
REAL TREES

SVANTE JANSON

Abstract. We survey the definition and some elementary properties of
real trees. There are no new results, as far as we know. One purpose is to
give a number of different definitions and show the equivalence between
them. We discuss also, for example, the four-point inequality, the length
measure and the connection to the theory of Gromov hyperbolic spaces.
Several examples are given.

1. Introduction

This is a survey of various equivalent definitions of real trees and some
properties of them, mostly with proofs. We do not think that there are any
new results. Most of the paper considers deterministic real trees, but we
include also some brief comments on random real trees. For further results,
see for example [7], [11], [16], and the references there.

1.1. Definition. There are several different but equivalent definitions of
real trees (also called R-trees). We collect several of them as follows. We
define below conditions (T1) and (T2a)–(T2j) on a metric space (T, d); we
will show that assuming (T1), the conditions (T2a)–(T2j) are all equiva-
lent. We then make the following definition. (Which we state already here,
although it is not yet justified.)

Definition 1.1. A real tree (or R-tree) is a non-empty metric space T =
(T, d) that satisfies condition (T1) and one (and thus all) of (T2a)–(T2j).

Remark 1.2. Some authors assume also that the metric space T is com-
plete. We will not do so. See further Remark 6.6 below. Note also that in
many applications, T is assumed to be compact; again we do not assume
this. �

Another equivalent, and related, definition is given in [11, Definition 3.15].
A characterization of a different kind of real trees is given in Theorem 6.1.

1.2. Some notation. Throughout, T = (T, d) is a (non-empty) metric
space. We often write dx,y for d(x, y).
B(x, r) := {y : d(x, y) < r} denotes the open ball with centre x ∈ T and

radius r > 0.
If ψ1 : [0, a] → T and ψ2 : [0, b] → T are continuous maps with ψ1(a) =

ψ2(0), their concatenation ψ1 ∗ ψ2 : [0, a+ b]→ T is defined by

ψ1 ∗ ψ2(t) :=

{
ψ1(t), 0 6 t 6 a,

ψ2(t− a), a 6 t 6 a+ b.
(1.1)
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The concatenation is clearly a continuous map [0, a+ b]→ T .
If s, t ∈ R, then s∧t := min{s, t} and s∨t := max{s, t}. (These operations

have priority over addition and subtraction.)

2. The conditions

In this section we state the conditions on a metric space T = (T, d),
beginning with the central (T1).

(T1) For any x, y ∈ T , there exists a unique isometric embedding ϕx,y of
the closed interval [0, dx,y] ⊂ R into T such that ϕx,y(0) = x and
ϕx,y(dx,y) = y.

Assume that (T1) holds. We then denote the image ϕx,y([0, dx,y]) ⊆ T by
[x, y]; thus [x, y] is a connected compact subset of T , homeomorphic with
[0, 1] if x 6= y. We similarly define [x, y) = [x, y] \ {y}, (x, y] = [x, y] \ {x},
(x, y) = [x, y] \ {x, y}. (If x = y, then [x, x] = {x}, and [x, x) = (x, x] =
(x, x) = ∅.)

Obviously, ϕy,x(t) = ϕx,y(dx,y − t) and [y, x] = [x, y].
Furthermore, still assuming (T1), let x, y, z ∈ T . Since ϕx,y and ϕx,z are

isometries,

[x, y] ∩ [x, z] =
{
ϕx,y(t) : t ∈ [0, dx,y ∧ dx,z], ϕx,y(t) = ϕx,z(t)

}
. (2.1)

We define, noting that the maximum exists (i.e., the supremum is attained)
by continuity,

∆(x, y, z) := max
{
t ∈ [0, dx,y ∧ dx,z] : ϕx,y(t) = ϕx,z(t)

}
, (2.2)

γ(x, y, z) := ϕx,y(∆(x, y, z)) = ϕx,z(∆(x, y, z)) ∈ [x, y] ∩ [x, z]. (2.3)

Further properties of these objects are given in Section 3.
We turn to the conditions (T2a)–(T2j). These are stated for a metric

space T = (T, d) such that (T1) holds, so we can use the notations just
introduced.

(T2a) For any x, y ∈ T and any z ∈ (x, y), x and y are in different compo-
nents of T \ {z}.

(T2b) For any x, y, z ∈ T , [y, z] ⊆ [x, y] ∪ [x, z].
(T2c) For any x, y, z ∈ T , [x, y] ∩ [x, z] ∩ [y, z] 6= ∅.
(T2d) For any x, y, z ∈ T , γ(x, y, z) ∈ [y, z].
(T2e) For any injective continuous map ψ : [0, 1]→ T ,

d
(
ψ(0), ψ(t)

)
+ d
(
ψ(t), ψ(1)

)
= d
(
ψ(0), ψ(1)

)
, t ∈ [0, 1]. (2.4)

(T2f) For any injective continuous map ψ : [0, 1]→ T , ψ([0, 1]) ⊆ [ψ(0), ψ(1)].
(T2g) For any injective continuous map ψ : [0, 1]→ T , ψ([0, 1]) = [ψ(0), ψ(1)].
(T2h) Any injective continuous map ψ : [0, 1] → T equals ϕx,y up to

parametrization, where x = ψ(0) and y = ψ(1); i.e., ψ = ϕx,y ◦ h for
some strictly increasing homeomorphism [0, 1]→ [0, dx,y].

(T2i) For any injective continuous map ψ : [0, 1]→ T , ψ([0, 1]) ⊇ [ψ(0), ψ(1)].
(T2j) For any continuous map ψ : [0, 1]→ T , ψ([0, 1]) ⊇ [ψ(0), ψ(1)].

As said in the introduction, we have the following equivalences.

Theorem 2.1. Assume that T = (T, d) is a metric space such that (T1)
holds. Then (T2a)–(T2j) are all equivalent.
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The proof is given in Section 4.

Remark 2.2. Condition (T1) alone is not sufficient. Examples of spaces
satisfying (T1) without being real trees are the Euclidean space Rd, d > 2,
and any convex subset of Rd of dimension > 2; for example the unit disc. �

3. Consequences of (T1)

In this section we assume (T1) (and sometimes further conditions), and
show some lemmas used in the proof of Theorem 2.1.

Lemma 3.1. Suppose that (T1) holds. Then T is connected, pathwise con-
nected, and locally pathwise connected. Hence, if V ⊂ T is an open subset
of T , then V is a union of open (pathwise) connected components.

Proof. T is obviously pathwise connected by (T1). Thus, T is connected.
Furthermore, T is locally pathwise connected, since every open ballB(x, r)

is pathwise connected. (Every y ∈ B(x, r) is connected to x by the path
[x, y] ⊆ B(x, r).) �

In particular, if z ∈ T , then the components of T \ {z} are open and
pathwise connected. These (path) components are called the branches at z;
see also Section 8.

Lemma 3.2. Suppose that (T1) holds. If x, y ∈ T and z, w ∈ [x, y], then
[z, w] ⊆ [x, y], and, furthermore,

ϕz,w(t) := ϕx,y(dx,z + t), 0 6 t 6 dz,w. (3.1)

Proof. By symmetry, we may assume dx,z 6 dx,w. Since ϕx,y is an isometry
with ϕx,y(0) = x, we have z = ϕx,y(dx,z) and w = ϕx,y(dx,w); furthermore,
d(z, w) = |dx,z − dx,w| = dx,w − dx,z. Let

ϕ(t) := ϕx,y(dx,z + t), 0 6 t 6 dx,w − dx,z = dz,w. (3.2)

Then ϕ is an isometry and it follows that ϕ = ϕz,w. The result follows. �

Lemma 3.3. Suppose that (T1) holds. Then, for any x, y ∈ T ,

[x, y] = {z : d(x, z) + d(z, y) = d(x, y)}. (3.3)

Proof. If z ∈ [x, y], then by definition z = ϕx,y(s) for some s ∈ [0, dx,y].
Since ϕx,y is an isometry, we have d(x, z) = d

(
ϕx,y(0), ϕx,y(s)

)
= s and

d(z, y) = d
(
ϕx,y(s), ϕx,y(dx,y)

)
= d(x, y)− s. Hence,

d(x, z) + d(z, y) = s+
(
d(x, y)− s

)
= d(x, y). (3.4)

Conversely, suppose that z ∈ T with d(x, z) + d(z, y) = d(x, y). Define
ϕ : [0, dx,y]→ T as the concatenation ϕ := ϕx,z ∗ϕz,y, see (1.1). Then, ϕ is a
continuous map [0, dx,y]→ T with ϕ(0) = x and ϕ(dx,y) = y. Furthermore,
ϕ is an isometry on [0, dx,z] and on [dx,z, dx,y]. It follows that if s ∈ [0, dx,z]
and t ∈ [dx,z, dx,y], then, by the triangle inequality,

d
(
ϕ(s), ϕ(t)

)
6 d
(
ϕ(s), ϕ(dx,z)

)
+ d
(
ϕ(dx,z), ϕ(t)

)
=
(
dx,z − s

)
+
(
t− dx,z

)
= t− s. (3.5)
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On the other hand, if we have strict inequality d
(
ϕ(s), ϕ(t)

)
< t−s for some

s, t with 0 6 s 6 t 6 dx,y, then, similarly,

d(x, y) 6 d
(
x, ϕ(s)

)
+ d
(
ϕ(s), ϕ(t)

)
+ d
(
ϕ(t), y

)
= s+ d

(
ϕ(s), ϕ(t)

)
+ dx,y − t

< s+ (t− s) + (dx,y − t) = dx,y = d(x, y), (3.6)

a contradiction.
Consequently, ϕ is an isometry, and thus ϕ = ϕx,y, by the uniquness

assumption in (T1). Hence, z = ϕ(dx,z) = ϕx,y(dx,z) ∈ [x, y]. �

Lemma 3.4. Suppose that (T1) holds. If x, y ∈ T and z, w ∈ [x, y] with
z ∈ [x,w], then w ∈ [z, y].

Proof. Since z ∈ [x,w], we have dx,z 6 dx,w. Hence, by Lemma 3.3,

dy,w = dx,y − dx,w 6 dx,y − dx,z = dy,z. (3.7)

Hence, by Lemma 3.2,

w = ϕy,x(dy,w) = ϕy,z(dy,w) ∈ [y, z]. (3.8)

�

Lemma 3.5. Suppose that (T1) holds. Then, for any x, y, z ∈ T ,{
t ∈ [0, dx,y ∧ dx,z] : ϕx,y(t) = ϕx,z(t)

}
= [0,∆(x, y, z)] (3.9)

and

[x, y] ∩ [x, z] = [x, γ(x, y, z)] =
{
ϕx,y(t) : t ∈ [0,∆(x, y, z)]

}
. (3.10)

Proof. Let

J :=
{
t ∈ [0, dx,y ∧ dx,z] : ϕx,y(t) = ϕx,z(t)

}
. (3.11)

Thus, the definition (2.2) says ∆(x, y, z) = max J . If t ∈ J , let w :=
ϕx,y(t) ∈ [x, y] ∩ [x, z]. Then [x,w] ⊆ [x, y] ∩ [x, z] by Lemma 3.2. Hence, if
0 6 s 6 t, then

ϕx,y(s) = ϕx,w(s) = ϕx,z(s) (3.12)

and consequently, s ∈ J . This shows that J is an interval, and (3.9) follows.
Finally, (3.10) follows from (3.9), using (2.1), (2.3) and (3.12). �

Lemma 3.6. Suppose that (T1) and (T2d) hold. Then, for any x, y, z ∈ T ,

[x, y] ∩ [x, z] ∩ [y, z] = {γ(x, y, z)} (3.13)

and

∆(x, y, z) = 1
2

(
d(x, y) + d(x, z)− d(y, z)

)
. (3.14)

In particular, ∆ is a continuous function T 3 → R, and γ(x, y, z) is a sym-
metric function of x, y, z.

Proof. By the definition (2.3) and the assumption (T2d),

γ(x, y, z) ∈ [x, y] ∩ [x, z] ∩ [y, z]. (3.15)

Let w ∈ [x, y] ∩ [x, z] ∩ [y, z]. Then, by Lemma 3.3,

dx,w + dy,w = dx,y, (3.16)
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dx,w + dz,w = dx,z, (3.17)

dy,w + dz,w = dy,z, (3.18)

and consequently

2dx,w = dx,y + dx,z − dy,z. (3.19)

Hence, dx,w is uniquely determined by x, y, z, and thus so is w = ϕx,y(dx,w).
Consequently, (3.15) implies (3.13). Furthermore, (2.3) implies ∆(x, y, z) =
d(x, γ(x, y, z)) and thus (3.14) follows from (3.19). �

Lemma 3.7. Suppose that (T1) and (T2d) hold, and let x, y, z ∈ T .

(i) Then

z ∈ [x, y] ⇐⇒ ∆(z, x, y) = 0. (3.20)

(ii) If z /∈ [x, y] and d(w, z) < ∆(z, x, y), then

∆(x, y, w) = ∆(x, y, z). (3.21)

Proof. (i): Immediate by Lemma 3.3 and (3.14).
(ii): Let, using the symmetry of γ in Lemma 3.5, u := γ(x, y, z) =

γ(z, x, y) and v := γ(x, z, w). Then v ∈ [z, w] and thus, using the assump-
tion,

d(z, v) 6 d(z, w) < ∆(z, x, y) = d(z, u). (3.22)

Since u, v ∈ [x, z], this implies

d(x, u) = d(x, z)− d(u, z) < d(x, z)− d(v, z) = d(x, v). (3.23)

Hence, if d(x, u) < t < d(x, v), then, by (2.1),

ϕx,w(t) = ϕx,z(t) 6= ϕx,y(t) (3.24)

On the other hand, u ∈ [x, y] too, and thus

ϕx,w(dx,u) = ϕx,z(dx,u) = u = ϕx,y(du,). (3.25)

Hence, ∆(x, y, w) = dx,u = ∆(x, y, z) by Lemma 3.5. �

4. Proof of Theorem 2.1

(T2a) =⇒ (T2j): If (T2a) holds and ψ : [0, 1] → T is a continuous map,
let x := ψ(0) and y := ψ(1). If z ∈ [x, y] but z /∈ ψ([0, 1]), then ψ is a curve
connecting x and y in T \ {z}, which contradicts (T2a).

(T2j) =⇒ (T2b): Define ψ := ϕy,x ∗ ϕx,z, see (1.1). This is a continuous
map [0, dy,x + dx,z]→ T and thus ψ1(t) := ψ

(
t(dy,x + dx,z)

)
is a continuous

map ψ1 : [0, 1] → T . We have ψ1([0, 1]) = [y, x] ∪ [x, z], ψ1(0) = y and
ψ1(1) = z. Hence (T2j) yields (T2b).

(T2b) =⇒ (T2c): Let A := [y, z]∩ [x, y] and B := [y, z]∩ [x, z]. These are
closed subsets of [y, z] and A∪B = [y, z] by assumption; furthermore, A and
B are both nonempty since y ∈ A and z ∈ B. Since [y, z] is homeomorphic
to [0, 1], it is connected. Consequently, A ∩B 6= ∅.

(T2c) =⇒ (T2d): By (2.3), it remains to show that γ(x, y, z) ∈ [y, z].
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Let w ∈ [x, y]∩ [x, z]∩ [y, z]. By Lemma 3.5, then w ∈ [x, γ(x, y, z)]. Since
w, γ(x, y, z) ∈ [x, y], Lemma 3.4 shows that γ(x, y, z) ∈ [w, y]. Hence, using
also w ∈ [y, z] and Lemma 3.2,

γ(x, y, z) ∈ [w, y] = [y, w] ⊆ [y, z]. (4.1)

(T2d) =⇒ (T2a): Let z ∈ (x, y). Then z = ϕx,y(dx,z) with 0 < dx,z <
dx,y. Partition T \ {z} = U1 ∪ U2 ∪ U3 where

U1 := {w ∈ T \ {z} : ∆(x, y, w) < dx,z}, (4.2)

U2 := {w ∈ T \ {z} : ∆(x, y, w) = dx,z}, (4.3)

U3 := {w ∈ T \ {z} : ∆(x, y, w) > dx,z}. (4.4)

By Lemma 3.6, ∆(x, y, w) is a continuous function of w, and thus U1 and
U3 are open subsets of T \ {z} (and of T ). Furthermore, U2 is open by
Lemma 3.7.

Hence, T \ {z} = U1 ∪U2 ∪U3 is a partition into three disjoint open sets.
Each connected component of T \{z} has to be a subset of one of these, and
since x ∈ U1 and y ∈ U3, x and y are in different components. (Although
not needed, it is easy to see that U1 and U3 are connected, while U2 may be
empty, connected or disconnected with any number of components, finite or
infinite.)

(T2j) =⇒ (T2i): Trivial.
(T2i) =⇒ (T2f): Suppose that (T2f) fails, and let ϕ : [0, 1] → T be an

injective continuous map such that ϕ(u) /∈ [x, y] for some u ∈ (0, 1), where
x = ϕ(0), y = ϕ(1). Since [x, y] is a compact, and thus closed, subset of T ,
the set U := {t ∈ (0, 1) : ϕ(t) /∈ [x, y]} is an open subset of (0, 1). Hence,
the component of U containing u is an open interval (a, b) ⊆ (0, 1).

Let z := ϕ(a) and w := ϕ(b), and note that z, w ∈ [x, y]. Since a < b
and ϕ is injective, we have z 6= w. By Lemma 3.2, [z, w] ⊆ [x, y]. The map
ψ(t) := ϕ(a + (b − a)t) is an injective continuous map [0, 1] → T such that
ψ(0) = z, ψ(1) = w and

ψ([0, 1]) ∩ [z, w] = ϕ([a, b]) ∩ [z, w] ⊆ ϕ([a, b]) ∩ [x, y] = ϕ({a, b}) = {z, w}.
(4.5)

Hence, if v ∈ (z, w), then v /∈ ψ([0, 1]). Thus, (T2i) does not hold.
(T2f) =⇒ (T2d): Let x, y, z ∈ T , and let w := γ(x, y, z). By Lemmas 3.2

and 3.5,

[y, w] ∩ [w, z] = [w, y] ∩ [w, z] ⊆ [x, y] ∩ [x, z] = [x,w] (4.6)

and thus, since w ∈ [x, y],

[y, w] ∩ [w, z] ⊆ [x,w] ∩ [w, y] = {w}. (4.7)

Define ψ : [0, dy,w + dw,z]→ T as the concatenation ψ := ϕy,w ∗ ϕw,z, see
(1.1). Then ψ is continuous, and it follows from (4.7) that ψ is injective.
Consequently, (T2f) implies, after a change of variables,

w = ψ(dy,w) ∈ [ψ(0), ψ(dy,w + dw,z)] = [y, z]. (4.8)

(T2f)⇐⇒ (T2e): An immediate consequence of Lemma 3.3.
(T2f) =⇒ (T2h): Suppose that ψ : [0, 1] → T is an injective continuous

map. Let x := ψ(0) and y := ψ(1). By (T2f), ψ : [0, 1]→ [x, y]. Since ϕx,y is
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a homeomorphism, h := ϕ−1x,y ◦ψ : [0, 1]→ [0, dx,y] is an injective continuous
map with h(0) = 0 and h(1) = dx,y. In particular, the image h([0, 1]) is
connected, and it follows that h([0, 1]) = [0, dx,y]. Hence h is a continuous
bijection, and thus a homeomorphism [0, 1] → [0, dx,y]; furthermore, h has
to be stricly increasing. Finally, the definition of h yields ψ = ϕx,y ◦ h.

(T2h) =⇒ (T2g): Trivial.
(T2g) =⇒ (T2f): Trivial.
This completes the proof of Theorem 2.1. �

5. Subtrees

We have, as a simple consequence of the definition and Theorem 2.1 a
simple result for subsets of a real tree.

Theorem 5.1. Let T be a real tree, and let S ⊆ T be a nonempty subset of
T , regarded as a metric space with the induced metric. Then the following
are equivalent.

(i) S is a real tree.
(ii) S is connected.
(iii) S is pathwise connected.
(iv) If x, y ∈ S, then [x, y] ⊆ S. (Here [x, y] is taken in the real tree T .)

Proof. (i) =⇒ (iii), (iv) =⇒ (iii), and (iii) =⇒ (ii) are trivial.
(iii) =⇒ (i): Suppose that S is pathwise connected. Then, if x, y ∈ S, then

there exists a continuous map ψ : [0, 1] → S with ψ(0) = x and ψ(1) = y.
By (T2j) (for the real tree T ), ψ([0, 1]) ⊇ [x, y] := ϕx,y

(
[0, dx,y]

)
, where ϕx,y

is the mapping in (T1) for the real tree T . Hence, ϕx,y : [0, dx,y] → S,
and thus (T1) holds for S too; uniqueness follows because ϕx,y obviously is
unique in S if it is unique in T . Finally, (T2e) holds in S since it holds in
T . (In fact, we could here argue with any of (T2a)–(T2j).) Hence, S is a
real tree.

(ii) =⇒ (iv): Suppose that S is connected. Let x, y ∈ S, and consider
[x, y] (in the real tree T ). Let z ∈ (x, y), and suppose that z /∈ S. By (T2a)
and Lemma 3.1, the components of T \ z are disjoint open sets, with x and
y in different components. Let U be the component containing x, and V the
union of all other components; then T \ z = U ∪V where U and V are open
disjoint subsets with x ∈ U and y ∈ V . Consequently, S = (S∩U)∪(S∩V ),
where S ∩ U and S ∩ V are two nonempty disjoint open subsets of S. This
contradicts the assumption that S is connected, and this contradiction shows
that (x, y) ⊆ S. Hence, [x, y] ⊆ S. �

A subtree of a real tree is thus a connected nonempty subset.

Theorem 5.2. The intersection of any family {Tα} of subtrees of a real tree
T is a subtree of T , provided is it nonempty.

Proof. This is an immediate consequence of Theorem 5.1. Let S :=
⋂
α Tα.

If x, y ∈ S, then Theorem 5.1(iv) shows that [x, y] ⊆ Tα for every α, and
thus [x, y] ⊆ S. Hence, another application of Theorem 5.1 shows that S is
a subtree. �
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In particular, it follows that if T is a real tree, then for any nonempty set
U ⊆ T , there exists a smallest subtree S ⊆ T with U ⊆ S; we say that S is
the subtree spanned by U . This subtree can be described as follows.

Theorem 5.3. Let T be a real tree and let S be the subtree generated by a
nonempty set U ⊆ T . Then

S =
⋃

x,y∈U
[x, y]. (5.1)

Furthermore, for every x ∈ U , we also have

S =
⋃
y∈U

[x, y]. (5.2)

Proof. Denote the unions in (5.1) and (5.2) by S′ and S′′x , respectively. Then
Theorem 5.1(iv) shows that S′′x ⊆ S′ ⊆ S.

On the other hand, S′′x is pathwise connected, since every interval [x, y] is
and they contain a common point x. Thus Theorem 5.1 shows that S′′x is a
subtree. Since S′′x ⊇ U , it follows that S′′x ⊇ S, and the result follows. �

6. The four-point inequality

A different type of characterization of real trees is given by the following
theorem, see e.g. [11, Theorem 3.40] or [7] and the references there. (This
characterization is less intuitive, but technically very useful.) The condition
(6.1) is called the four-point inequality or four-point condition; an equivalent
condition is 0-hyperbolicity, see Definition A.1 and Lemma 6.7.

Theorem 6.1. A metric space T is a real tree if and only if T is connected
and for any four points x, y, z, w ∈ X

d(x, y) + d(z, w) 6
(
d(x, z) + d(y, w)

)
∨
(
d(x,w) + d(y, z)

)
. (6.1)

Remark 6.2. It is easily verified that (6.1) is trivial if two or more of
x, y, z, w coincide; hence it does not matter whether we require x, y, z, w to
be distinct or not. �

Remark 6.3. By considering all permutations of x, y, z, w, it follows that
(6.1) is equivalent to the condition that (for any x, y, z, w), among the three
sums

d(x, y) + d(z, w), d(x, z) + d(y, w), d(x,w) + d(y, z), (6.2)

two are equal and the third is equal or less than the other two. �

Theorem 6.1 is a simple corollary of the following more general result
together with Theorem 5.1. For proofs see e.g. Dress [7, Theorem 8], Gromov
[14, §6.1], or the references mentioned in [7]; see also [8].

Theorem 6.4. Let X be a metric space. Then X can be isometrically
embedded into a real tree if and only if the four-point inequality (6.1) holds
for any four points x, y, z, w ∈ X. �

Proof of Theorem 6.1 from Theorem 6.4. Suppose that T is connected and

that (6.1) holds. Then, by Theorem 6.4, T ⊆ T̂ for some real tree T̂ . Since
T is connected, T is a real tree by Theorem 5.1. �
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Among the consequences we mention the following.

Theorem 6.5. If T is a real tree, then so is its completion T̃ .

Proof. By continuity, if the four-point inequality (6.1) holds in the dense

subset T of T̃ , then it holds in T̃ . Furthermore, since T is connected, so is
T̃ . hence, T̃ is a real tree by Theorem 6.1. �

Remark 6.6. By Theorem 6.5, we may in many situations assume with-
out loss of generality that real trees are complete, since we can replace an
arbitrary real tree by its completion. �

The four-point inequality (6.1) can be rewritten in several ways. Define,
for three points x, y, z in a general metric space (X, d), the Gromov product

(x, y)z := 1
2

(
d(z, x) + d(z, y)− d(x, y)

)
. (6.3)

Note that (x, y)z > 0 by the triangle inequality, and that (6.3) meaures how
far the triangle inequality is from being an equality. Note also that in a real
tree, Lemma 3.6 shows that (x, y)z = ∆(z, x, y), which equals the distance
from z to [x, y].

Lemma 6.7. The four-point inequality (6.1) is equivalent to

(x, y)w > (x, z)w ∧ (y, z)w. (6.4)

Proof. By the definition (6.3), the inequality (6.4) holds if and only if at
least one of the following holds:

dx,w + dy,w − dx,y > dx,w + dz,w − dx,z, (6.5)

dx,w + dy,w − dx,y > dy,w + dz,w − dy,z. (6.6)

These are equivalent to, respectively,

dy,w + dx,z > dz,w + dx,y, (6.7)

dx,w + dy,z > dz,w + dx,y, (6.8)

and thus at least one of them holds if and only iff (6.1) holds. �

We note also that, in fact, it suffices to verify the four-point inequality
for a fixed choice of one of the four points.

Lemma 6.8. Let T be a metric space and let o ∈ T be fixed. If the four-
point inequality (6.1) holds for w = o and all x, y, z ∈ T , then it holds in
general, i.e., for all x, y, z, w ∈ T .

Proof. By Lemma 6.7, this is the special case δ = 0 of Lemma A.5. �

7. Rooted real trees

Definition 7.1. A rooted real tree (T, ρ) is a real tree T with a distinguished
point ρ ∈ T , called the root.

In a rooted real tree (T, ρ), we may define a partial order by

y 6 x ⇐⇒ y ∈ [ρ, x], x, y ∈ T. (7.1)
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Theorem 7.2. Let (T, ρ) be a rooted real tree. Then (7.1) defines a partial
order in T , with ρ as the minimum element. Moreover, any two points
x, y ∈ T have a greatest common lower bound, which we denote by x ∧ y.
Recalling the notation of (2.3) and Lemma 3.6, we have

x ∧ y = γ(ρ, x, y). (7.2)

Proof. It is easily seen, using Lemmas 3.2 and 3.4, that (7.1) defines a partial
order. It is obvious from (7.1) that ρ 6 x for every x ∈ T .

For any x, y ∈ T , by the definition (7.1) and (3.10),

{z : z 6 x and z 6 y} = {z : z 6 x} ∩ {z : z 6 y} = [ρ, x] ∩ [ρ, y]

= [ρ, γ(ρ, x, y)] = {z : z 6 γ(ρ, x, y)}, (7.3)

which shows that γ(ρ, x, y) is a greatest lower bound x ∧ y. �

For any x, y ∈ T , the path [x, y] from x to y is a combination of the paths
[x, x ∧ y] and [x ∧ y, y] (where one or both parts may reduce to a single
point). Hence, we have

[x, y] = [x, x ∧ y] ∪ [x ∧ y, y]. (7.4)

d(x, y) = d(x, x ∧ y) + d(x ∧ y, y). (7.5)

We note also that for any subset {xα}α∈A ⊆ T , it follows from Theo-
rem 5.3 that the subtree spanned by these points and the root ρ is

⋃
α[ρ, xα];

see further Examples 8.5 and 10.3.

8. Leaves and branch points

Recall from Lemma 3.1 that the components of T \ {z} are also the path
components of T \ {z}, and that these are open and are called the branches
of T at z.

Definition 8.1. Let T be a real tree. The degree δ(z) = δT (z) of a point
z ∈ T is the number of branches at z, i.e., the number of components of
T \ {z}. Thus 1 6 δ(z) 6∞ unless T consists of a single point.

Definition 8.2. Let T be a real tree. We say that a point z ∈ T is a leaf if
δ(z) = 1, and a branch point if δ(z) > 3.

We denote the set of leaves by T L := {z : δ(z) 6 1}. The skeleton of T is
the set T o := T \T L = {z ∈ T : δ(z) > 2}, i.e., the set of all non-leaves of T .

We ignore here the trivial case when T consists of a single point. (In this
case, the point is defined to be a leaf, by a modification of the definition
above, and T o = ∅.)

We note that

T o =
⋃

x,y∈T
(x, y). (8.1)

Remark 8.3. In a rooted real tree, the root is often not regarded as a leaf,
even if its degree is 1. �

We note also that the branches at a point can be characterized as follows.

Lemma 8.4. Let T be a real tree, and let z ∈ T . Then the following are
equivalent, for any x, y ∈ T \ {z}:
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(i) x and y belong to different branches of T at z.
(ii) z ∈ [x, y].
(iii) [z, x] ∩ [z, y] = {z}.

Proof. (i)⇐⇒ (ii): x and y belong to the same path component of T \ {z}
if and only if [x, y] ⊆ T \ {z}, i.e., if and only if z /∈ [x, y]. (Cf. the condition
(T2a).)

(ii)⇐⇒ (iii): Immediate from Lemmas 3.5 and 3.7. �

Example 8.5. Let (T, ρ) be a rooted real tree and let {x1, . . . , xn} be a finite
set of points in T . By Theorem 5.3, the subtree T1 spanned by {x1, . . . , xn}
and the root ρ is

⋃n
i=1[ρ, xi]. It is easily seen that the leaves of T1 are ρ

(but see Remark 8.3) and the set of maximal elements of {x1, . . . , xn}, i.e.,
{xi : xi /∈ [ρ, xj ] for every j 6= i}. Furthermore the branch points of T1 are
a subset of {xi ∧ xj : i 6= j}. The sets of leaves and branch points are thus
finite. �

9. A metric space of compact real trees

Consider the set T of all compact real trees, or rather the set of all equiv-
alence classes under isometry of compact real trees (so that two isometric
real trees are regarded as the same). (The set theoretic difficulties with “all
compact real trees” are handled in the standard way: since a compact real
tree, as any compact metric space, has cardinality at most c, it suffices to
consider real trees that as sets are subsets of, for example, R.)

The set T can be equipped with a metric, the Gromov–Hausdorff distance,
which makes T a complete separable metric space. Similarly, the set T1 of
rooted compact real trees is a complete separable metric space, equipped
with (a rooted version of) the Gromov–Hausdorff distance. See [12] for
definitions and proofs; see also [6, Section 7.3] for the Gromov–Hausdorff
distance for general metric spaces.

The fact that T and T1 thus are complete separable metric spaces (and
thus Polish topological spaces) makes it possible to define random compact
real trees as random elements of one of these spaces, and a lot of standard
machinery then is available.

For noncompact real trees, one can similarly use the version of Gromov–
Hausdorff convergence in [6, Section 8.1].

10. Some examples

Example 10.1. A combinatorial tree is a non-empty set V of vertices (finite
or infinite) together with a set E of unorded pairs {v, w} of vertices, such
that (V,E) is a tree in the usual combinatorial sense. (An edge {vw} is
often denoted vw for simplicity.)

We may regard a combinatorial tree as a real tree T , by regarding each
edge as a copy of [0, 1], with the endpoints identified with the corresponding
vertices in V . Equivalently, we may define T as the disjoint union of V and
one copy of (0, 1) for each edge in E, with a suitably defined metric. (We
omit the details, and the verification that T is a real tree.) In any case, we
regard V as a subset of T .
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Note that for v, w ∈ V , the distance d(v, w) equals the usual distance in
a graph, i.e., the number of edges in a shortest path from v to w.

The degree δT (z) of a vertex z ∈ V equals the degree of z in the graph
(V,E); the degree of any vertex in T \ V is 2. In particular, the leaves of T
are precisely the leaves of the tree (V,E) (i.e., the vertices in V adjacent to
a single edge in E), and the branch points are the vertices in V that have
degree > 3.

It is easy to see that T always is complete, that T is separable if and only
if V (and thus also E) is countable, and that T is compact if and only if V
(and thus also E) is finite. �

Example 10.2. More generally, suppose as in Example 10.1 that (V,E) is
a combinatorial tree, and assume also that for every edge e ∈ E, we are
given a real number `e, called the length e. We may construct a real tree T
as in Example 10.1, but now for each edge e taking an interval of length `e.
(In particular, `e = 1 for all e gives back the real tree in Example 10.1.)

We see again that T is separable if and only if V is countable. (In one
direction, note that if D is a countable dense subset of T , then every edge
contains, in its interior, an element of D; hence E is countable.)

Moreover, T is compact if V is finite, but the converse does not hold. One
counterexample is an infinite star which is compact for some (but not all)
choices of edge lengths: let V = {0, 1, . . . } and E = {0i : i > 1}, with length
`0i = 2−i. �

Example 10.3. As in Example 8.5, let T1 be the subtree of a rooted real
tree that is spanned by a finite set of points {x1, . . . , xn} and the root.
It follows from Example 8.5 and (7.4)–(7.5) that the real tree T1 can be
constructed as in Example 10.2 from a finite combinatorial tree (V,E) where
V = {xi} ∪ {xi ∧ xj : 1 6 i < j 6 n} ∪ {ρ}, and a suitable set of edges E
with suitable lengths `e; we omit the details. �

Example 10.4. The infinite binary tree is a combinatorial tree with V :=⋃∞
n=0{0, 1}n, the set of all finite strings from {0, 1} (including the empty

string ∅); the edges are all pairs of the type {v, v0} and {v, v1} for strings
v ∈ V . Let (`n)∞1 be a sequence of positive real numbers, and let T be the
real tree constructed in Example 10.2 with edge lengths defined by `{v,vj} :=
`|v|+1, where |v| is the length of the string v.

No vertex in V is a leaf, and thus, see Example 10.1, the real tree T has
no leaf, so T L = ∅ and T o = T .

The real tree T is always separable, and never compact. It is easy to see
that T is complete if

∑
n `n =∞, but not if

∑
n `n <∞, since in the latter

case, the sequence (0n)∞0 = ∅, 0, 00, 000, . . . is a Cauchy sequence without a
limit. See further the next example. �

Example 10.5. Let T0 be the infinite binary tree in Example 10.4 and
assume that L :=

∑
n `n < ∞. Note that d(∅, z) < L for every z ∈ T0. For

every s < L, the set {z ∈ T0 : d(∅, z) 6 s} is closed and contained in a finite
number of edges, and thus it is compact.

Let (zn)∞1 be a Cauchy sequence in T0. Then the sequence d(∅, zn) is
a Cauchy sequence, so it converges to some limit d∞ 6 L. If the limit
d∞ < L, then we see that the Cauchy sequence (zn) belongs to a compact
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subset of T0, and thus it converges. On the other hand, if d(∅, zn)→ L, then
the Cauchy sequence cannot converge, since a limit z would have to satisfy
d(∅, z) = limn→∞ d(∅, zn) = L, but no such z exists in T0.

Consider now the completion T of T0; T is a real tree by Theorem 6.5,
and we call T a complete infinite binary tree. We claim that T \ T0 may
be identified with the set {0, 1}∞ of infinite strings from {0, 1}. In fact, if
v = ξ1ξ2 · · · ∈ {0, 1}∞, then let vn := ξ1 · · · ξn ∈ V for each n > 0; we have
d(vn, vm) =

∑
n<i6m `i when n 6 m, and thus (vn) is a Cauchy sequence in

T0 so it has a limit in T which we represent by v. We have d(∅, v) = L, and
thus v ∈ T \ T0.

Furthermore, if v = ξ1ξ2 · · · and v′ = ξ′1ξ
′
2 · · · are elements of {0, 1}∞,

let D(v, v′) := inf{i : ξi 6= ξ′i}; thus 1 6 D(v, v′) < ∞ if v 6= v′, but
D(v, v) = ∞. Further, let L+

n :=
∑

i>n `i; thus L+
1 = L, and L+

n ↘ 0 as

n→∞. It is then easy to see that for any v, v′ ∈ {0, 1}∞, regarded as
elements of T , we have

d(v, v′) = 2L+
D(v,v′). (10.1)

In particular, this shows that two different strings in {0, 1}∞ represent dif-
ferent points in T , so we may regard {0, 1}∞ as a subset of T . Note also
that, since L+

n → 0 as n→∞, the metric (10.1) induces the product topol-
ogy on {0, 1}∞; thus {0, 1}∞ is a compact subset of T , homeomorphic to
the Cantor set.

Finally, if (zn) is any Cauchy sequence in T0 without limit in T0, we have
seen that d(∅, zn) → L, and since `k → 0 as k →∞, it follows easily that
we may approximate each zn by z′n ∈ V such that d(zn, z

′
n)→ 0 as n→∞.

Then z′n is a finite string; we extend it (arbitrarily) to an infinite string
z′′n ∈ {0, 1}∞ and note that

d(z′n, z
′′
n) = L+

|z′n|+1 → 0. (10.2)

Hence d(zn, z
′′
n) → 0, and thus also (z′′n) is a Cauchy sequence; furthermore

(z′′n) lies in the compact metric space {0, 1}∞. Consequently z′′n → z for some
z ∈ {0, 1}∞, and thus also zn → z. This shows that every Cauchy sequence
in T0 has a limit either in T0 or in {0, 1}∞, and thus T = T0 ∪ {0, 1}∞ as
claimed above.

The complete infinite binary tree T is compact; this follows either by using
a modification of the argument above to show that an arbitrary sequence
(zn) in T has a subsequence that converges, or by noting that for every
ε > 0, there is a finite ε-net in T , since {0, 1}∞ is compact, and so is the set
{z ∈ T : d(z, {0, 1}∞) > ε}; we omit the details.

Note that the complete infinite binary tree T = T0 ∪ {0, 1}∞ regarded as
a set is the same for every sequence (`n)∞1 satisfying the assumptions `n > 0
and

∑
n `n <∞; furthermore, it is easily seen that the topology of T is the

same for all such (`n)∞1 . However, the metric on T depends on (`n)∞1 , as is
seen e.g. by (10.1).

It is easily seen that the set of leaves T L = {0, 1}∞, and thus the skeleton
T o = T0. �

Example 10.6. Let ` > 0 and let g : [0, `] → [0,∞) be a non-negative
continuous function defined on [0, `] with g(0) = g(1) = 0. We define a
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semimetric d = dg on [0, `] by

d(s, t) := g(s) + g(t)− 2 min
u∈[s,t]

g(u), (10.3)

when s, t ∈ [0, `] with s 6 t (and, of course, d(s, t) := d(t, s) when s > t). It
is easily verified that this is a semimetric; thus, if we define an equivalence
relation on [0, `] by s ≡ t if d(s, t) = 0, then the quotient space Tg := [0, `]/ ≡
is a metric space; moreover, it is not difficult to show that Tg is connected
and satisfies the 4-point inequality; thus Tg is a real tree by Theorem 6.1.
The quotient map [0, `] → Tg is continuous, and thus Tg is a compact real
tree.

Note that if s 6 t, then s ≡ t ⇐⇒ g(u) > g(s) = g(t) for every u ∈ [s, t].
(Informally, we may think of obtaining Tg by putting glue on the downside
of the graph of g, and then compressing the x-axis.)

As a simple example, a finite combinatorial tree as in Example 10.1 or
10.2 can be constructed in this way by taking g(t) to be the contour function
of the tree, defined as the height (distance to the root) of a particle that
moves with unit speed along the “outside” of the tree, starting and ending
at the root.

In fact, every compact rooted real tree may be constructed in this way
(up to isometry) using a suitable function g : [0, 1] → [0,∞) [17, Remark
3.2].

In applications, as in the following two examples, g(t) is usually a random
function, and then Tg is a random real tree. If we for simplicity let ` be fixed
(for example, ` = 1), then the map g 7→ Tg is a continuous map from C[0, `]
to the set T1 of rooted compact real trees with the Gromov–Hausdorff metric
in Section 9, see [10]. In particular, this map is (Borel) measurable, so if g
is a random element of C[0, `], then Tg is a well-defined random element of
the Polish space T1 of rooted compact real trees. �

Example 10.7. The Brownian continuum random tree, originally constructed
(in several different ways) by Aldous [1, 2, 3], is the random real tree Te
obtained by the construction in Example 10.6 letting g(t) be a random
(normalized) Brownian excursion e : [0, 1] → [0,∞); see [3, Corollary 22].
(Actually, Aldous defined the Brownian continuum random tree to be T2e
in our notation, but the convention has later changed to Te; of course, the
results differ only by a scaling.) See e.g. [1; 2; 3], [11] and [16] for properties
of this random real tree. In particular, Te has almost surely a countably in-
finite number of branch points, all of degree 3, and an uncountable number
of leaves. �

Example 10.8. More generally, a Lévy tree is a random real tree con-
structed as in Example 10.6 letting g be a random continuous fuction known
as the height process of a Lévy process (with certain conditions), see [9; 10].
In the special case when the Lévy process is Brownian motion, this height
process is a Brownian excursion and we obtain the Brownian continuum
random tree as in Example 10.7.

Other special cases are the stable trees, see [16]. �

Example 10.9. Let T be a partially ordered set such that

(i) Any two elements x, y ∈ T have a greatest lower bound x ∧ y.
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(ii) For every x ∈ T , the set Lx := {y ∈ T : y 6 x} is linearly ordered.
(iii) There is a height function h : T → R such that for every x ∈ T , the

restriction h : Lx → R is an order-preserving bijection onto an interval
(a, h(x)] or [(a, h(x)] for some a ∈ R ∪ {−∞} (where thus the interval
is (−∞, h(x)] if a = −∞).

It is easily seen from (i) and (ii) that a in (iii) cannot depend on x. Moreover,
either h(Lx) = [a, h(x)] for all x, and then T has a smallest element o with
h(o) = a, or h(Lx) = (a, h(x)] for every x, and then T has no minimum (or
minimal) element.

Define

d(x, y) := h(x) + h(y)− 2h(x ∧ y), x, y ∈ T. (10.4)

It is easily seen that d is a metric on T , which makes T a real tree. The
path [x, y] between two points x, y ∈ T consist of the two parts [x, x∧y] and
[x ∧ y, y], which are subsets of Lx and Ly, respectively.

If T is has a minimum element o, we choose o as a root, and then the
partial order defined in (7.1) is the original order. Moreover, h(x) = d(x, o)+
a with a := h(o).

Conversely, if (T, ρ) is a rooted real tree, the partial order defined in (7.1)
satisfies (i)–(iii) above with the height function h(x) := d(x, ρ), and the
construction above returns the original metric on T .

It is easily verified that the trees constructed in Example 10.6 are of this
type, with height function g (after identifying equivalent points). �

Example 10.10. Let T be the collection of all bounded non-empty subsets
of R that contain their supremum. Let h(A) := supA for A ∈ T , and define
a partial order by letting A 6 B if A = (B ∩ (−∞, t]) ∪ {t} for some t ∈ R
with t 6 h(B) (necessarily t = h(A).

It is easily verified that 6 is a partial order, and that it satisfies (i)–(iii)
in Example 10.9 with the height function h (with a = −∞). Hence, (10.4)
defines a metric that makes T inte a real tree.

Note that this is a very large tree. Its cardinality is 2c, and every point
in T has uncountable degree (more precisely, also of cardinality 2c). In
particular, T is not separable.

See [11, Examples 3.18 and 3.45] for further properties of this real tree.
�

11. The length measure

Every real tree has a natural measure on it, defined as follows. (See e.g.
[13, 2.10] for the definition and properties of Hausdorff measures.) We let
B(T ) denote the collection of Borel subsets of T .

Definition 11.1. Let T = (T, d) be a real tree. The length measure λ on
T is the 1-dimensional Hausdorff measure H1 on the skeleton T o, regarded
as a Borel measure on T . In other words, for a Borel set A ∈ B(T ),

λ(A) := H1(A ∩ T o), (11.1)

where H1 is the Hausdorff measure on T o.
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Note that, by definition, λ(T L) = 0.
In the definition (11.1), if A is a Borel set in T , then A ∩ T o is a Borel

subset of T o, and thus λ(A) is well defined. If T o is a Borel subset of T ,
or more generally a H1-measurable subset of T , then we can also define
the length measure by (11.1) interpreting H1 as the Hausdorff measure on
T . In general, T o is not measurable (see Example 11.6 below), but it is in
most cases of interest (and in particular for all compact T ) by Theorem 11.4
below. Alternatively, we can always (even if T o is not measurable) define λ
by (11.1) interpreting H1 as the outer Hausdorff meaure on T .

Remark 11.2. We have here defined λ as a Borel measure. Alternatively,
we may more generally define it by (11.1) for every A ⊆ T such that A∩T o
is a H1-measurable subset of T o. �

We note some elementary properties of λ, which justify the name length
measure. Note that for every x, y ∈ T , the set [x, y] is isometric to the
interval [0, d(x, y)] ⊂ R, and is thus compact. Hence, [x, y] and (x, y) =
[x, y] \ {x, y} are Borel sets in T .

Theorem 11.3. The length measure λ is a continuous measure on T , i.e.,
if x ∈ T , then λ{x} = 0. Moreover, if x, y ∈ T , then

λ([x, y]) = λ((x, y)) = d(x, y). (11.2)

Proof. For every x ∈ T , we have λ{x} = 0 by (11.1).
Hence, for every x, y ∈ T , λ([x, y]) = λ((x, y)). Furthermore, (x, y) is a

subset of T o isometric to the interval (0, d(x, y)) ⊂ R, and thus H1((x, y)) =
H1((0, d(x, y)) = d(x, y), since the Hausdorff measure H1 on R equals the
Lebesgue measure. �

When T is separable, we can say more.

Theorem 11.4. Suppose that T is a separable real tree.

(i) Then T L and T o are Borel subsets of T .
(ii) The length measure λ is σ-finite.
(iii) The length measure is the unique Borel measure λ on T with

λ([x, y]) = d(x, y), x, y ∈ T, (11.3)

and λ(T L) = 0.

Proof. (i): Let D be a countable dense subset of T . It is easy to see that
then, cf. (8.1),

T o =
⋃

x,y∈D
(x, y). (11.4)

Furthermore, as noted above, (x, y) = [x, y] \ {x, y} is a Borel set for any x
and y. Hence, T o is Borel, and thus so is its complement T L.

(ii): This follows from (11.4), since λ is concentrated on T o by (11.1), and
λ((x, y)) <∞ for each (x, y) by (11.3).

(iii): We have already shown (11.3) in Theorem 11.3, and λ(T L) = 0
follows directly from (11.1).

To show uniqueness, suppose that λ′ is another Borel measure on T with
λ′([x, y]) = d(x, y) for all x, y ∈ T , and λ′(T L) = 0. Note first that then
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λ′{x} = 0 for every x ∈ T , and thus for all x, y ∈ T , we have, by the
assumption and (11.3),

λ′((x, y)) = λ′((x, y]) = λ′([x, y]) = λ((x, y)) = λ((x, y]) = λ([x, y]) <∞.
(11.5)

We may assume that T o 6= ∅. Let x0, x1, . . . be a dense subset of T o, and
let, for n > 1,

Tn :=
n⋃
i=1

[x0, xi] ⊂ T o. (11.6)

Tn is a pathwise connected subset of T , and thus Tn is a real tree by Theo-
rem 5.1. (In fact, by Theorem 5.3, Tn is the subtree spanned by x0, . . . , xn.)
We consider the restrictions of λ and λ′ to the compact (and thus Borel)
subset Tn.

First, for every n > 2 we have [x0, xn]∩Tn−1 = [x0, yn] for some yn ∈ Tn−1,
and then Tn = Tn−1 ∪ (yn, xn] is a partition into two disjoint Borel subsets;
hence, induction and (11.5) yield

λ′(Tn) = λ(Tn) <∞, n > 1. (11.7)

It now follows by the monotone class theorem (see e.g. [15, Theorem 1.2.3])
that

λ′(A) = λ(A), A ∈ B(Tn), (11.8)

because it follows from (11.7) that the collectionDn := {A ∈ B(Tn) : λ′(A) =
λ(A)} is a Dynkin system, the collection An := {[x, y] : x, y ∈ Tn} ∪ ∅ is a
π-system (i.e., closed under finite intersections) that generates B(Tn), and
An ⊆ Dn by (11.5).

Now let n → ∞; then Tn ↗
⋃∞

1 Tn = T o. Hence it follows from (11.8)
that for every A ∈ B(T ),

.λ′(A ∩ T o) = lim
n→∞

λ′(A ∩ Tn) = lim
n→∞

λ(A ∩ Tn) = λ(A ∩ T o). (11.9)

Finally, by assumption and definition λ′(A∩T L) = λ(A∩T L) = 0, and thus
(11.9) yields

.λ′(A) = λ′(A ∩ T o) = λ(A ∩ T o) = λ(A), A ∈ B(T ). (11.10)

�

Example 11.5. Let T be the complete infinite binary tree in Example 10.5,
with `n := 2−γn for some γ > 0. It follows from (10.1) that for every k > 0,
T L = {0, 1}∞ can be partitioned into 2k disjoint balls of radius c2−γk, where

c = 2(1−2−γ)1/2. It follows by standard arguments (see e.g. [4, Section 1.2])

that the (1/γ)-dimensional Hausdorff measure H1/γ({0, 1}∞) is finite and
positive, and thus {0, 1}∞ has Hausdorff dimension 1/γ. (The Minkowski
dimension [4, Section 1.1] of {0, 1}∞ is the same.)

The Hausdorff dimension of T L = {0, 1}∞ can thus be any number in
(0,∞). We see also that H1(T L) = H1({0, 1}∞) > 0 when γ 6 1 (and ∞
when γ < 1); this shows that in general, the length measure is not equal to
the Hausdorff measure H1 on T .

We see also that the total length measure λ(T ) =
∑∞

1 2n−γn is finite for
γ > 1 but infinite for γ 6 1. �
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Example 11.6. Consider the complete infinite binary tree T in Exam-
ple 10.5, for some sequence (`n)∞1 , and let A ⊆ T L be an arbitrary subset
of T L = {0, 1}∞. Define the real tree TA by attaching an interval [x, x′] of
length 1 to every x ∈ A in the obvious way.

Then TA is a real tree with

T L
A = {x ∈ {0, 1}∞ : x /∈ A} ∪ {x′ : x ∈ A}

=
(
{0, 1}∞ \A

)
∪ {x′ : x ∈ A}. (11.11)

Suppose that T L
A is a Borel set in TA. Then so is

T L
A ∩ {x ∈ TA : d(∅, x) = L} = {0, 1}∞ \A. (11.12)

Hence, A then is a Borel set in {0, 1}∞. Consequently, if we choose A as a
subset of {0, 1}∞ that is not a Borel set, then T L

A and its complement T oA
are not Borel sets in TA.

If we specialize to the case `n = 2−n, then (see Example 11.5) {0, 1}∞
has finite and positive Hausdorff measure h := H1({0, 1}∞). Since {0, 1}∞
is a Polish space, and H1 is continuous and with full support, it follows
that the measure space ({0, 1}∞,H1) is isomorphic to ([0, 1], hν), where ν
denotes the Lebesgue measure; this holds both for the Borel σ-fields and
their completions, which are the H1-measurable sets in {0, 1}∞ and the
Lebesgue measurable sets in [0, 1], respectively. Hence, there exists A ⊂
{0, 1}∞ such that A is not measurable for H1, and it follows that T L

A and
T oA are not measurable for the Hausdorff measure H1. �

12. Leaf measure

In some applications, a real tree is equipped with a different (Borel) mea-
sure, which, in contrast to the length measure in Section 11, is supported
on the set of leaves T L. For simplicity, suppose that T is a separable real
tree, so that T L is a Borel set by Theorem 11.4. We then may call any Borel
measure supported on T L a leaf measure. Note that a leaf measure thus has
to be specified, and is not automatically determined by T , unlike the length
measure in Section 11.

Usually, one considers leaf measures that are probability measures; they
thus give a meaning to “a random leaf”.

Aldous [3] defines a continuum tree as a rooted real tree (with some extra
conditions) equipped with a nonatomic probability measure that is sup-
ported on the set of leaves (and thus a leaf measure in our sense), and
furthermore has full support in the sense that for any x in the skeleton of
the tree, the set {y : y > x} (recall (7.1)) has positive measure.

Example 12.1. If T is constructed from a finite combinatorial tree as in
Example 10.1 or 10.2, then T has a finite number of leaves, and a natural
leaf measure is given by the uniform distribution on T L. �

Example 12.2. If T is constructed from a continuous function g : [0, `]→
[0,∞) as in Example 10.6, then the natural (quotient) mapping [0, `]→ T is
continuous, and thus measurable, so it maps the Lebesgue measure on [0, `]
to a measure µ on T . This is in general not a leaf measure (one counterex-
ample is when g is the contour function of a finite combinatorial tree as in
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Example 10.1 or 10.2; then the measure µ is 2 times the length measure on
T , as is easily seen). However, µ is a leaf measure under some conditions
[3, Theorem 13]; in particular, µ is almost surely a leaf measure when, as
in Example 10.7, g = e, the (random) standard Brownian excursion; see [3,
Corollary 22]. �

Appendix A. Gromov hyperbolic spaces

This appendix is a long remark on an approximate version of the four-
point inequality, which is important in other contexts; the appendix can be
skipped by those interested in trees only. X = (X, d) is a metric space.

Gromov [14] defined δ-hyperbolic metric spaces as metric spaces where
the four-point inequality holds up to an error δ. More precisely, he used the
version (6.4), and the definition is as follows, for a given δ > 0:

Definition A.1 (Gromov). A metric space X = (X, d) is δ-hyperbolic if,
for all x, y, z, w ∈ X,

(x, y)w > (x, z)w ∧ (y, z)w − δ. (A.1)

By Lemma 6.7, Theorem 6.4 can be formulated as follows.

Theorem A.2. A metric space is 0-hyperbolic if and only if it can be iso-
metrically embedded in a real tree.

However, the main interest of Definition A.1 is for δ > 0. The value of
δ is often not important, and one says that a metric space X is Gromov
hyperbolic if it is δ-hyperbolic for some δ <∞.

Remark A.3. Intuitively, at large distances, the δ in (A.1) is insignificant,
and thus the large scale geometry of a Gromov hyperbolic space is “tree-
like”. �

There are several alternatives to Definition A.1, with conditions that are
equivalent in the sense that if one holds, then so do the others, but with δ
replaced by Cδ for some (small) constant C. (The conditions are in general
not equivalent with the same δ.) Some of these alternative conditions are
given (or implicit) in the following lemmas. See further e.g. [14], [6] and
[18].

Lemma A.4. The inequality (A.1) holds if and only if

d(x, y) + d(z, w) 6
(
d(x, z) + d(y, w)

)
∨
(
d(x,w) + d(y, z)

)
+ 2δ. (A.2)

Proof. As the proof of Lemma 6.7, adding 2δ to the left-hand sides of (6.5)–
(6.8). �

Lemma A.5 ([14]). Let X be a metric space and let o ∈ X be fixed. Let
δ > 0. If (A.1) holds for w = o and all x, y, z ∈ X, then it holds for all
x, y, z, w ∈ X with δ replaced by 2δ.

Proof. We first show that the assumption implies that, for any x, y, z, w,

(x, y)o + (z, w)o >
(
(x, z)o + (y, w)o

)
∧
(
(x,w)o + (y, z)o

)
− 2δ. (A.3)

To see this, we first note that both sides are symmetric in x and y, and also
in z and w; hence, by interchanging (x, y) and/or (z, w) if necessary, we may
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assume that (x, z)o is the largest of the four numbers (x, z)o, (x,w)o, (y, z)o,
(y, w)o. In this case, the assumption implies

(x, y)o > (x, z)o ∧ (y, z)o − δ = (y, z)o − δ, (A.4)

(z, w)o > (x, z)o ∧ (x,w)o − δ = (x,w)o − δ, (A.5)

and thus

(x, y)o + (z, w)o > (y, z)o + (x,w)o − 2δ, (A.6)

verifying (A.3).
Next, by exanding all Gromov products in (A.3) according to the defini-

tion (6.3), we see that (A.3) does not depend on the choice of o; hence (A.3)
holds for every o, x, y, z, w ∈ X.

In particular, we can choose o = w in (A.3). Since (w, v)w = 0 for every
v by (6.3), we obtain

(x, y)w > (x, z)w ∧ (y, z)w − 2δ, (A.7)

as asserted. �

A geodesic in a metric space X is an isometric curve, i.e., an isometric
mapping of an interval I ⊆ R into X. If a geodesic ϕ is defined on an
interval I = [a, b] that is closed and finite, we say that the geodesic has
the endpoints ϕ(a) and ϕ(b), and that it joins ϕ(a) and ϕ(b). (Then, the
geodesic necessarily has length dx,y, and we may choose I = [0, dx,y].)

Note that condition (T1) says that for every x, y ∈ X, there is a unique
geodesic from x to y (provided we normalize I = [0, dx,y]).

More generally, a metric space X = (X, d) is geodesic, if every pair x, y ∈
X is joined by a geodesic. In other words, we assume the existence part
of (T1), but uniqueness is not assumed. In particular, every real tree is
geodesic.

Gromov hyperbolicity is often studied for geodesic metric spaces. This
can be done without real loss of generality by the following result by Bonk
and Schramm [5], to which we refer for a proof.

Theorem A.6 (Bonk and Schramm [5, Theorem 4.1]). Let δ > 0. A metric
space is δ-hyperbolic if and only if it can be isometrically embedded into a
δ-hyperbolic complete geodesic metric space. �

In particular, for δ = 0, we recover Theorem 6.4 (together with Theo-
rem 6.5).

For geodetic metric spaces, there are further conditions equivalent to Gro-
mov hyperbolicity. We note first an extension of Lemma 3.3 to general
geodesic spaces.

Lemma A.7. Let (X, d) be a geodesic metric space, and let x, y, z ∈ X.
Then (x, y)z = 0 if and only if there exists a geodesic from x to y that
contains z.

Proof. As for Lemma 3.3. �

In a geodesic metric space, it is enough to assume the hyperbolicity con-
dition (A.1) when the left-hand side is 0, i.e., by Lemma A.7, when w is on
a geodesic joining x and y.
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Lemma A.8. Let (X, d) be a geodesic metric space. Suppose that, for every
x, y, z ∈ X and every w that lies on a geodesic from x to y, the inequality
(A.1) holds, or equivalently

(x, z)w ∧ (y, z)w 6 δ. (A.8)

Then X is 3δ-hyperbolic.

Proof. See [6, p. 286 and Exercise 8.4.5] or [18, Proof of Theorem 2.34]. �

Remark A.9. In particular, using Theorem A.2, a geodesic metric space is
a real tree if and only if (A.8) holds with δ = 0. In fact, it is easily seen that
this condition implies that geodesics are unique, so (T1) holds. (Given two
geodesics from x to y, let z and w be points on them with d(z, x) = d(w, x),
and conclude z = w from (A.8).) Then, by Lemma A.7 again, (A.8) with
δ = 0 when w ∈ [x, y] is equivalent to [x, y] ⊆ [x, z] ∪ [y, z], which is (T2b).
�

The condition in Lemma A.8 can be regarded as a condition on the ge-
ometry of the triangle xyz. One can pursue this point of view further.

Definition A.10. Let (X, d) be a geodesic metric space. A triangle xyz in
X is a set of three vertices x, y, z ∈ X together with three sides xy, xz and
yz that are geodesics between the pairs of vertices.

Note that in general, the sides of a triangle are not uniquely determined
by the vertices.

Definition A.11. Let (X, d) be a geodesic metric space. A triangle is δ-
slim if each side is contained in the closed δ-neighbourhood of the union of
the two other sides, i.e., if every w ∈ xy has distance 6 δ to xz ∪ yz, and
similarly for the two other sides.

Gromov [14] used a definition that is similar, but somewhat more tech-
nical. Note that in a triangle with vertices x, y, z, we have, by (6.3),
(y, z)x + (x, z)y = dx,y, and thus the side xy can be divided into two parts
of lengths (y, z)x and (x, z)y, containing x and y respectively; we call these,
the x-part and y-part of xy. (In a tree, these are the parts of [x, y] before
and after γ(x, y, z). The definition in [14] is stated in terms of isometric
mappings of the three sides into a real tree with three endpoints having the
same distances between each other as x, y, z.)

Definition A.12. Let (X, d) be a geodesic metric space. A triangle xyz
is δ-thin if for each w in the x-part of the side xy, the point v ∈ xz with
d(v, x) = d(w, x) satisfies d(v, w) 6 δ, and similarly for the y-part and for
the two other sides.

It is immediate that a δ-thin triangle is δ-slim.

Lemma A.13. Let X be a geodesic metric space.

(i) If X is δ-hyperbolic, then every triangle in X is 2δ-thin.
(ii) If every triangle in X is δ-thin, then X is 2δ-hyperbolic.

Proof. See [14, Proposition 6.3.C]. �

Lemma A.14. Let X be a geodesic metric space.
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(i) If X is δ-hyperbolic, then every triangle in X is 2δ-slim.
(ii) If every triangle in X is δ-slim, then X is 3δ-hyperbolic.

Proof. (i) follows from Lemma A.13(i); see also [18, Theorems 2.35] (with
3δ).

(ii) is [18, Theorems 2.34 (with h = 0)]. �

Remark A.15. If every triangle in X is δ-slim (or δ-thin), then any two
geodesics with the same endpoints are within distance 2δ of each other. (I.e.,
their Hausdorff distance is 6 2δ.) This follows by considering the triangle
obtained by subdividing one of the geodesics at an arbitrary interior point.
(Or, more bravely, by considering the geodesics as two sides of a degenerate
triangle with two vertices coinciding.) �

Remark A.16. In particular, using Theorem A.2, a geodesic metric space
is a real tree if and only if every triangle is 0-slim (or 0-thin).

In fact, if this holds, then by Remark A.15, geodesics are unique, and
thus (T1) holds. Then, a triangle xyz is 0-slim if and only if (T2b) holds for
all permutations of x, y, z. Conversely, each triangle in a real tree is 0-thin
as a consequence of Lemmas 3.5 and 3.6. �
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[18] Jussi Väisälä. Gromov hyperbolic spaces. Expo. Math. 23 (2005), no.
3, 187–231.

Department of Mathematics, Uppsala University, PO Box 480, SE-751 06
Uppsala, Sweden

Email address: svante.janson@math.uu.se

URL: http://www2.math.uu.se/∼svante/


