
SOME BANACH SPACE GEOMETRY

SVANTE JANSON

1. Introduction

I have collected some standard facts about Banach spaces from various
sources, see the references below for further results. Proofs are only given
sometimes.

Notation. ε is an arbitrarily small positive number.
L(X,Y ) is the Banach space of bounded linear operators T : X → Y .
B(X) is the closed unit ball {x ∈ X : ‖x‖ 6 1}.
N := N ∪ {∞} is the one-point compactification of the discrete space N.
All operators are bounded and linear.
A compact (topological) space always means a compact Hausdorff space.

(We sometimes add “Hausdorff” explicitly for emphasis.)

2. Injective Banach spaces

Definition 2.1. Let λ > 1. A Banach space X is λ-injective if whenever Y
and Z are Banach spaces with Y ⊆ Z (isometrically), then every bounded

linear operator T : Y → X can be extended to an operator T̃ : Z → X with
‖T̃‖ 6 λ‖T‖.

A Banach space X is ∞-injective if it is λ-injective for some λ <∞.

Example 2.2. The one-dimensional Banach space R or C is 1-injective.
(This is the Hahn–Banach theorem.)

Example 2.3. `∞, and more generally `∞(S) for any set S, is 1-injective.
This follows by using the Hahn-Banach theorem on each coordinate.

Example 2.4. A finite-dimensional Banach space X is ∞-injective. This
follows from Example 2.3, since X is isomorphic to `∞n := `∞([n]), where
n = dimX.

Remark 2.5. When studying isometric properties of Banach spaces, the
natural notion is 1-injective. On the other hand, when studying isomorphic
properties, the natural notion is ∞-injective, which obviously is preserved
by renorming the space. This is further shown by the simple Theorem 2.6
below, avoiding all estimates.

Date: 24 August, 2012; revised 27 August 2012.
Partly supported by the Knut and Alice Wallenberg Foundation.

1



2 SVANTE JANSON

More formally, using category theory terminology, “1-injective” is injec-
tive in category theoretic sense in the category BAN1 of Banach spaces and
linear contractions, while (by Theorem 2.6) “∞-injective” is injective in the
category BAN∞ of Banach spaces and bounded linear operators.

We use injective as an abbreviation of ∞-injective.
Warning: In several other papers, injective means 1-injective. (As said

above, this is natural when studying isometric properties.)

Theorem 2.6. A Banach space X is injective if whenever Y and Z are
Banach spaces with Y ⊆ Z, then every bounded linear operator T : Y → X
can be extended to an operator T̃ : Z → X.

Proof. We may assume that Y is an isometric subspace of Z, i.e., ‖ ‖Y =
‖ ‖Z on Y , since we otherwise may replace ‖ ‖Y by the equivalent ‖ ‖Z .

Suppose that the extension property in the statement holds. We want
to show that it is possible to choose T̃ such that there is a uniform norm
estimate ‖T̃‖ 6 λ‖T‖ for all such Y , Z and T .

First, fix a pair Y, Z with Y ⊆ Z (isometrically). The property says that
the restriction map L(Z,X) → L(Y,X) is onto. Hence, the open mapping
theorem shows that there exists a constant C such that every T : Y → X
has an extension T̃ : Z → X with ‖T̃‖ 6 C‖T‖. We let C(Y, Z) be the
infimum of the constants C for which this holds. (I do not know whether
the minimum always is attained.)

Suppose that the set {C(Y,Z)} is unbounded, where (Y,Z) ranges over all
pairs of Banach spaces with Y ⊆ Z (isometrically). Then there exists such
pairs (Yn, Zn) with C(Yn, Zn) > n. Let Y :=

⊕∞
n=1 Yn and Z :=

⊕∞
n=1 Zn

be the `1 sums of these spaces, and note that Y ⊆ Z (isometrically).
Suppose that n > 1 and that T : Yn → X. We extend T to an operator

U : Y → X by defining U(y1, . . . , ) := T (yn); then ‖U‖ = ‖T‖. We may

extend U to an operator Ũ : Z → X with norm ‖Ũ‖ 6 (C(Y, Z) + ε)‖U‖ =

(C(X,Y )+ε)‖T‖ and the restriction to Zn ⊆ Z yields an extension T̃ : Zn →
X of T with ‖T̃‖ 6 ‖Ũ‖ 6 (C(X,Y ) + ε)‖T‖. Hence C(Yn, Zn) 6 C(Y, Z)
for every n, which contradicts the assumption that C(Yn, Zn) > n.

Consequently, {C(Y,Z)} is bounded, and then X is λ-injective for any
λ > sup{C(Y, Z)}. �

The definition is equivalent to the existence of suitable projections, and
to an extension property when X is a subspace of another space. This holds
both for the isometric and isomorphic versions, i.e., with and without norm
estimates, and we state this as a theorem containing both versions. See
further e.g. [6] and [9].

Theorem 2.7. The following properties of a Banach space X are equivalent.

(i) X is [λ-]injective.
(ii) If X ⊆ Z [isometrically], where Z is another Banach spaces, then

there is a projection Z → X [of norm 6 λ].
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(iii) If X ⊆ Z [isometrically], where Z is another Banach space, then every
bounded linear operator T : X → Y , where Y is another Banach space,
can be extended to an operator T̃ : Z → Y [with norm ‖T̃‖ 6 λ‖T‖].

Proof. (i) =⇒ (ii): Extend the identity X → X to P : Z → X.
(ii) =⇒ (i): X can be embedded isometrically into some `∞(S). (E.g. by

taking S = B(X∗).) Let P : `∞(S)→ X be the projection given by (ii). If
Y ⊆ Z are Banach spaces and T : Y → X ⊆ `∞(S), then T can be regarded
as a map Y → `∞(S), which by Example 2.3 can be extended (isometrically)

to an operator T̃ : Z → `∞(S). Then PT̃ : Z → X is the desired extension.
(ii) =⇒ (iii): If P is such a projection, T may be extended by TP .
(iii) =⇒ (ii): Extend the identity X → X to P : Z → X. �

Corollary 2.8. The following properties of a Banach space X are equiva-
lent.

(i) X is injective.
(ii) Every subspace isomorphic to X of an arbitrary Banach space Z is

complemented.
(iii) Every subspace isometric to X of an arbitrary Banach space Z is com-

plemented.

Proof. This is a reformulation of Theorem 2.7(i)⇐⇒ (ii). �

Corollary 2.9. If X is injective, then a closed subspace of X is injective
if and only if it is complemented.

Proof. An injective subspace is always complemented by Corollary 2.8.
Conversely, let W ⊆ X be a complemented subspace, where X is injective.

Then there exists a projection P : X →W , and we argue as in the proof of
Theorem 2.7: If Y ⊆ Z are Banach spaces and T : Y → W ⊆ X, then T
can be regarded as a map Y → X, which by assumption can be extended
to an operator T̃ : Z → X. Then PT̃ : Z →W is the desired extension. �

There is a characterization of the 1-injective Banach spaces. (There is no
known characterization of general injective Banach spaces, or of λ-injective
Banach spaces for a given λ > 1.)

A topological Hausdorff space is extremally disconnected if the closure of
an open set is open. See e.g. [5, Section 6.2, pp. 368–369].

Theorem 2.10 (Kelley [8], Hasumi [7]). The following are equivalent, for
a Banach space X.

(i) X is 1-injective.
(ii) X is isometric to C(K) for some extremally disconnected compact

Hausdorff space K. �

In the real case, this can be elaborated as follows.

Theorem 2.11 (Nachbin [12], Goodner [6], Kelley [8]). For a real Banach
space X, the following are equivalent:
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(i) X is 1-injective.
(ii) X is isometric to C(K) for some extremally disconnected compact

space K.
(iii) The closed balls in X have the binary intersection property. (I.e.,

any family of closed balls that intersect pairwise has non-empty in-
tersection.)

(iv) X is isometric to some C(K) (K compact) such that the unit ball is
a complete Boolean lattice. (I.e., any family {fα} has a l.u.b.)

(v) X is isometric to some C(K) (K compact) such that any family
{fα} ⊂ X that has an upper bound has a l.u.b. �

Example 2.12. A finite-dimensional Banach space X is 1-injective if and
only if it is isometric to `∞n for some n. (Cf. Example 2.4.)

Note that if C(K) and C(L) are isometric, then K and L are homeomor-
phic (Theorem 4.3 below). Hence:

Corollary 2.13. If K is compact, then C(K) is 1-injective if and only if
K is extremally disconnected. �

Corollary 2.14. If X is a commutative C∗-algebra with maximal ideal
space ∆, then X is 1-injective if and only if ∆ is extremally disconnected.

Proof. X is isometric to C(∆) by the Gelfand transform. �

Corollary 2.15. The following properties of a Banach space X are equiv-
alent.

(i) X is injective.
(ii) X is isomorphic (or isometric) to a complemented subspace of `∞(S)

for some set S.
(iii) X is isomorphic (or isometric) to a complemented subspace of C(K)

for some extremally disconnected compact space K.

Proof. (i) =⇒ (ii): As in the proof of Theorem 2.7, X is isometric to a
subspace of `∞(S) for some set S, and this subspace is complemented by
Corollary 2.8.

(ii) =⇒ (iii): `∞(S) is isometric to some such C(K) by Example 2.3 and
Theorem 2.10.

(iii) =⇒ (i): By Theorem 2.10 and Corollary 2.9. �

Although there is no characterization of infinite-dimensional injective Ba-
nach spaces, they are known to have, or not have, several properties.

Theorem 2.16. Let X be an infinite-dimensional injective Banach space.

(i) X contains a complemented subspace isomorphic to `∞.
(ii) X is not separable, not reflexive, not WCG (weakly compactly gener-

ated).
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Proof. (i): By Corollary 2.15(iii) and [4, Corollary VI.2.11], X contains a
subspace isomorphic to `∞, and this subspace is complemented by Corol-
lary 2.8 since `∞ is injective (Example 2.3).

(ii): Follows from (i), since `∞ does not have these properties. �

3. Injective dual spaces

For a dual space X = W ∗, a linear operator Y → W ∗ is the same as a
bilinear form Y ×W → R or C. This leads to the following, se [16, Corollary
2.12].

Theorem 3.1. The following properties of a Banach space W are equiva-
lent:

(i) W ∗ is [λ-]injective.
(ii) Whenever Y and Z are Banach spaces with Y ⊆ Z (isometrically),

every bounded bilinear form α on Y ×W can be extended to a bounded
bilinear form α̃ on Z ×W [with norm ‖α̃‖ 6 λ‖α‖].

(iii) Whenever Y and Z are Banach spaces with Y ⊆ Z (isometrically), the
projective tensor norms ‖ ‖Y ⊗̂W and ‖ ‖Z⊗̂W are equivalent on Y ⊗W
[with ‖u‖Y ⊗̂W 6 λ‖u‖Z⊗̂W ].

(iv) Whenever Y and Z are Banach spaces with Y ⊆ Z (isometrically),
the projective tensor product Y ⊗̂W is a closed subspace of Z⊗̂W [with
‖u‖Y ⊗̂W 6 λ‖u‖Z⊗̂W for u ∈ Y ⊗̂W ].

Proof. (i)⇐⇒ (ii): By the comment before the theorem.
(ii)⇐⇒ (iii): A bounded bilinear form on Y ×W is the same as a bounded

linear form on Y ⊗W with the projective tensor norm ‖ ‖Y ⊗̂W . The equiv-
alence now follows easily using the Hahn-Banach theorem.

(iii)⇐⇒ (iv): This is immediate, since Y ⊗̂W is the completion of Y ⊗W
in the norm ‖ ‖Y ⊗̂W , and similarly for Y ⊗̂Z. �

Corollary 3.2. W ∗ is 1-injective if and only if Y ⊗̂W ⊆ Z⊗̂W isometrically
whenever Y ⊆ Z. �

Example 3.3. Let W = L1(S,F , µ) for a measure space (S,F , µ). Then
Y ⊗̂W = L1(S,F , µ;Y ), the space of Bochner integrable Y -valued functions
on (S,F , µ), se [16, Section 2.3]. Thus, if Y ⊆ Z isometrically, then

Y ⊗̂W = L1(S,F , µ;Y ) ⊆ L1(S,F , µ;Z) = Z⊗̂W

isometrically, so Theorem 3.1(iv) is satisfied with λ = 1. Thus Theorem 3.1
(or Corollary 3.2) shows that W ∗ = L1(S,F , µ)∗ is 1-injective.

In particular, if µ is σ-finite, we obtain the following result [16, p. 30].

Theorem 3.4. If µ is a σ-finite measure on some measurable space, then
L∞(µ) = L1(µ)∗ is 1-injective.

Proof. L∞(µ) = L1(µ)∗, which is 1-injective by Example 3.3. �
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Corollary 3.5. If µ is a σ-finite measure on some measurable space, then
the maximal ideal space of L∞(µ) is extremally disconnected.

Proof. By Theorem 3.4 and Corollary 2.14. �

Example 3.6. Theorem 3.4 and Corollary 3.5 do not extend to L∞(µ) for
all (non-σ-finite) µ, as shown by the following example.

Let X = L∞([0, 1],B, µ), where B is the Borel σ-field and µ is the counting
measure. Thus there are no null sets (except ∅), so X consists of all bounded
Borel measurable functions on [0, 1] with ‖f‖ = supx |f(x)|.

The Gelfand transform f 7→ f̂ is an algebra isomorfism X → C(K) for
some compact Hausdorff space K. The idempotents in X are 1E , E ∈ B,
and the idempotents in C(K) are 1F , F ⊆ K is open and closed. Hence the

Gelfand transform gives a bijection E 7→ Ê of B onto the collection of open
and closed subsets of K. (Thus, 1̂E = 1

Ê
.)

Note that

E ⊆ F ⇐⇒ 1E1F = 1E ⇐⇒ 1
Ê

1
F̂

= 1
Ê
⇐⇒ Ê ⊆ F̂ , (3.1)

and similarly

E ∩ F = ∅ ⇐⇒ 1E1F = 0 ⇐⇒ 1
Ê

1
F̂

= 0 ⇐⇒ Ê ∩ F̂ = ∅. (3.2)

For x ∈ [0, 1], let

Ux := {̂x} ⊆ K. (3.3)

Note that if x 6= y, then Ux and Uy are disjoint by (3.2),
Furthermore, for any set A ⊆ [0, 1], let

UA :=
⋃
x∈A

Ux. (3.4)

Thus, UA is an open subset of K.

Suppose that UA is open; then UA is open and closed so UA = Ê for some

Borel set E ⊆ [0, 1]. If x ∈ A, then {̂x} = U{x} ⊆ UA ⊆ UA = Ê by (3.1),
and thus {x} ⊆ E by (3.1) again, i.e., x ∈ E. On the other hand, if x /∈ A,

then Ux is an open set disjoint from UA, and thus {̂x} ∩ Ê = Ux ∩ UA = ∅;
hence (3.2) yields {x} ∩ E = ∅, i.e., x /∈ E. Consequently, E = A, which
means A = E ∈ B.

In other words, if A /∈ B, then UA is an open subset of K but UA is not
open. Hence K is not extremally disconnected and thus, by Theorem 2.10,
C(K) is not 1-injective. Consequently, L∞([0, 1],B, µ) is not 1-injective.

Example 3.3 can be extended somewhat as follows.

Definition 3.7. A Banach space X is an L1,λ-space if every finite-dimen-
sional subspace M of X is contained in a finite-dimensional subspace N such
that the Banach-Mazur distance between N and `n1 (where n = dimN) is at
most λ, i.e., there exists an isomorphism T : N → `n1 such that ‖T‖ ‖T−1‖ 6
λ.

A Banach space is an L1,λ+-space if it is an L1,λ+ε-space for every ε > 0.
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A Banach space is an L1-space if it is an L1,λ-space for some λ <∞,

It is easily seen that if W is an L1,λ-space, and Y ⊆ Z (isometrically),
then ‖u‖Y ⊗̂W 6 λ‖u‖Z⊗̂W for every u ∈ Y ⊗W , see [16, Section 2.4]. (The
idea is that that the tensor norm ‖u‖Z⊗̂W can be approximated by the norm

in Z⊗̂M for a suitable finite-dimensional subspace M ⊆W .) Consequently,
Theorem 3.1(iii) =⇒ (i) yields the following.

Theorem 3.8. If W is an L1,λ-space, or more generally an L1,λ+-space,
then W ∗ is λ-injective. �

Corollary 3.9. (i) If W is an L1-space, then W ∗ is ∞-injective.
(ii) If W is an L1,1+-space, then W ∗ is 1-injective. �

Example 3.10. If K is a compact Hausdorff space, then C(K)∗ = Mr(K),
the space of regular real-valued (or complex-valued) Borel measures on K,
is an L1,1+-space [16, p. 32]. (This is easily verified, since every finite-
dimensional subspace of Mr(K) ⊆ M(K) can be seen isometrically as a
subspace of L1(K, ν) for some finite Borel measure ν by the Radon–Nikodým
theorem, and L1(K, ν) is an L1,1+-space, see [16, Proposition 2.21].)

Consequently, the bidual C(K)∗∗ is 1-injective for every compact K.

4. More on C(K)

We give a few simple results on the Banach spaces C(K), where K is a
compact Hausdorff space. See e.g. [15] for further results.

Theorem 4.1. C(K) is separable if and only if K is metrizable. �

See [2, Theorem V.6.6] for a proof.

Theorem 4.2. The dual space C(K)∗ is separable if and only if K is count-
able.

Proof. If K is countable, then every subset of K is a Borel set and C(K)∗ =
M(K) = `1(K) which is separable.

On the other hand, for any K, the point evaluations δx, x ∈ K, form a
discrete subset of C(K)∗, so if K is uncountable, then C(K)∗ is not separa-
ble. �

As a corollary to these two theorems we see that every countable compact
space is metrizable, since X is separable whenever X∗ is.

We have the following isomorphism theorems. Note the difference between
isometries and isomorphisms.

Theorem 4.3 (Banach–Stone). If K1 and K2 are compact Hausdorff spaces
such that C(K1) and C(K2) are isometric Banach spaces, then K1 and K2

are homeomorphic. �

Theorem 4.4 (Miljutin). All spaces C(K) where K is an uncountable com-
pact metric space are isomorphic as Banach spaces. (Equivalently, they are
all isomorphic to C[0, 1].) �
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For the proof of Theorem 4.4 see Miljutin [11], Pe lczyński [13] or Rosen-
thal [15].

The spaces C(K) with K countable are not isomorphic to C[0, 1] by The-
orem 4.2. These spaces are classified up to isomorphisms by Bessaga and
Pe lczyński [1], see alse [13] and [15].

Remark 4.5. Every countable compact set is homeomorphic to [0, γ] for
some countable ordinal γ, i.e., the space of all ordinals 6 γ with the order
topology. (This space is always compact, see [5, Example 3.1.27 and Problem
3.12.3].) In fact, every such space is homeomorphic to [0, ωαn] for some
countable ordinal α and integer n > 1, and α and n are uniquely determined
(by the fact that the α:th derived set is finite and non-empty with exactly
n points), see [10].

Consequently, if K is compact and countable, then C(K) is isometric to
C[0, ωαn] for some (unique) α < ℵ1 and n > 1.

Example 4.6. c0 is isomorphic to c = C(N). By Theorem 4.2, c0 is not
isomorphic to C[0, 1].

Remark 4.7. The corresponding non-separable spaces `∞ and L∞[0, 1] are
isomorphic. (Their preduals `1 and L1[0, 1] are not. This can be seen because
L1[0, 1] contains a subspace isomorphic to `2, for example by Khinchine’s
inequalities the closed subspace spanned by the Rademacher functions, see
e.g. [3, p. 105]; thus L1[0, 1] does not have the Schur property that `1 has
[3, p. 85]. Conversely, `1 does not contain any subspace isomorphic to `2,
because `1 has the Schur property.

Remark 4.8. It is easily seen that if K is any infinite compact metric space,
then C(K) contains a subspace isometric to c, and thus a subspace isometric
to c0. (Take a convergent sequence xn → x∞ in K with d(xn, x∞) ↘ 0,
and find continuous functions fn : K → [0, 1] with disjoint supports and
fn(xm) = δnm.)

5. Embeddings into C(K).

Theorem 5.1 (Banach–Mazur). Every separable Banach space is isometric
to a closed subspace of C[0, 1].

Sketch of proof. If X is separable, then the dual unit ball K=B(X∗) is a
compact metric space, and X can be regarded as a subspace of C(K).

There exists a surjective continuous map of the Cantor set D = {0, 1}∞
onto any compact metric space, and thus onto K, which gives an embedding
of C(K) as a subspace of C(D). Finally, the Cantor set D has a ttraditional
embedding as a subset of [0, 1], and C(D) may be embedded into C[0, 1] by
extending each function linearly across each interval in the complement of
the Cantor set. �
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Here [0, 1] can be replaced by various other spaces, for example (as seen
in the proof) the Cantor set, as well as any other compact space that maps
continuously onto [0, 1].

Remark 5.2. We cannot replace [0, 1] by any countable compact space in
Theorem 5.1; in particular, we cannot replace C[0, 1] by c0 ∼= c = C(N). In
fact, if X ⊆ C(K) with K countable, then X∗ is a quotient space of C(K)∗,
and thus X∗ has to be separable by Theorem 4.2; hence C[0, 1] cannot be
embedded in C(K) (not even isomorphically).

6. Separable injectivity

We note the following interesting example in the subcategory of separable
Banach spaces; see e.g. [3, Theorem VII.4] or [9, Theorem 3.11.12] for a
proof.

We say that a Banach space X is separably λ-injective if Definition 2.1 is
satisfied for all separable Banach spaces Y and Z with Y ⊆ Z.

Theorem 6.1 (Sobczyk). c0 is separably 2-injective. �

It is easily seen that Theorem 2.7 holds also if we only consider separable
spaces; thus Theorem 6.1 is equivalent to:

Theorem 6.2. If c0 is a subspace (isometrically) of a separable Banach
space Z, then there is a projection Z → c0 of norm at most 2.

Remark 6.3. c0 is not separably 1-injective; the constant 2 is best possible
in Theorems 6.1–6.2. In fact, if we take Z = c in Theorem 6.2, then every
projection c→ c0 has norm at least 2, as shown by Taylor [17]. (Note that
in this case, the subspace c0 has codimension 1.)

Remark 6.4. There is no bounded projection `∞ → c0. Thus c0 is not in-
jective in the category of all Banach spaces. (Phillips [14]; see also Phillips’s
lemma [3, p. 83]. In fact, every bounded operator `∞ → c0 is weakly com-
pact [3, Exercise VII.4].) This follows also by Theorem 2.16.

Remark 6.5. If K is an infinite compact metric space (so C(K) is sepa-
rable), then C(K) is separably injective if and only if C(K) is isomorphic
to c0, which holds if and only if K is homeomorphic to [0, ωmn] for some

integers m,n > 1, cf. Remark 4.5. (Equivalently, the derived set K(ω) = ∅.)
In particular, C[0, 1] is not separably injective. A concrete witness is the

embedding of C[0, 1] into C(D), where D := {0, 1}∞ is the Cantor cube,
induced by the surjection ϕ : D → [0, 1] given by ϕ((xi)

∞
1 ) =

∑∞
i=1 xi2

−i;
this embeds C[0, 1] as an uncomplemented subspace of C(D).

For proofs, see [15, Section 3C].

Appendix A. Projective compact spaces

Theorem 2.10 is in some sense dual to the following result by Gleason for
compact topological spaces. See [9, §7] for a proof.
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A compact Hausdorff space K is projective (in the category of compact
Hausdorff spaces) if whenever S and T are compact Hausdorff spaces, f :
S → T is an onto continuous map, and g : K → T is any continuous map,
then g can be lifted to a map G : K → S, i.e., a map G such that g = fG.

Theorem A.1. A compact Hausdorff space is projective if and only if it is
extremally disconnected. �

Furtermore, standard (category theoretical) arguments yield the follow-
ing, see [9, §7]:

We say that a compact Hausdorff space K is free if it is (homeomorphic
to) the Stone–Čech compactification βS of a discrete space S. Equivalently,
there exists a subset S ⊂ K (necessarily the set of all isolated points),
such that any map from S into a compact Hausdorff space has a unique
continuous extension to K.

Theorem A.2. A compact Hausdorff space K is projective if and only if it is
a retract of a free compact Hausdorff space. (I.e., there exists a free compact
space L such that K ⊆ L and there exists a continuous map r : L→ K that
is the identity on K.) �

References
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SOME BANACH SPACE GEOMETRY 11

[12] L. Nachbin, A theorem of the Hahn-Banach type for linear transforma-
tions, Trans. Amer. Math. Soc. 68 (1950), 28–46.
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