SOME BANACH SPACE GEOMETRY

SVANTE JANSON

1. INTRODUCTION

I have collected some standard facts about Banach spaces from various
sources, see the references below for further results. Proofs are only given
sometimes.

Notation. ¢ is an arbitrarily small positive number.
L(X,Y) is the Banach space of bounded linear operators T': X — Y.
B(X) is the closed unit ball {x € X : ||z| < 1}.
N := N U {oo} is the one-point compactification of the discrete space N.
All operators are bounded and linear.
A compact (topological) space always means a compact Hausdorff space.
(We sometimes add “Hausdorff” explicitly for emphasis.)

2. INJECTIVE BANACH SPACES

Definition 2.1. Let A > 1. A Banach space X is A-injective if whenever Y
and Z are Banach spaces with Y C Z (isometrically), then every bounded
linear operator T': Y — X can be extended to an operator T': Z — X with
171 < AT

A Banach space X is oo-injective if it is A-injective for some A < oo.

Example 2.2. The one-dimensional Banach space R or C is l-injective.
(This is the Hahn—Banach theorem.)

Example 2.3. ¢*°, and more generally ¢>°(S) for any set S, is l-injective.
This follows by using the Hahn-Banach theorem on each coordinate.

Example 2.4. A finite-dimensional Banach space X is oo-injective. This
follows from Example 2.3, since X is isomorphic to £5° := ¢°°(|n]), where
n = dim X.

Remark 2.5. When studying isometric properties of Banach spaces, the
natural notion is 1-injective. On the other hand, when studying isomorphic
properties, the natural notion is oo-injective, which obviously is preserved
by renorming the space. This is further shown by the simple Theorem 2.6
below, avoiding all estimates.
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More formally, using category theory terminology, “l-injective” is injec-
tive in category theoretic sense in the category BAN; of Banach spaces and
linear contractions, while (by Theorem 2.6) “co-injective” is injective in the
category BAN,, of Banach spaces and bounded linear operators.

We use injective as an abbreviation of co-injective.
Warning: In several other papers, injective means 1l-injective. (As said
above, this is natural when studying isometric properties.)

Theorem 2.6. A Banach space X is injective if whenever Y and Z are
Banach spaces with Y C Z, then every bounded linear operator T : Y — X
can be extended to an operator T : Z — X.

Proof. We may assume that Y is an isometric subspace of Z, i.e., || ||y =
| ||z on Y, since we otherwise may replace || ||y by the equivalent || || z.

Suppose that the extension property in the statement holds. We want
to show that it is possible to choose T such that there is a uniform norm
estimate || T|| < A||T|| for all such Y, Z and T.

First, fix a pair Y, Z with Y C Z (isometrically). The property says that
the restriction map L(Z, X) — L(Y, X) is onto. Hence, the open mapping
theorem shows that there exists a constant C' such that every T : Y — X
has an extension T : Z — X with |T|| < C||T||. We let C(Y,Z) be the
infimum of the constants C' for which this holds. (I do not know whether
the minimum always is attained.)

Suppose that the set {C (Y, Z)} is unbounded, where (Y, Z) ranges over all
pairs of Banach spaces with Y C Z (isometrically). Then there exists such
pairs (Y, Z,) with C(Y,,, Z,) > n. Let Y :=@,2 Y, and Z := P, | Z,
be the ¢! sums of these spaces, and note that Y C Z (isometrically).

Suppose that n > 1 and that T : Y,, — X. We extend T to an operator
U:Y — X by defining U(y1,...,) := T(yn); then ||U|| = ||T'||. We may
extend U to an operator U : Z — X with norm |U|| < (C(Y, Z) 4 ¢)|U|| =
(C(X,Y)+¢)||T|| and the restriction to Z, C Z yields an extension T : Z,, —
X of T with ||T|| < ||U|| < (C(X,Y) +¢)||T||. Hence C(Yy, Z,) < C(Y, Z)
for every n, which contradicts the assumption that C(Y,, Z,) > n.

Consequently, {C(Y,Z)} is bounded, and then X is A-injective for any
A > sup{C(Y, 2)}. O

The definition is equivalent to the existence of suitable projections, and
to an extension property when X is a subspace of another space. This holds
both for the isometric and isomorphic versions, i.e., with and without norm
estimates, and we state this as a theorem containing both versions. See
further e.g. [6] and [9].

Theorem 2.7. The following properties of a Banach space X are equivalent.
(i) X is [A-Jinjective.
(ii) If X C Z [isometrically/, where Z is another Banach spaces, then
there is a projection Z — X [of norm < \J.
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(iii) If X C Z [isometrically], where Z is another Banach space, then every
bounded linear operator T : X — Y, where Y is another Banach space,
can be extended to an operator T : Z — Y [with norm ||T|| < \|T|/.

Proof. (i) = (ii): Extend the identity X — X to P: Z — X.

(ii) = (i): X can be embedded isometrically into some ¢>°(S). (E.g. by
taking S = B(X™*).) Let P : ¢>°(S) — X be the projection given by (ii). If
Y C Z are Banach spaces and T': Y — X C £°°(5), then T can be regarded
asamap Y — ¢°°(S), which by Example 2.3 can be extended (isometrically)
to an operator T : Z — £°°(S). Then PT : Z — X is the desired extension.

(ii) = (iii): If P is such a projection, T' may be extended by TP.

(iii) = (ii): Extend the identity X — X to P: Z — X. O
Corollary 2.8. The following properties of a Banach space X are equiva-
lent.

(i) X is injective.

(ii) Every subspace isomorphic to X of an arbitrary Banach space Z is

complemented.

(iii) Ewvery subspace isometric to X of an arbitrary Banach space Z is com-
plemented.

Proof. This is a reformulation of Theorem 2.7(i) <= (ii). O

Corollary 2.9. If X is injective, then a closed subspace of X is injective
if and only if it is complemented.

Proof. An injective subspace is always complemented by Corollary 2.8.
Conversely, let W C X be a complemented subspace, where X is injective.
Then there exists a projection P : X — W, and we argue as in the proof of
Theorem 2.7: If Y C Z are Banach spaces and T : ' Y — W C X, then T
can be regarded as a map Y — X, which by assumption can be extended
to an operator T : Z — X. Then PT : Z — W is the desired extension. [

There is a characterization of the 1-injective Banach spaces. (There is no
known characterization of general injective Banach spaces, or of A-injective
Banach spaces for a given A > 1.)

A topological Hausdorff space is extremally disconnected if the closure of
an open set is open. See e.g. [5, Section 6.2, pp. 368-369].

Theorem 2.10 (Kelley [8], Hasumi [7]). The following are equivalent, for
a Banach space X.
(i) X is l-injective.
(ii) X is isometric to C(K) for some extremally disconnected compact
Hausdorff space K. 0

In the real case, this can be elaborated as follows.

Theorem 2.11 (Nachbin [12], Goodner [6], Kelley [8]). For a real Banach
space X, the following are equivalent:
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(i) X is l-injective.

(ii) X is isometric to C(K) for some extremally disconnected compact
space K.

(iii) The closed balls in X have the binary intersection property. (Le.,
any family of closed balls that intersect pairwise has non-empty in-
tersection.)

(iv) X is isometric to some C(K) (K compact) such that the unit ball is
a complete Boolean lattice. (L.e., any family {fo} has a Lu.b.)

(v) X is isometric to some C(K) (K compact) such that any family
{fa} C X that has an upper bound has a l.u.b. 0

Example 2.12. A finite-dimensional Banach space X is l-injective if and
only if it is isometric to £2° for some n. (Cf. Example 2.4.)

Note that if C(K) and C(L) are isometric, then K and L are homeomor-
phic (Theorem 4.3 below). Hence:

Corollary 2.13. If K is compact, then C(K) is 1-injective if and only if
K is extremally disconnected. ([l

Corollary 2.14. If X is a commutative C*-algebra with mazimal ideal
space A, then X is 1-injective if and only if A is extremally disconnected.

Proof. X is isometric to C'(A) by the Gelfand transform. O

Corollary 2.15. The following properties of a Banach space X are equiv-
alent.
(i) X is injective.
(ii) X s isomorphic (or isometric) to a complemented subspace of £>°(S)
for some set S.
(iii) X 14s isomorphic (or isometric) to a complemented subspace of C(K)
for some extremally disconnected compact space K.

Proof. (i) = (ii): As in the proof of Theorem 2.7, X is isometric to a
subspace of ¢>°(S) for some set S, and this subspace is complemented by
Corollary 2.8.

(il) = (iii): £°°(.59) is isometric to some such C(K) by Example 2.3 and
Theorem 2.10.

(iii) = (i): By Theorem 2.10 and Corollary 2.9. O

Although there is no characterization of infinite-dimensional injective Ba-
nach spaces, they are known to have, or not have, several properties.

Theorem 2.16. Let X be an infinite-dimensional injective Banach space.

(i) X contains a complemented subspace isomorphic to €.
(ii) X is not separable, not reflexive, not WCG (weakly compactly gener-
ated).
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Proof. (i): By Corollary 2.15(iii) and [4, Corollary VI.2.11], X contains a
subspace isomorphic to £°°, and this subspace is complemented by Corol-
lary 2.8 since ¢ is injective (Example 2.3).

(ii): Follows from (i), since ¢>° does not have these properties. O

3. INJECTIVE DUAL SPACES

For a dual space X = W*, a linear operator Y — W™ is the same as a
bilinear form Y x W — R or C. This leads to the following, se [16, Corollary
2.12].

Theorem 3.1. The following properties of a Banach space W are equiva-
lent:

(i) W* is [A-Jinjective.

(ii) Whenever Y and Z are Banach spaces with Y C Z (isometrically),
every bounded bilinear form a on'Y x W can be extended to a bounded
bilinear form & on Z x W [with norm ||&| < Al|a]|/.

(iii) WheneverY and Z are Banach spaces with Y C Z (isometrically), the
projective tensor norms || |lygy and || || ;zu are equivalent on' Y @ W
with [[ully gy < Al 7z

(iv) Whenever Y and Z are Banach spaces with Y C Z (isometrically),
the projective tensor product Y @W is a closed subspace of ZW [with
lullyaw < Mull gy forue YEW].

Proof. (i) <= (ii): By the comment before the theorem.

(ii) <= (iii): A bounded bilinear form on Y x W is the same as a bounded
linear form on Y’ ® W with the projective tensor norm || [|y-5y,- The equiv-
alence now follows easily using the Hahn-Banach theorem.

(iii) <= (iv): This is immediate, since Y ®W is the completion of Y @ W
in the norm || ||ygy,, and similarly for Y&Z. O

Corollary 3.2. W* is 1-injective if and only if YW C ZQW isometrically
whenever Y C Z. O

Example 3.3. Let W = L'(S, F, ) for a measure space (S, .F, ). Then
Y®W = L'(S, F,11;Y), the space of Bochner integrable Y-valued functions
on (S, F,u), se [16, Section 2.3]. Thus, if Y C Z isometrically, then

YW = LY(S, F,i;Y) C LY(S, F, i Z) = Z&W

isometrically, so Theorem 3.1(iv) is satisfied with A = 1. Thus Theorem 3.1
(or Corollary 3.2) shows that W* = LY(S, F, u)* is l-injective.

In particular, if p is o-finite, we obtain the following result [16, p. 30].

Theorem 3.4. If 1 is a o-finite measure on some measurable space, then
L>®(p) = LY(pn)* is 1-injective.

Proof. L>=(u) = L'(u)*, which is 1-injective by Example 3.3. O
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Corollary 3.5. If u is a o-finite measure on some measurable space, then
the mazimal ideal space of L™ (u) is extremally disconnected.

Proof. By Theorem 3.4 and Corollary 2.14. O

Example 3.6. Theorem 3.4 and Corollary 3.5 do not extend to L (u) for
all (non-o-finite) p, as shown by the following example.

Let X = L*([0,1], B, 1), where B is the Borel o-field and p is the counting
measure. Thus there are no null sets (except (}), so X consists of all bounded
Borel measurable functions on [0, 1] with || f|| = sup, |f(x)|.

The Gelfand transform f — f is an algebra isomorfism X — C(K) for
some compact Hausdorff space K. The idempotents in X are 1g, E € B,
and the idempotents in C(K) are 1p, F C K is open and closed. Hence the
Gelfand transform gives a bijection E +— E of B onto the collection of open
and closed subsets of K. (Thus, 15 =1 i)

Note that

ECF < 1plp=1p < 1315=1 @Egﬁ, (3.1)

E
and similarly
EﬂF:®<:>1E1F:0<:>1E113:0<:>Eﬂﬁ:®. (3.2)
For z € [0, 1], let
Uy :={z} CK. (3.3)
Note that if « # y, then U, and U, are disjoint by (3.2),
Furthermore, for any set A C [0, 1], let

Uy = | Us (3.4)

Thus, U4 is an open subset of K.

Suppose that Uy is open; then Uz is open and closed so Uy = E for some
Borel set £ C [0,1]. If # € A, then {z} = Up,y C Ua C Ua = E by (3.1),
and thus {z} C F by (3.1) again, i.e., z € E. On the other hand, if x ¢ A,
then U, is an open set disjoint from U4, and thus {z} N E= U, NUy = 0;
hence (3.2) yields {z} N E = (), i.e., z ¢ E. Consequently, F = A, which
means A =F € B.

In other words, if A ¢ B, then U, is an open subset of K but Uy is not
open. Hence K is not extremally disconnected and thus, by Theorem 2.10,
C(K) is not 1-injective. Consequently, L>(]0, 1], B, i) is not 1-injective.

Example 3.3 can be extended somewhat as follows.

Definition 3.7. A Banach space X is an £ x-space if every finite-dimen-
sional subspace M of X is contained in a finite-dimensional subspace N such
that the Banach-Mazur distance between N and ¢} (where n = dim N) is at
most ), i.e., there exists an isomorphism 7' : N — 7 such that ||| |77 <
A

A Banach space is an £q y4-space if it is an £y ).-space for every € > 0.
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A Banach space is an Ly-space if it is an £ y-space for some A < oo,

It is easily seen that if W is an £ y-space, and Y C Z (isometrically),
then [lullygy < Mlull gy for every u € Y @ W, see [16, Section 2.4]. (The
idea is that that the tensor norm [lu|| ;5 can be approximated by the norm
in Z®M for a suitable finite-dimensional subspace M C W.) Consequently,
Theorem 3.1(iii) == (i) yields the following.

Theorem 3.8. If W is an Ly x-space, or more generally an L1 xy-space,
then W* is A-injective. O

Corollary 3.9. (i) If W is an Ly-space, then W* is oo-injective.
(ii) If W is an Ly 14-space, then W* is 1-injective. O

Example 3.10. If K is a compact Hausdorff space, then C'(K)* = M,(K),
the space of regular real-valued (or complex-valued) Borel measures on K,
is an L;14-space [16, p. 32]. (This is easily verified, since every finite-
dimensional subspace of M,(K) C M(K) can be seen isometrically as a
subspace of L! (K, v) for some finite Borel measure v by the Radon-Nikodym
theorem, and L!(K,v) is an L1 14-space, see [16, Proposition 2.21].)
Consequently, the bidual C'(K)** is 1-injective for every compact K.

4. MORE ON C(K)

We give a few simple results on the Banach spaces C(K), where K is a
compact Hausdorff space. See e.g. [15] for further results.

Theorem 4.1. C(K) is separable if and only if K is metrizable. O
See [2, Theorem V.6.6] for a proof.

Theorem 4.2. The dual space C(K)* is separable if and only if K is count-
able.

Proof. If K is countable, then every subset of K is a Borel set and C(K)* =
M(K) = ¢*(K) which is separable.

On the other hand, for any K, the point evaluations d,, x € K, form a
discrete subset of C'(K)*, so if K is uncountable, then C(K)* is not separa-
ble. O

As a corollary to these two theorems we see that every countable compact
space is metrizable, since X is separable whenever X* is.

We have the following isomorphism theorems. Note the difference between
isometries and isomorphisms.

Theorem 4.3 (Banach—Stone). If K; and Ko are compact Hausdorff spaces
such that C(K1) and C(K3) are isometric Banach spaces, then Ki and Ko
are homeomorphic. O

Theorem 4.4 (Miljutin). All spaces C(K) where K is an uncountable com-
pact metric space are isomorphic as Banach spaces. (Equivalently, they are

all isomorphic to C|0,1].) O
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For the proof of Theorem 4.4 see Miljutin [11], Petczyniski [13] or Rosen-
thal [15].

The spaces C'(K) with K countable are not isomorphic to C10, 1] by The-
orem 4.2. These spaces are classified up to isomorphisms by Bessaga and
Pelczynski [1], see alse [13] and [15].

Remark 4.5. Every countable compact set is homeomorphic to [0,] for
some countable ordinal ~, i.e., the space of all ordinals < v with the order
topology. (This space is always compact, see [5, Example 3.1.27 and Problem
3.12.3].) In fact, every such space is homeomorphic to [0,w®n] for some
countable ordinal o and integer n > 1, and « and n are uniquely determined
(by the fact that the c:th derived set is finite and non-empty with exactly
n points), see [10].

Consequently, if K is compact and countable, then C'(K) is isometric to
C10,w*n] for some (unique) o < ¥y and n > 1.

Example 4.6. ¢ is isomorphic to ¢ = C(N). By Theorem 4.2, ¢y is not
isomorphic to C[0, 1].

Remark 4.7. The corresponding non-separable spaces ¢>° and L*°[0, 1] are
isomorphic. (Their preduals £ and L![0, 1] are not. This can be seen because
L'[0,1] contains a subspace isomorphic to ¢2, for example by Khinchine’s
inequalities the closed subspace spanned by the Rademacher functions, see
e.g. [3, p. 105]; thus L'[0,1] does not have the Schur property that ¢! has
[3, p. 85]. Conversely, £! does not contain any subspace isomorphic to £2,
because ¢! has the Schur property.

Remark 4.8. It is easily seen that if K is any infinite compact metric space,
then C'(K) contains a subspace isometric to ¢, and thus a subspace isometric
to c¢g. (Take a convergent sequence x, — Zoo in K with d(z,,2e) N\ 0,
and find continuous functions f, : K — [0,1] with disjoint supports and

5. EMBEDDINGS INTO C(K).

Theorem 5.1 (Banach-Mazur). Every separable Banach space is isometric
to a closed subspace of C[0,1].

Sketch of proof. If X is separable, then the dual unit ball K=B(X*) is a
compact metric space, and X can be regarded as a subspace of C'(K).
There exists a surjective continuous map of the Cantor set D = {0,1}*°
onto any compact metric space, and thus onto K, which gives an embedding
of C(K) as a subspace of C(D). Finally, the Cantor set D has a ttraditional
embedding as a subset of [0, 1], and C(D) may be embedded into C[0, 1] by
extending each function linearly across each interval in the complement of
the Cantor set. (]



SOME BANACH SPACE GEOMETRY 9

Here [0, 1] can be replaced by various other spaces, for example (as seen
in the proof) the Cantor set, as well as any other compact space that maps
continuously onto [0, 1].

Remark 5.2. We cannot replace [0, 1] by any countable compact space in
Theorem 5.1; in particular, we cannot replace C[0,1] by cg = ¢ = C(N). In
fact, if X C C'(K) with K countable, then X* is a quotient space of C'(K)*,
and thus X* has to be separable by Theorem 4.2; hence C[0,1] cannot be

embedded in C(K) (not even isomorphically).

6. SEPARABLE INJECTIVITY

We note the following interesting example in the subcategory of separable
Banach spaces; see e.g. [3, Theorem VIL.4] or [9, Theorem 3.11.12] for a
proof.

We say that a Banach space X is separably A-injective if Definition 2.1 is
satisfied for all separable Banach spaces Y and Z with Y C Z.

Theorem 6.1 (Sobczyk). ¢ is separably 2-injective. O

It is easily seen that Theorem 2.7 holds also if we only consider separable
spaces; thus Theorem 6.1 is equivalent to:

Theorem 6.2. If ¢y is a subspace (isometrically) of a separable Banach
space Z, then there is a projection Z — cg of norm at most 2.

Remark 6.3. ¢y is not separably 1-injective; the constant 2 is best possible
in Theorems 6.1-6.2. In fact, if we take Z = ¢ in Theorem 6.2, then every
projection ¢ — ¢p has norm at least 2, as shown by Taylor [17]. (Note that
in this case, the subspace ¢y has codimension 1.)

Remark 6.4. There is no bounded projection £*° — ¢o. Thus ¢q is not in-
jective in the category of all Banach spaces. (Phillips [14]; see also Phillips’s
lemma [3, p. 83]. In fact, every bounded operator ¢ — ¢ is weakly com-
pact [3, Exercise VIIL.4].) This follows also by Theorem 2.16.

Remark 6.5. If K is an infinite compact metric space (so C(K) is sepa-
rable), then C(K) is separably injective if and only if C'(K) is isomorphic
to ¢, which holds if and only if K is homeomorphic to [0,w™n| for some
integers m,n > 1, cf. Remark 4.5. (Equivalently, the derived set K(“) = (.)

In particular, C|0, 1] is not separably injective. A concrete witness is the
embedding of C[0, 1] into C'(D), where D := {0,1}* is the Cantor cube,
induced by the surjection ¢ : D — [0,1] given by o((2;)$°) = .52, ;277
this embeds C]0, 1] as an uncomplemented subspace of C(D).

For proofs, see [15, Section 3C].

APPENDIX A. PROJECTIVE COMPACT SPACES

Theorem 2.10 is in some sense dual to the following result by Gleason for
compact topological spaces. See [9, §7] for a proof.
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A compact Hausdorff space K is projective (in the category of compact
Hausdorff spaces) if whenever S and T are compact Hausdorff spaces, f :
S — T is an onto continuous map, and g : K — T is any continuous map,
then g can be lifted to a map G : K — 5, i.e., a map G such that g = fG.

Theorem A.1. A compact Hausdorff space is projective if and only if it is
extremally disconnected. O

Furtermore, standard (category theoretical) arguments yield the follow-
ing, see [9, §7]:

We say that a compact Hausdorff space K is free if it is (homeomorphic
to) the Stone-Cech compactification 3S of a discrete space S. Equivalently,
there exists a subset S C K (necessarily the set of all isolated points),
such that any map from .S into a compact Hausdorff space has a unique
continuous extension to K.

Theorem A.2. A compact Hausdorff space K is projective if and only if it is
a retract of a free compact Hausdorff space. (I.e., there exists a free compact
space L such that K C L and there exists a continuous map r : L — K that
is the identity on K.) O
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