this as, for |x| ! pθ0 ´ θq2, using the estimate (A.11),

Hpex, θq “ exp

ˆ

xH 1p1, θq `O
´ x2

pθ0 ´ θq3

¯

˙

. (A.16)

□
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