
PROBABILITY DISTANCES

SVANTE JANSON

Abstract. This is a survey of some important probability metrics, for
probability distributions on a complete metric space. There are no new
results.

1. Introduction

A probability metric or probability distance is a metric on a suitable set
of probability distributions in some measurable space S. In this survey we
give definitions and basic properties of (some of) the most important ones.
(There are no new results.) See e.g. Zolotarev [19] or the books Rachev [14]
and Rachev et al [15] (which is a second, enlarged edition of [14]) for a general
theory and many other examples. A few proofs are given, and references are
given to many other results, but many (usually simple) results are stated
without proof or reference. Similarly, we give a few original references, but
usually we ignore the history of the metrics studied here, and refer to e.g.
the books just cited.

Although a probability metric d(µ, ν) is formally defined for distributions
µ and ν, we follow common practice and write d(X,Y ) := d(L(X),L(Y ))
when X and Y are random variables with distributions L(X) and L(Y ), and
we often state the definitions below in this form. We switch between the
versions for distributions and random variables without further comments,
but we stress that d(X,Y ) thus depends only on the distributions of X and
Y . In particular,

d(X,Y ) = 0 ⇐⇒ X
d
= Y. (1.1)

Remark 1.1. We do not follow the elaborate terminology of e.g. [15]; our
probability metrics are the simple probability metrics in [15]. Also, we do
not distinguish between the terms “probability metric” and “probability
distance”. �

2. Notation and other preliminaries

Except in Section 5, S is a complete separable metric space, equipped
with its Borel σ-field B(S). The metric on S is denoted by d(x, y); we may
use the more precise notation (S, d) for the metric space when the metric is
not obvious from the context. (There should not be any danger of confusing
the metric d on S with probability metrics.)
X,Xn, Y will generally denote random variables in S.
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Let o denote an arbitrary but fixed point in S; the choice of o does not
matter. When S = Rq, or more generally a Banach space, we take o = 0,
and then d(x, o) = ‖x‖ for x ∈ S.

Remark 2.1. Some definitions and results extend to more general metric
spaces, but there are also several technical problems, sometimes serious;
e.g., with measurability if the space is not separable, and with existence of
couplings if the space is not complete. See e.g. [2, Appendix III], [3, Section
8.3] and [15] for some results and limitations.

The assumption that (S, d) is complete can be relaxed to assuming that
there exists an equivalent complete metric. �

M(S) denotes the space of all signed Borel measures on S, and P(S)
denotes the subset of all probability measures. M(S) is a Banach space
with the total variation norm ‖ ‖M(S). If X is a random variable in S, then
L(X) ∈ P(S) denotes its distribution.
δs denotes the Dirac measure at s ∈ S, i.e., the distribution of the deter-

ministic “random variable” X := s.
The weak topology in P(S) is defined in the standard way as the weak

topology with respect to the space of bounded continuous functions on S, see

e.g. [2] or [3]. Recall that convergence in distribution Xn
d−→ Xn of random

variables X,Xn in S, is defined as weak convergence (i.e., convergence in
the weak topology) of their distributions L(Xn) to L(X).

Increasing and decreasing are used in weak sense: a function f is increas-
ing if x 6 y =⇒ f(x) 6 f(y).

For x, y ∈ Rq, we let x 6 y denote the coordinate-wise partial order, i.e.,
xi 6 yi for i = 1, . . . , q, where x = (xi)

q
1 and y = (yi)

q
1.

FX(x) := P(X 6 x) denotes the distribution function of a random variable
X with values in R or Rq.

If F : R→ [0, 1] is a distribution function, then let

F−1(t) := sup{x : F (x) 6 t} = inf{x : F (x) > t}, t ∈ (0, 1). (2.1)

F−1 is increasing and right-continuous. Furthermore, if U is a uniformly
distributed random variable on (0, 1), then F−1(U) is a random variable
with the distribution function F . Fix a random variable U ∼ U(0, 1), and

for any real-valued random variable X, define ~X := F−1X (U). Then, thus,

X
d
= ~X = F−1X (U). (2.2)

(U is fixed in the sequel.)

Remark 2.2. Equivalently, we may define ~X as the function F−1X regarded
as a random variable defined on the probability space (0, 1) (with Lebesgue
measure); this is the same as the definition above for a specific choice of U .
We do not assume this. �

A coupling of two random variables X and Y is a pair (X ′, Y ′) of random

variables on a common probability space such that X ′
d
= X and Y ′

d
= Y .

If X and Y are real-valued random variables, then(
~X, ~Y

)
=
(
F−1X (U), F−1Y (U)

)
(2.3)
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is a coupling of X and Y by (2.2); we call this the monotone coupling of X
and Y .

If X is a random variable with values in R, or more generally in a normed
space with norm |·|, then the Lp norm of X is defined by

‖X‖p :=

{(
E|X|p

)1/p
, 0 < p <∞,

ess sup|X|, p =∞.
(2.4)

For convenience, we extend the usual definition of metric, and allow a
metric to take the value +∞. If d′ is a metric in this sense on a set E,
and a ∈ E, then d′ is finite, and thus a proper metric, on the set {x ∈ E :
d′(x, a) <∞}.
bxc denotes the integer part of a real number x, and dxe := −b−xc the

smallest integer > x.
x ∧ y := min(x, y) and x ∨ y := max(x, y).
Unspecified limits are as n→∞.

2.1. Lipschitz norms. Let 0 < α 6 1. For a real-valued function f : S →
R, define

‖f‖Lipα := sup
x 6=y

|f(x)− f(y)|
d(x, y)α

, (2.5)

and let

Lipα(S) :=
{
f : S → R : ‖f‖Lipα <∞

}
(2.6)

=
{
f : S → R : |f(x)− f(y)| 6 Cd(x, y)α for some C and all x, y ∈ S

}
.

(2.7)

Note that ‖f‖Lipα = 0 if (and only if) f is constant, so (2.5) is a seminorm
only, and that Lipα/R, i.e., Lipα modulo constant functions, is a Banach
space with the norm (2.5).

Furthermore, let B(S) the space of bounded functions on S, with

‖f‖B(S) := sup
x∈S
|f(x)|, (2.8)

and let

BLipα(S) := Lipα(S) ∩B(S). (2.9)

BLipα(S) is a Banach space with either of the two norms

‖f‖BLipα(S) := max
{
‖f‖Lip(S), ‖f‖B(S)

}
, (2.10)

‖f‖′BLipα(S) := ‖f‖Lip(S) + ‖f‖B(S). (2.11)

These two norms are obviously equivalent, with

‖f‖BLipα(S) 6 ‖f‖
′
BLipα(S) 6 2‖f‖BLipα(S). (2.12)

We use the norm (2.10) unless anything else is said.
We may omit the subscript α when α = 1, i.e., Lip := Lip1 and BLip :=

BLip1.
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Remark 2.3. If the diameter diam(S) := supx,y∈S d(x, y) of S is finite, then
every function in Lipα is bounded, so BLipα = Lipα as sets. They are not
quite the same as normed spaces, since the constant function 1 has norm
0 in Lipα but not in BLipα. However, the quotient spaces BLipα/R and
Lipα/R are Banach spaces with equivalent norms, and if the diameter of S
is 6 21/α, then BLipα/R and Lipα/R have the same norm so they are equal
as Banach spaces.

Note also that we can always introduce a new, bounded, metric in S by
d1(x, y) := d(x, y)∧1; this is equivalent to d, so it generates the same topol-
ogy, but S has diameter at most 1 for the new metric. Then BLipα(S, d1) =
BLipα(S, d) with equivalent norms, and

Lipα(S, d1) = BLipα(S, d1) = BLipα(S, d) (2.13)

as sets. Hence,

Lipα(S, d1)/R = BLipα(S, d1)/R = BLipα(S, d)/R (2.14)

with equivalent norms. (If we instead use d2(x, y) := d(x, y)∧21/α, then the
three spaces in (2.14) become isometric.) �

2.2. Higher Lipschitz spaces. If S = Rq, or more generally, if S is a
Banach space B, we define also Lipα(S) for α > 1, as follows.

If B and B1 are Banach spaces and f : V → B1 is a function defined
on an open subset V ⊆ B, then f is said to be (Fréchet) differentiable at
a point x ∈ V if there exists a bounded linear operator Df(x) : B → B1

such that ‖f(x+ y)− f(x)−Df(x)y‖B1 = o(‖y‖B) as ‖y‖B → 0. Further,
f is differentiable in V if it is differentiable for every x ∈ V ; then Df is a
function V → L(B,B1) (the space of bounded linear mappings B → B1),
and we may talk about its derivative D2f = DDf , and so on; see e.g. [5].
Note that the mth derivative Dmf (if it exists) is a function from V into
the Banach space of multilinear mappings Bm → B1; this space is equipped
with the usual norm sup

(
‖T (x1, . . . , xm)‖B1 : ‖x1‖B, . . . , ‖xm‖B 6 1

)
. Let

Cm(B,B1) denote the space of m times continuously differentiable functions
f : B → B1.

Given a Banach space B and a real number α > 0, write α = m+ γ with
m := dαe − 1 ∈ N>0 and γ := α−m ∈ (0, 1], and define, for f ∈ Cm(B,R),

‖f‖Lipα := sup
x 6=y

‖Dmf(x)−Dmf(y)‖
d(x, y)γ

, (2.15)

and

Lipα(B) := {f ∈ Cm(B,R) : ‖f‖Lipα <∞}. (2.16)

Note that ‖f‖Lipα = 0 if and only if Dmf is constant. This holds, e.g. by
Taylor’s formula [5, Théorème 5.6.1], if and only if f(x) is a polynomial
function of degree 6 m in the sense that, for some bounded multilinear
mappings Tk : Bk → R,

f(x) =

m∑
k=0

Tk(x, . . . , x), x ∈ B. (2.17)
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(Here T0 is a constant, obviously with T0 = f(0).) It follows that Lipα(B)
regarded as a space of functions modulo polynomials (2.17) is a Banach
space.

Note that for 0 < α 6 1, we have m = 0 and Lipα(S) is the same space
as defined in (2.6).

3. Two constructions

Many probability metrics can be defined by the two constructions in the
following subsections.

3.1. Minimal metrics. Let δ(X,Y ) be a metric on random variables with
values in S, defined for pairs of random variables (X,Y ) defined on a com-
mon probability space. (Thus, δ depends on the joint distribution of X and
Y , and is not a probability metric as defined in this paper. We assume
that δ(X,Y ) = 0 ⇐⇒ X = Y a.s.) We allow δ to take the value ∞.
(Equivalently, δ(X,Y ) may be defined only for some X and Y .) Then the

corresponding minimal metric δ̂ is defined by

δ̂(X,Y ) := inf
{
δ(X ′, Y ′) : X ′

d
= X, Y ′

d
= Y

}
, (3.1)

thus taking the infimum over all couplings of X and Y . The infimum is
attained in all cases considered below, and then we may replace inf by min
in (3.1).

δ̂ is symmetric by definition and satisfies the triangle inequality, e.g. as
a consequence of [4, Lemma 1.1.6]; furthermore, at least in cases when the

infimum in (3.1) is attained, δ̂(X,Y ) = 0 implies X
d
= Y , so δ̂ is really a

probability metric, cf. (1.1).

3.2. Dual metrics. Let F be a set of measurable functions S → R. Define
a functional ‖µ‖∗F on the set of signed Borel measures µ ∈M(S) such that∫
S |f | |dµ| <∞ for every f ∈ F by

‖µ‖∗F := sup
{∣∣∣∫

S
f dµ

∣∣∣ : f ∈ F
}
∈ [0,∞]. (3.2)

This defines a seminorm on the space

MF :=
{
µ ∈M(S) : ‖µ‖∗F <∞

}
. (3.3)

If this seminorm is a norm, i.e., if
∫
S f dµ = 0 for all f ∈ F implies µ = 0,

then

dF (µ, ν) := ‖µ− ν‖∗F (3.4)

defines a probability metric on PF := P∩MF . In terms of random variables,
the definition is

dF (X,Y ) := sup
{∣∣E f(X)− E f(Y )

∣∣ : f ∈ F
}
. (3.5)

The most common case is that F is the unit ball {f ∈ F : ‖f‖ 6 1} where
F either is a normed space of functions, or a seminormed space of functions
with ‖f‖ = 0 ⇐⇒ f is a constant function (so that F can be regarded as
a normed space of functions modulo constants). Then dF (µ, ν) is the norm
of µ− ν as an element of the dual space F∗.

We may call dF the dual metric defined by the set F , or by the space F.
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Remark 3.1. The functions in F , or perhaps in F, are regarded as (and
often called) test functions. �

Remark 3.2. The metric dF in (3.4) and (3.5) is defined and finite for all
probability measures on S if and only if for some (and then any) o ∈ S, the
set of functions {x 7→ f(x)− f(o) : f ∈ F} is uniformly bounded. When F
is given by a normed space F as above, this is equivalent to

|f(x)− f(o)| 6 C‖f‖, f ∈ F, x ∈ S (3.6)

for some constant C not depending on x or f . If F is a Banach space, this
is further equivalent to the property that every function f ∈ F is bounded.
�

4. Ideal metrics

Let S be a Banach space. A probability metric d is said to be ideal of
order γ, where γ > 0, if it satisfies the following two properties [18; 19]:

(I1) For any random variables X,Y, Z in S such that Z is independent
of X and Y ,

d(X + Z, Y + Z) 6 d(X,Z). (4.1)

(I2) For any random variables X,Y in S and c ∈ R,

d(cX, cY ) = |c|γd(X,Y ). (4.2)

(If γ = 0 and c = 0, we interpret 00 = 0 in (4.2).)
Note that (I1) in particular implies translation invariance: for any con-

stant a ∈ S,

d(X + a, Y + a) = d(X,Y ). (4.3)

Furthermore, (I1) implies (and is equivalent to) that if X1, . . . , Xn and
Y1, . . . , Yn are two finite collections of independent random variables, then

d
( n∑
i=1

Xi,
n∑
i=1

Yi

)
6

n∑
i=1

d(Xi, Yi). (4.4)

For the two constructions in Section 3, we have the following simple re-
sults.

Lemma 4.1. Let S be any complete separable metric space, and suppose that
δ(X,Y ) is a complete metric on random variables in S. Then the minimal

metric δ̂ is complete.

Proof. Suppose that µn is a Cauchy sequence of probability measures in
P(S) for the metric δ̂. By selecting a subsequence, we may assume that

δ̂(µn, µn+1) < 2−n for every n > 1. (If we show that the subsequence
convergence, then the original Cauchy sequence converges to the same limit.)

Then, for every n > 1 there exists random variables Xn, Yn ∈ S such that
Xn ∼ µn, Yn ∼ µn+1, and δ(Xn, Yn) < 2−n.

By [4, Lemma 1.1.6] and induction, there exists for every n > 2 a probabil-

ity measure νn on Sn such that if (Z
(n)
1 , . . . , Z

(n)
n ) ∼ νn, then (Z

(n)
n−1, Z

(n)
n )

d
=

(Xn−1, Yn−1) and, when n > 2, (Z
(n)
1 , . . . , Z

(n)
n−1) ∼ νn−1. Consequently,

by Kolmogorov’s extension theorem, there exists a probability measure ν
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on S∞ such that if (Z1, Z2, . . . ) ∼ ν, then (Z
(n)
1 , . . . , Z

(n)
n ) ∼ νn for every

n > 2, and thus (Zk, Zk+1)
d
= (Xk, Yk) for every k > 1. Thus

δ(Zk, Zk+1) = δ(Xk, Yk) < 2−k, (4.5)

and thus the sequence Zk is a Cauchy sequence for δ. Hence, by assumption,

there exists a random variable Z such that δ(Zn, Z)→ 0. Since Zn
d
= Xn ∼

µn, this implies,

δ̂(µn,L(Z)) 6 δ(Zn, Z)→ 0, (4.6)

and thus the sequence µn converges. �

Lemma 4.2. Let S be a Banach space and let δ(X,Y ) be a metric on
random variables in S such that for any random variables X and Y ,

δ(X,Y ) = δ(X − Y, 0), (4.7)

δ(tX, 0) = |t|γδ(X, 0) t ∈ R. (4.8)

Then the minimal metric δ̂ is ideal of order γ.

Lemma 4.3. Let S be a Banach space and let F be a (semi)normed space of
functions S → R such that if f ∈ F, a ∈ S and t ∈ R, then f(·+a), f(t·) ∈ F
and

‖f(·+ a)‖F = ‖f‖F (4.9)

‖f(t·)‖F = |t|γ‖f‖F. (4.10)

Then the corresponding dual metric is ideal of order γ.

5. Total variation metric

In this section, S = (S,B) may be any measure space.
The total variation distance of two probability measures µ, ν ∈ P(S) is

defined as

dTV(µ, ν) := sup
{∣∣µ(A)− ν(A)

∣∣ : A ∈ B
}
. (5.1)

It is easy to see that

dTV(µ, ν) := 1
2‖µ− ν‖, (5.2)

where ‖µ− ν‖ := |µ− ν|(S) is the usual norm in M(S).
For random variables X and Y , (5.1) takes the form

dTV(X,Y ) := sup
{∣∣P(X ∈ A)− P(Y ∈ A)

∣∣ : A ∈ B
}
. (5.3)

Remark 5.1. We may omit the absolute values in (5.1) and (5.3) without
changing the supremum. (Since also Ac ∈ B.) �

Remark 5.2. Some authors prefer to define dTV(µ, ν) := ‖µ − ν‖, thus
multiplying our dTV by 2. With our choice, we have 0 6 dTV 6 1. �

Remark 5.3. If BB(S) is the space of bounded measurable functions S →
R, with the norm (2.8), then ‖µ‖ is the dual norm in M(S), and thus the
dual probability metric defined in Section 3.2 is 2dTV. Hence, dTV is the
probability metric dual to the space

(
BB(S), 2‖·‖B

)
. Consequently, dTV

equals the dual probability metric dF for any of the sets of test functions
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{f ∈ BB(S) : |f | 6 1
2}, {f ∈ BB(S) : 0 6 f 6 1}, or, see the definition (5.1),

{1A : A ∈ B}. �

Given any probability measures µ and ν on S, there exists a σ-finite
measure λ such that both µ and ν are absolutely continuous with respect
to λ. (For example, λ := µ + ν.) In this case, if µ and ν have densities
(Radon–Nikodym derivatives) dµ/dλ and dν/dλ, then

dTV(µ, ν) = 1
2

∫
S

∣∣∣dµ
dλ
− dν

dλ

∣∣∣dλ = 1
2

∥∥∥dµ

dλ
− dν

dλ

∥∥∥
L1(λ)

(5.4)

which implies

dTV(µ, ν) = 1−
∫
S

min
{dµ

dλ
,

dν

dλ

}
dλ. (5.5)

In particular, dTV(µ, ν) = 1 if and only if µ and ν are mutually singular.
It is easily seen that dTV is a complete metric on P(S).
Consider now the special case that, as in the rest of the paper, S is a

separable metric space. (So that the diagonal is measurable in S×S). Then
it is easy to see, e.g. using (5.5), that

dTV(X,Y ) = min
{
P(X ′ 6= Y ′) : X ′

d
= X, Y ′

d
= Y

}
, (5.6)

where min as always indicates that the infimum is attained. In other words,
dTV is the minimal probability metric corresponding to δ(X,Y ) := P(X 6=
Y ). A coupling (X ′, Y ′) of X and Y attaining the minimum in (5.6) is called
a maximal coupling. We repeat that such a coupling always exists

Remark 5.4. The total variation metric is a rather strong metric. If S
is countable and discrete, e.g. N or Z, then weak convergence in P(S) is
equivalent to convergence in dTV, but in any other separable metric space,
convergence in dTV is stronger, and often too strong to be useful. For
example, a sequence of discrete real-valued random variables never converges
in total variation to a continuous limit. �

Remark 5.5. If S is a Banach space (e.g., R), then dTV is an ideal metric
of order 0. �

5.1. Hellinger metric. Again, let S = (S,B) be an arbitrary measure
space. As noted above, given any probability measures µ and ν on S, there
exists a σ-finite measure λ such that µ and ν are absolutely continuous with
respect to λ. The Hellinger distance then is defined by

dH(µ, ν) =
1√
2

∥∥∥∥∥
√

dµ

dλ
−
√

dν

dλ

∥∥∥∥∥
L2(λ)

(5.7)

=

1

2

∫
S

∣∣∣∣∣
√

dµ

dλ
−
√

dν

dλ

∣∣∣∣∣
2

dλ

1/2

. (5.8)

Equivalently,

dH(µ, ν)2 = 1−
∫
S

√
dµ

dλ

√
dν

dλ
dλ, (5.9)
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where the integral is called the Hellinger integral. Note that the Hellinger
integral and the Hellinger distance do not depend on the choice of λ. The
Hellinger integral may symbolically be written

∫
S
√

dµdν.

Remark 5.6. Some authors define the Hellinger distance without the nor-
malization factor 1/

√
2 in (5.7), thus obtaining

√
2dH in our notation.

With our normalization, 0 6 dH(µ, ν) 6 1, and h(µ, ν) = 1 if and only if
µ and ν are mutually singular. �

It is easily seen that

dH(µ, ν)2 6 dTV(µ, ν) 6 dH(µ, ν)
√

2− dH(µ, ν)2 6
√

2dH(µ, ν). (5.10)

Hence, convergence in the Hellinger metric is equivalent to convergence in
total variation. (But rates may differ.) Furthermore, (5.10) implies that the
Hellinger metric is complete on P(S), since dTV is.

The Hellinger integral and distance are convenient when considering prod-
uct measures. If S =

∏
i∈I Si is a finite or countable product, and X =

(Xi)i∈I and Y = (Yi)i∈I are random variables in S with independent com-
ponents, then (5.9) leads to the formula

dH(X,Y )2 = 1−
∏
i∈I

(
1− dH(Xi, Yi)

2
)
. (5.11)

6. Prohorov metric

The Prohorov distance, also called Lévy–Prohorov distance, of two distri-
butions µ, ν ∈ P(S) is defined as

dP(µ, ν) := inf
{
ε > 0 : ν(B) 6 µ(Bε) + ε, µ(B) 6 ν(Bε) + ε, ∀B ∈ B(S)

}
,

(6.1)

where

Bε := {x ∈ S : d(x,B) < ε}. (6.2)

The Prohorov metric is a metric on P(S) that generates the weak topology
[2, Appendix III], [3, Theorem 8.3.2]. In other words, for random variables
Xn, X in S,

Xn
d−→ X ⇐⇒ dP(Xn, X)→ 0. (6.3)

It follows from the definition (6.1) that 0 6 dP(X,Y ) 6 1.

Remark 6.1. The infimum in (6.1) equals the asymmetric version, i.e.,

dP(µ, ν) = inf
{
ε > 0 : ν(B) 6 µ(Bε) + ε, ∀B ∈ B(S)

}
. (6.4)

Proof. Let d′ be the infimum in (6.4). Obviously, d′ 6 dP(µ, ν). On the
other hand, suppose that ε > d′, and let A ∈ B(S). Let B := S \Aε. Then,
d(b, a) > ε for every b ∈ B and a ∈ A, and thus A ⊆ S \ Bε. Furthermore,
ν(B) 6 µ(Bε) + ε by (6.4). Hence,

µ(A) 6 µ(S \Bε) = 1− µ(Bε) 6 1 + ε− ν(B) = ν(Aε) + ε. (6.5)

Since A ∈ B(S) is arbitrary, the definition (6.1) shows that dP(µ, ν) 6 ε.
Hence, dP(µ, ν) 6 d′, and thus dP(µ, ν) = d′. �
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Remark 6.2. It is easy to see that it suffices to take the infimum over
closed B (or open B) in (6.1) and (6.4). Similarly, we may replace the open
neighbourhood Bε by the closed neighbourhood obtained by replaceing <
by 6 in (6.2). �

Remark 6.3. The Prohorov metric dP is the minimal metric corresponding
to the Ky Fan distance between random variables

δKF(X,Y ) := inf
{
ε > 0 : P(d(X,Y ) > ε) < ε

}
, (6.6)

which itself metrizes convergence in probability. See [15, Corollary 7.5.2].
It is easy to see that (6.6) defines a complete metric on random vari-

ables, and thus the Prohorov metric dP is a complete metric on P(S), by
Lemma 4.1. �

7. Lévy metric

For S = R, the Lévy distance between two real-valued random variables
is defined by

dL(X,Y ) :=

inf
{
ε > 0 : FX(x− ε)− ε 6 FY (x) 6 FX(x+ ε) + ε for x ∈ R

}
, (7.1)

This is extended to random variables in S = Rq by

dL(X,Y ) :=

inf
{
ε > 0 : FX(x− εe)− ε 6 FY (x) 6 FX(x+ εe) + ε for x ∈ Rq

}
, (7.2)

where e = (1, . . . , 1) ∈ Rq.
The Lévy metric is a metric that defines the weak topology on P(Rq),

i.e.,

Xn
d−→ X ⇐⇒ dL(Xn, X)→ 0. (7.3)

It is easy to see that the Lévy metric is complete.
Note that for R, the definition (7.1) is the same as the definition (6.1) of

the Prohorov metric, but considering only sets B = (−∞, x], x ∈ R.1 Thus,
the condition in (6.1) is more restrictive, and

dL(X,Y ) 6 dP(X,Y ). (7.4)

There is no corresponding converse inequality. The Lévy and Prohorov met-
rics on P(R) are equivalent in the sense that they define the same topology,
but they are not uniformly equivalent.

Example 7.1. LetX be uniformly distributed on the odd integers 1, . . . , 2n−
1, and let Y = X+1. Then, dP(X,Y ) = 1 (take B as the set of even integers
in (6.1)), while dL(X,Y ) = 1/n. �

Remark 7.2. Similarly, for Rq, (7.2) is the same as (6.1) with sets B = {y :
y 6 x}, x ∈ Rq, provided we equip Rq with the `∞-metric d

(
(xi)

q
1, (yi)

q
1

)
:=

maxi |xi − yi|. (This metric is equivalent to the usual Euclidean distance,
and therefore the corresponding Lévy distance is equivalent to the usual
one.) �

1The historical relation is the reverse: Prohorov [12] introduced his general metric as
an analogue of the Lévy metric on R.
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8. Kolmogorov metric

For S = R, the Kolmogorov distance (or Kolmogorov–Smirnov distance)
between two real-valued random variables is defined by

dK(X,Y ) := sup
x∈R
|FX(x)− FY (x)| = sup

x∈R
|P(X ≤ x)− P(Y ≤ x)|. (8.1)

(The Kolmogorov distance dK is often denoted ρ(X,Y ).)
By definition, 0 6 dK(X,Y ) 6 1.
The Kolmogorov metric is complete and ideal of order 0.
Comparing (8.1) and (7.1), we see that

dL(X,Y ) 6 dK(X,Y ). (8.2)

There is no corresponding converse inequality, and the Kolmogorov and
Lévy distances are not equivalent. In fact, unlike the Lévy distance, the
Kolmogorov distance does not define the weak topology on P(R).

Example 8.1. Let Xn := 1/n (deterministically), so L(Xn) = δ1/n. Then,

Xn
d−→ 0, and dL(Xn, 0) = 1/n → 0, but dK(Xn, 0) = dK(δ1/n, δ0) = 1 for

every n. �

However, if X has a continuous distribution, then

Xn
d−→ X ⇐⇒ dK(Xn, X)→ 0. (8.3)

The definition (8.1) may also be written

dTV(X,Y ) := sup
{∣∣P(X ∈ A)− P(Y ∈ A)

∣∣ : A ∈ A
}
, (8.4)

where A is the collection of intervals A := {(−∞, x] : −∞ < x < ∞}. A
comparison with (5.3) yields

dK 6 dTV. (8.5)

Again, there is no converse inequality. For example, if Xn
d−→ X where

Xn are discrete but X continuous, then dK(Xn, X) → 0 by (8.3) while
dTV(Xn, X) = 1 for all n.

Remark 8.2. The Kolmogorov distance (8.1) is a dual metric, for the test
functions 1(−∞,x], x ∈ R.

Equivalently, dK equals the dual metric of the space BV (R) of functions
of bounded variation, with total variation as the (semi)norm. �

8.1. Kolmogorov metric in higher dimension. The Kolmogorov dis-
tance can be defined also for S = Rq by the same formula (8.1), now taking
x ∈ Rd. Equivalently, it is given by (8.4) where A is the family of octants
{y : y 6 x} for x ∈ Rq.

Obviously, (8.2) and (8.5) hold also for Rq.
Different extensions of the Kolmogorov distance to Rq can be constructed

by (8.4) for other families A of subsets of Rd, for example the family of all
half-spaces, or of all convex sets. The latter yields the distance (used e.g. in
[7])

dconv(X,Y ) := sup
{
|P(X ∈ C)− P(Y ∈ C)| : C ⊂ Rq is convex

}
. (8.6)
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Note that in R,

dK 6 dconv 6 2dK. (8.7)

9. The Kantorovich–Rubinshtein metric

We return to a general complete separable metric space S.
The Kantorovich–Rubinshtein distance is the dual distance defined by

BLip(S) = BLip1(S), i.e., see (3.5) and (2.10),

dKR(X,Y ) = sup
{∣∣E f(X)− E f(Y )

∣∣ : ‖f‖BLip(S) 6 1
}
. (9.1)

Another version uses instead the equivalent norm ‖f‖′BLip(S) in (2.11) on

BLip(S); we denote this version by d′KR(X,Y ) and note that (2.12) implies

1
2dKR(X,Y ) 6 d′KR(X,Y ) 6 dKR(X,Y ). (9.2)

The Kantorovich–Rubinshtein metric dKR (or d′KR) generates the weak
topology in P(S) [3, Theorem 8.3.2]. In other words, for random variables
Xn, X in S,

Xn
d−→ X ⇐⇒ dKR(Xn, X)→ 0. (9.3)

The Kantorovich–Rubinshtein metric is thus equivalent to the Prohorov met-
ric, see (6.3). Moreover, they are uniformly equivalent, and, more precisely,
[3, Theorem 8.10.43]

2
3dP(X,Y )2 6

2dP(X,Y )2

2 + dP(X,Y )
6 d′KR(X,Y ) 6 dKR(X,Y ) 6 3dP(X,Y ).

(9.4)

Furthermore,

d′KR(X,Y ) 6 2dP(X,Y ). (9.5)

It follows from (9.4) that dKR and d′KR are complete metrics on P(S),
since dP is.

10. The Kantorovich or Wasserstein metric

Let δ1(X,Y ) := E d(X,Y ) for random variables X and Y in S defined on
a common probability space. This is a metric (for a fixed probability space),
noting that δ1(X,Y ) = +∞ is possible in general; furthermore, δ1 is finite
and (thus a proper metric) on the set of random variables X such that

E d(X, o) <∞, (10.1)

where we recall that o is a fixed (but arbitrary) point in S. The correspond-
ing minimal metric (3.1) is

`1(X,Y ) := min
{
E d(X ′, Y ′) : X ′

d
= X, Y ′

d
= Y

}
, (10.2)

and it follows that `1 is finite for random variables in S such that (10.1)
holds; equivalently, `1 is a proper metric on the set of probability measures

P1(S) :=
{
µ ∈ P(S) :

∫
S
d(x, o) dµ(x) <∞

}
. (10.3)

Furthermore, `1 is a complete metric on P1(S) by Lemma 4.1.
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In the remainder of the present section, we consider only random variables
and distributions satisfying (10.1) and (10.3).

The distance `1 in (10.2) is known under many names, including the Kan-
torovich distance, the Wasserstein distance2, the Fortet–Mourier distance,
the Dudley distance,3 Gini’s measure of discrepancy, and (simply) the min-
imal L1 distance; see [16] for a brief history. Moreover, `1 is the special case
p = 1 of the minimal Lp distance defined in Section 11 and it is also the
special case ζ1 of the Zolotarev distance defined in Section 12.

One reason for the many names of this metric (and for its importance) is
that it has several quite different, but equivalent, definitions:

Theorem 10.1. The probability metric `1 can be defined by any of the
following methods:

(i) The definition (10.2) above, where the infimum always is attained and
thus inf can be replaced by min.

(ii) `1 is also the dual metric defined by Lip1(S):

`1(X,Y ) = sup
{∣∣E f(X)− E f(Y )

∣∣ : ‖f‖Lip(S) 6 1
}
. (10.4)

(iii) A different duality:

`1(X,Y ) = sup
{
E f(X) + E g(Y ) : f, g ∈ C(S), f(x) + g(y) 6 d(x, y)

}
(10.5)

(iv) If S = R, then the minimum in (10.2) is attained for the monotone

coupling
(
~X, ~Y

)
=
(
F−1X (U), F−1Y (U)

)
in (2.3):

`1(X,Y ) = E
∣∣F−1X (U)− F−1Y (U)

∣∣ =

∫ 1

0

∣∣F−1X (u)− F−1Y (u)
∣∣ du. (10.6)

(v) If S = R, then,

`1(X,Y ) =

∫ ∞
−∞

∣∣FX(x)− FY (x)
∣∣ dx, (10.7)

the L1 distance between the distribution functions. (Cf. the Kolmogorov
distance (8.1), which is the L∞ distance.)

Proof. See [3, Theorem 8.10.45] and [15, Corollary 5.3.2] for (i); [3, Theorem
8.10.45] for (ii); [3, Lemma 8.10.44] and [15, Corollary 5.3.2] for (iii); [13,
§2.3] and [15, Corollary 7.4.6], for (iv); [15, Theorems 5.5.1 and 7.4.4] for
(v). �

It follows from Theorem 10.1(ii) that

dKR 6 `1. (10.8)

In particular, convergence in `1 implies convergence in distribution. More
precisely:

Theorem 10.2. The following are equivalent, for any o ∈ S:

(i) `1(Xn, X)→ 0

(ii) Xn
d−→ X and E d(Xn, o)→ E d(X, o).

2After L.N. Vasershtein, but with the spelling Wasserstein.
3But in [19] the Dudley distance means our d′KR, see Section 9.
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(iii) Xn
d−→ X and the random variables E d(Xn, o) are uniformly inte-

grable.

Remark 10.3. If S is a Banach space (e.g., R), then by either Lemma 4.2
or Lemma 4.3, `1 is an ideal metric of order 1. �

Remark 10.4. If the diameter D := diam(S) < ∞, then Lip(S)/R =
BLip(S)/R with equivalent norms, see Remark 2.3, and thus dKR and `1 are
equivalent; in fact, with C = 1 ∨ (D/2),

dKR 6 `1 6 CdKR. (10.9)

In particular, if diam(S) 6 2, then Lip(S)/R and BLip(S)/R are isometric,
and `1 = dKR. �

11. Minimal Lp metric

Let 0 < p 6 ∞. The minimal Lp distance `p is the minimal metric

corresponding to δp(X,Y ) := ‖d(X,Y )‖p = (E d(X,Y )p)1/p, when p = ∞
interpreted as δ∞(X,Y ) := ‖d(X,Y )‖∞ = ess sup d(X,Y ). I.e.,

`p(X,Y ) := inf
{
‖d(X,Y )‖p : X ′

d
= X, Y ′

d
= Y

}
, (11.1)

where the infimum is taken over all couplings of X and Y . The infimum
is actually attained, see [15, Corollary 5.3.2]. Note that `p(X,Y ) may be
infinite. Note also that the special case p = 1 yields the Kantorovich metric
`1 in Section 10.
`p is also called the Mallows distance.
Recall that δp is a metric for 1 6 p 6∞; if 0 < p < 1, instead δp(X,Y )p

is a metric. Consequently, `p is a probability metric if 1 6 p 6∞, and `pp is
a probability metric if 0 < p 6 1.

Remark 11.1. For any p < 1, dp is another metric on S that defines
the same topology as d. Obviously, `pp equals the probability metric `1 for
the metric space (S, dp); hence the results for `1 in Section 10 immediately
extend to corresponding results for `pp, 0 < p 6 1. �

The metric `p (`pp if p < 1) is finite for random variables X in S such that
the pth moment of d(X, o) is finite, i.e.,

E d(X, o)p <∞, (11.2)

where again o ∈ S is fixed but arbitrary. Equivalently, `p (`pp if p < 1) is a
proper metric on the set Pp(S) of all probability measures in S with finite
pth absolute moment in the sense

Pp(S) :=
{
µ ∈ P(S) :

∫
S
d(x, o)p dµ(x) <∞

}
. (11.3)

The following theorem generalizes Theorem 10.2, see e.g. [4, Theorem
1.1.9] (and [9, Theorem 5.5.9]).

Theorem 11.2. Let 0 < p <∞, and assume E d(Xn, o)
p <∞, n > 1, and

E d(X, o)p <∞. Then the following are equivalent:

(i) `p(Xn, X)→ 0

(ii) Xn
d−→ X and E d(Xn, o)

p → E d(X, o)p.
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(iii) Xn
d−→ X and the random variables E d(Xn, o)

p are uniformly inte-
grable.

By Lyapounov’s inequality, if p < q, then δp 6 δq, and thus

`p 6 `q, 0 < p 6 q 6∞. (11.4)

Since Lp is complete, for any probability space, completeness of `p follows
immediately by Lemma 4.1.

Theorem 11.3. The metric `p (replaced by `pp if p < 1) is complete, for any
0 < p 6∞ and any complete separable metric space S.

Remark 11.4. For p = ∞, the minimal L∞ distance is also given by the
formula

`∞(µ, ν) := inf
{
ε > 0 : ν(B) 6 µ(Bε), µ(B) 6 ν(Bε), ∀B ∈ B(S)

}
, (11.5)

with Bε given by (6.2), see [15, (7.5.15)]. Cf. the definition of the Prohorov
distance in (6.1), and note that thus

dP 6 `∞. (11.6)

As in Remark 6.1, there is also an asymmetric version:

`∞(µ, ν) := inf
{
ε > 0 : ν(B) 6 µ(Bε) ∀B ∈ B(S)

}
, (11.7)

�

11.1. The Banach space case. Suppose now that S is a Banach space,
e.g. R. Then δp(X,Y ) = ‖X − Y ‖p and thus

`p(X,Y ) := inf
{
‖X ′ − Y ′‖p : X ′

d
= X, Y ′

d
= Y

}
. (11.8)

Furthermore, (11.2) becomes E‖X‖p < ∞, i.e., that the absolute pth mo-
ment is finite, and similarly for (11.3).

It follows by Lemma 4.2 that `p is an ideal metric of order 1 for 1 6 p 6∞,
and that `pp is an ideal metric of order p for p < 1.

11.2. The real case. For real-valued random variables, the monotone cou-
pling (2.3) is optimal in (11.1) for every p > 1, see [13, §2.3], [15, Corollary
7.4.6]. Thus:

Theorem 11.5. If S = R, and p > 1, then the minimum in (11.1) is

attained for the monotone coupling
(
~X, ~Y

)
=
(
F−1X (U), F−1Y (U)

)
in (2.3);

thus,

`p(X,Y ) = ‖F−1X (U)− F−1Y (U)‖p

=


(∫ 1

0

∣∣F−1X (u)− F−1Y (u)
∣∣p du

)1/p
, 1 6 p <∞,

ess sup
∣∣F−1X (u)− F−1Y (u)

∣∣, p =∞.
(11.9)

Theorem 11.5 does not hold for p < 1; then the monotone coupling is not
always optimal, as is seen by the following example.

Example 11.6. Let X ∼ Be(12) and Y := X − 1
d
= −X. The monotone

coupling is ( ~X, ~Y )
d
= (X,X−1), with ‖ ~X− ~Y ‖p = ‖1‖p = 1 for every p > 0,

while the coupling (X ′, Y ′) := (X,−X) has ‖X ′ − Y ′‖p = ‖2X‖p = 21−1/p

which is smaller when p < 1. �



16 SVANTE JANSON

12. Zolotarev metrics

In this section we assume that either

(i) 0 < α 6 1 and S is any complete separable metric space, or
(ii) 0 < α <∞ and S is a Banach space B (for example S = Rq).

The Zolotarev distance ζα, introduced by Zolotarev [17, 18], then is defined
as the dual metric given by the space Lipα in Section 2.1 or 2.2, i.e., by

ζα(X,Y ) := sup
{
|E f(X)− E f(Y )| : ‖f‖Lipα(S) 6 1

}
, (12.1)

with ‖·‖Lipα(S) given by (2.5) or (2.15). Note that this distance might be
∞, or undefined since E f(X) or E f(Y ) might be undefined; we give simple
conditions for it to be finite below.

Lemma 4.3 yields:

Theorem 12.1. ζα is an ideal metric of order α.

In the sequel, we treat the two (overlapping) cases (i) and (ii) above
separately.

12.1. Zolotarev metric for 0 < α 6 1. Consider first the case 0 < α 6 1,
so S is an arbitrary (complete, separable) metric space, and ‖·‖Lipα(S) is
given by (2.5).

It is then easy to see that, for an arbitrary fixed o ∈ S, ζα is (defined
and) finite at least for random variables X in S such that the αth moment
of d(X, o) is finite, i.e.,

E d(X, o)α <∞. (12.2)

Equivalently, ζα is a proper metric on the space Pα(S) of probability mea-
sures with finite αth moment defined in (11.3).

Theorem 12.2. If 0 < α 6 1, then ζα = `αα.

Proof. First, if α = 1, then ζ1 = `1 by Theorem 10.1(ii) and (12.1).
For α < 1, note as in Remark 11.1 that d(x, y)α is a metric on S, equiva-

lent to d(x, y) and also complete. Furthermore, Lipα(S) = Lipα(S, d) equals
Lip1(S, dα); hence, ζα equals ζ1 = `1 for the metric space (S, dα), which
equale `αα by Remark 11.1. �

As a consequence, convergence in ζα for α 6 1 implies weak convergence.
More precisely, Theorems 12.2 and 11.2 yield:

Theorem 12.3. Let 0 < α 6 1, and assume E d(Xn, o)
α < ∞, n > 1, and

E d(X, o)α <∞. Then the following are equivalent:

(i) ζα(Xn, X)→ 0

(ii) Xn
d−→ X and E d(Xn, o)

α → E d(X, o)α.

(iii) Xn
d−→ X and the random variables E d(Xn, o)

α are uniformly inte-
grable.

Furthermore, Theorems 12.2 and 11.3 show completeness:

Theorem 12.4. Let 0 < α 6 1. Then the probability metric ζα is complete,
for any complete separable metric space S.
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12.2. Zolotarev metric for a Banach space and 0 < α < ∞. Assume
now that S is a separable Banach space B. Then ‖·‖Lipα(S) is given by (2.15),
for any α > 0. As in Section 2.2, we let m := dαe − 1, so m < α 6 m + 1.
In particular, m = 0 ⇐⇒ 0 < α 6 1, the case already treated (in greater
generality) in Section 12.1 above.

Using a Taylor expansion [5, Théorème 5.6.1] of f at 0, it is easily seen
that ζα(X,Y ) is finite if

E‖X‖α <∞ and E‖Y ‖α <∞, (12.3)

and, furthermore, X and Y have the same moments up to order m, where

the kth moment of X is EX⊗̂k, regarded as an element of the kth (com-

pleted) projective tensor powerB⊗̂k. (See [10] for tensor products and higher
moments of Banach space valued random variables.)

Remark 12.5. For a Banach space B, the dual space of B⊗̂k is the space of

bounded multilinear mappings Bk → R; hence EX⊗̂k = EY ⊗̂k if and only
if E g(X, . . . ,X) = E g(Y, . . . , Y ) for every bounded multilinear mapping
Bk → R. Consequently, X and Y have the same moments up to order m if
and only if E f(X) = E f(Y ) for every function f of the form (2.17), i.e. for
every function f with ‖f‖Lipα = 0. Conversely, the definition (12.1) implies
that this condition is necessary for ζα(X,Y ) to be finite. Hence, if (12.3)
holds, then ζ(X,Y ) < ∞ if and only if X and Y have the same moments
up to order m. �

We define, for a given sequence z = (z1, . . . , zm) with zk ∈ B⊗̂k, k =
1, . . . ,m,

Pα,z(B) := {L(X) : E‖X‖α <∞, EX⊗̂k = zk, k = 1, . . . ,m}, (12.4)

i.e., the set of probability measures on B with finite absolute αth moment
and moments z1, . . . , zm. Thus ζα is finite on each Pα,z(B), and it is obvi-
ously a semi-metric there.

For α > 1 (so m > 1) and a general (separable) Banach space B, we do
not know whether ζα always is a metric on Pα,z(B), and if so, whether it
is complete. Moreover, according to Bentkus and Rachkauskas [1], it is not
hard to show that in a general Banach space, convergence in ζα does not
imply weak convergence (convergence in distribution) when α > 1; however,
as far as we know they never published any details, and we do not know any
explicit counter example.

For Rq, and more generally for Hilbert spaces, there are no problems, as
shown by the following theorem. (For a proof see [6]; the final assertion is
proved already in [8].)

Theorem 12.6. If H is a separable Hilbert space and α > 0, then ζα is a
complete metric on the set Pα,z(H) of all probability measures on H with a
finite αth absolute moment and given kth moments zk, 1 6 k < α. Moreover,
if Xn, X are H-valued random variables with distributions in Pα,z(H) and

ζα(Xn, X)→ 0, then Xn
d−→ X.

Remark 12.7. Suppose that we are given a sequence of random variables
Xn inB, and we want to show that some normalized variables X̃n converge in
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ζα, i.e., ζα(X̃n, Y )→ 0 for some Y . To begin with, we need ζα(X̃n, Y ) <∞
for all (large) n, so by the criterion above, we want besides the moment

condition E‖X̃n‖α <∞ and E‖Y ‖α <∞, also that the m first moments of
Xn agree with those of Y , and therefore do not depend on n. We consider
this condition for some ranges of α.

(i) For α 6 1 (m = 0), this moment condition is vacuous.

(ii) For 1 < α 6 2 (m = 1), we thus want E X̃n to be constant. This is

harmless, and can always be achieved by centering to X̃n := Xn−EXn,
which is very often done in any case.

(iii) For 2 < α 6 3 (m = 2), the condition is more restrictive. Even if X̃n

is centered so that E X̃n = 0, we also need Var X̃n to be independent
of n. In one dimension, S = R, this can be achieved by the usual
standardization X̃n :=

(
Xn − EXn

)
/
√

VarXn. In higher dimension,
it is generally not enough to multiply by a suitable constant; one has
to consider An(Xn − EXn) for suitable linear operators An : B → B.
In an infinite-dimensional space, even this is typically impossible.

(iv) For α > 3 (m > 3), also the third moments have to agree. In general,
this cannot be achieved by any linear normalization, and thus ζα with
α > 3 is in general not useful in this type of applications. (In principle,
one might use it with 3 < α 6 4 if all Xn have symmetric distributions,
so the third moments vanish by symmetry. We do not know any such
applications.)

For applications, one is thus in practice restricted to 0 < α 6 3, and the
range 2 < α 6 3 requires more work. Nevertheless, this range (in particular
α = 3) is very useful in some applications, see e.g. [11]. �
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[16] Ludger Rüschendorf: Wasserstein metric. Encyclopedia of Mathemat-
ics. Available at https://www.encyclopediaofmath.org/index.php?
title=Wasserstein_metric

[17] V. M. Zolotarev: Approximation of the distributions of sums of inde-
pendent random variables with values in infinite-dimensional spaces.
(Russian.) Teor. Veroyatnost. i Primenen. 21 (1976), no. 4, 741–758.
Erratum ibid 22 (1977), no. 4, 901. English translation: Theory Probab.
Appl. 21 (1976), no. 4, 721–737 (1977); ibid 22 (1977), no. 4, 881 (1978).

[18] V. M. Zolotarev: Ideal metrics in the problem of approximating the
distributions of sums of independent random variables. (Russian.) Teor.
Veroyatnost. i Primenen. 22 (1977), no. 3, 449–465. English translation:
Theory Probab. Appl. 22 (1977), no. 3, 433–449.

[19] V. M. Zolotarev: Probability metrics. (Russian.) Teor. Veroyatnost. i
Primenen. 28 (1983), no. 2, 264–287. Erratum ibid 28 (1983), no. 4,
821. English translation: Theory Probab. Appl. 28 (1983), no. 2, 278–
302; ibid 28 (1983), no. 4, 856–857.

Department of Mathematics, Uppsala University, PO Box 480, SE-751 06
Uppsala, Sweden

Email address: svante.janson@math.uu.se

URL: http://www2.math.uu.se/∼svante/


