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Introduction by the Organisers

The Mini-Workshop: Probability Theory on Trees and Analysis of Algorithms
workshop, organised by Max Muster (München) and Bill E. Xample (New York)
was held January 11-17. This meeting was well attended with over 30 participants
with broad geographic representation from all continents. This workshop was a
nice blend of researchers with various backgrounds . . .
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Abstracts

Random records and cuttings in trees
Svante Janson

We consider random cutting down of rooted trees, defined as follows [6]. If T is
a rooted tree with number of vertices |T | ≥ 2, we make a random cut by choosing
one edge at random. Delete this edge so that the tree separates into two parts,
and keep only the part containing the root. Continue recusively until only the
root is left. We let X(T ) denote the (random) number of cuts that are performed
until the tree is gone.

The same random variable appears when we consider records in a tree. Let
each edge e have a random value λe attached to it, and assume that these values
are i.i.d. with a continuous distribution. Say that a value λe is a record if it is the
largest value in the path from the root to e. Then the number of records is again
given by X(T ), as is easily seen.

There are also vertex versions of cuttings and records. For cuttings, choose a
vertex at random and destroy it together with all its descendants. Continue until
the root is chosen and thus the whole tree is destroyed. For records, we assign
i.i.d. values λv to the vertices, and define a record as above. Again, there is an
equivalence between cuttings and records. The edge and vertex versions are closely
related, and the results are essentially the same.

These random variables can be studied both for deterministic trees and for
random trees.

If the tree is a path, we have the classical record problem studied by Rényi, [9].
Our main results are for the case when the tree Tn itself is random, more pre-

cisely a random conditioned Galton–Watson tree (also known as simply generated
tree) with n vertices. (It is well-known that examples include random labelled
trees and random binary trees.) Since both the records (or cutting) and the tree
now are random, X(Tn) can be regarded in (at least) two ways.

First, we can regard X(Tn) as a random variable, obtained by picking a random
tree Tn and then a random cutting of it. This point of view has been taken by Meir
and Moon [6] (mean and variance for Cayley trees), Chassaing and Marchand [3]
(asymptotic distribution for Cayley trees), Panholzer [7, 8] (asymptotic distribu-
tion for some special families of simply generated trees, and for non-crossing trees).
We extend these results to all conditioned Galton–Watson trees. (All unspecified
limits are as n→∞.)

Theorem 1. Let Tn be a conditioned Galton–Watson tree of size n, defined by an
offspring distribution ξ with mean E ξ = 1 and finite variance σ2 > 0. Then,

X(Tn)
σn1/2

d−→ Z,
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where Z has a Rayleigh distribution with density xe−x
2/2, x > 0. Moreover, if

E ξm <∞ for every m > 0, then all moments converge and thus, for every r > 0,

EX(Tn)r ∼ σrnr/2 EZr = 2r/2σrΓ
(
r
2 + 1

)
nr/2.

The other point of view is to study X(Tn) as a random variable conditioned
on Tn. In other words, we consider the random procedure in two steps: First
we choose a random tree T = Tn. Then we keep this tree fixed and consider
random cuttings of it; this gives a random variable X(T ) with a distribution that
depends on T . Normalizing as in the theorem above, we consider the distribution
of σ−1n−1/2X(Tn) given Tn; this is thus a random probability distribution. We
then can show that this random probability distribution converges in distribution
to a random probability distribution (that does not depend on ξ); this random
distribution has moments that can be expressed as functionals of a Brownian
excursion.

The proofs are based on Aldous’ theory of the continuum random tree [1, 2].
Finally, we study the case when the tree is a (deterministic) complete binary

tree of size n. In this case, both the methods and results are different. There is
now a periodicity in the result. This is not surprising for complete binary trees,
but it is a bit surprising that the periodicity is in the fractional part {lg n−lg lg n}.

Theorem 2. Suppose that n→∞ such that {lg n− lg lg n} → γ ∈ [0, 1]. Then(
X(Tn)− n

lg n
− n lg lg n

lg2 n

) / n

lg2 n

d−→ −Wγ

where Wγ has an infinitely divisible distribution with characteristic function

E eitWγ = exp
(

if(γ)t+
∫ ∞

0

(
eitx − 1− itx1[x < 1]

)
dνγ(x)

)
,

where f(γ) := 2γ − 1− γ and the Lévy measure νγ is supported on (0,∞) and has
density

dνγ
dx

= 2{lg x+γ}x−2.

The strategy of the proof is to approximate X(Tn) by a sum of independent
random variables derived from {λe}; it turns out that only exceptionally small
values at level ≈ lg lg n have a significant influence on X(Tn). We will then apply
a classical limit theorem for triangular arrays.

For details, see [4, 5].
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Branching random walks on trees and the Brownian snake
Svante Janson

(joint work with Jean-François Marckert)

Consider a rooted ordered finite tree T where each edge is assigned a real number
called value. We then let, for every vertex v, Sv be the sum of the values of the
edges along the paths from the root to v. We will assume that the values of the
edges are independent random variables with a common distribution. We let Y
denote one of these values.

We study the case when tree itself is random, more precisely a random condi-
tioned Galton–Watson tree (or simply generated tree) with n vertices.

Each Sv is a sum of i.i.d. variables, and the number of terms is the depth of
v, which typically is of the order n1/2. Hence, by the central limit theorem, Sv is
typically of order n1/4 if EY = 0 and VarY <∞, but Sv is typically of order n1/2

if EY 6= 0.
To study the case EY = 0 in more detail, we take the values n−1/4Sv in the

order given by the depth first walk on the tree, extend this by linear interpolation
to a continuous function, and rescale to obtain a function rn(s) on [0, 1].

Before proceeding, recall that the Brownian snake [4, 7] is a random function
that can be desribed as follows: Let ζ(s) be a random non-negative function on
a given interval I; in our case, ζ is a standard Brownian excursion on I = [0, 1].
(Another common version is with ζ reflected Brownian motion on [0,∞).) Then
the corresponding Brownian snake W (s, t) is a random function of two variables
(or stochastic field), s ∈ I and t ≥ 0, such that conditioned on ζ, W (s, t) is a
Gaussian process with mean EW (s, t) = 0 and covariance function, if s1 ≤ s2,

Cov
(
W (s1, t1),W (s2, t2)

)
= min

(
t1, t2, inf

u∈[s1,s2]
ζ(u)

)
.

In particular, for fixed s, t 7→ W (s, t) is a Brownian motion stopped at t = ζ(s).
Two such Brownian motions for s1 and s2 are identical for t ≤ infu∈[s1,s2] ζ(u),
and then evolve independently.

Let r(s) := W (s, ζ(s)) (known as the head of the snake).
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Assume EY = 0 and VarY = 1, and let n→∞. It has been shown by Markert
and Mokkadem [8] and Chassaing and Schaeffer [3] in special cases, and by Git-
tenberger [5] in general, assuming E |Y |8+ε <∞, that then rn

d−→ r in C[0, 1] (i.e.
in the uniform topology).

We want to weaken the moment condition on Y as far as possible. First, it is
easy to see that rn → r in the sense of finite-dimensional distributions without
further assumptions. Weak convergence in C[0, 1] is equivalent to the convergence
of the finite-dimensional distributions together with tightness. Often, the tightness
is a technical nuisance that can be verified with more or less work. Here, that is
not the case and we need a stronger condition on Y in order to obtain convergence.

Theorem 3. Assume EY = 0. Then rn
d−→ r in C[0, 1] if and only if P(|Y | ≥

y) = o(y−4).

In particular, this holds if EY 4 < +∞, and no weaker moment condition suf-
fices.

When this condition fails, we do not have convergence because the extreme
values of Y will cause thin spikes in rn. These spikes are at random positions,
and are therefore not seen by the finite-dimensional distributions. We also have
convergence rn

d−→ r in, for example, L2[0, 1].
If Y have tails that are exactly of the order y−4, then rn converges in distribution

to a “hairy snake”, i.e. a Brownian snake with hairs added. The hairs are vertical
line segments going up or down from the snake; their positions and lengths are
given by a Poisson process, so the number of them is infinite, but there is only a
finite number of them with length larger than a given number.

Note that this limiting object, the hairy snake, is not a function, and therefore
the convergence does not take place in C[0, 1]. Instead we identify continuous func-
tions on [0, 1] with their graphs, and obtain convergence in the space of compact
subsets of R2. This seems to be a novel type of convergence in this context.

If the tails of Y are even larger, the spikes dominate and we may after suitable
rescaling obtain convergence to a flat (or dead) hairy snake, with hairs as above
added to the line segment from (0, 0) to (1, 0), and thus without the Brownian
part.

The proofs are based on Aldous’ theory of the continuum random tree [1, 2].
For details, see [6].
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Asymptotics for tails and moments
Svante Janson

(joint work with Jim Fill and probably others)

This talk describes some preliminary results and work in progress on tail esti-
mates for certain random variables that appear as limits in problems coming from
random trees or analysis of algorithms.

First, it is pointed out that a general theorem by Kasahara and Davies, see [3]
gives the equivalence, under quite general conditions, between asymptotics for tail
probabilities of a random variable, asymptotics for moments, and asymptotics for
the moment generating function.

Secondly, we presented a very recent result (found during this workshop after
yesterday’s talk by Uwe Rösler) giving estimates for the moments (and thus tail
estimates) for solutions to fixed-point equations of the Max-recursive type, for
example for the limit variable for MAX-FIND.

Thirdly, we discussed a family of limit random variables that arises in the study
of Catalan trees; most of them can be expressed as functionals of a Brownian
excursion (using the methods of Aldous [1, 2]) and then the asymptotics can
be found using the well-known large deviation principle for Brownian motion.
This involves finding a certain constant as the solution to a non-linear variational
problem; in some case we can solve this exactly, but in others we only have upper
and lower bounds for this constant (differing by a few percent).
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The contraction method in infinite-dimensional spaces
Svante Janson

(joint work with Michael Drmota and Ralph Neininger)
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The contraction method has since it was introduced by Rösler [4] found a num-
ber of applications, in particular in the analysis of algorithms. It has been extended
to random vectors in finite-dimensional spaces [2, 3] and to infinite-dimensional
Hilbert spaces [1] (with the `2-metric).

We discuss the possibility to use the Zolotarev ζs metric in a Banach space. The
main problem is completeness. We cannot show this in Banach spaces in general,
or in natural spaces like C[0, 1], but we can do it in Hilbert spaces.

Theorem 4. Let s > 0 and let H be a separable Hilbert space. The Zolotarev
metric ζs is a complete metric on the set of all H-valued random variables with
given k:th moments for k = 0, 1, . . . , dse − 1. (The k:th moment lies in the k:th
projective tensor power H⊗̂k.)

Using this theorem, the proof in [3] works without changes also for Hilbert space
valued variables.

In a tentative application, that is still work in progress, we apply this to the
profile of random binary trees (and other trees). The relevant random variables can
be represented as continuous functions on an interval [a, b]. It is desirable to obtain
uniform convergence in C[a, b], but this Banach space is not a Hilbert space and we
do not know whether the Zolotarev metric is complete for it. Instead, we observe
that the random functions in this case may be extended to analytic functions in a
domain in the complex plane; we then use a Bergman space of analytic functions,
which is a Hilbert space. We can thus use the contraction method there and obtain
convergence in the Bergman space, which implies uniform convergence on compact
subsets, and in particular on [a, b].
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