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If n ≥ 1 and (di)n1 is a sequence of non-negative integers, we let G(n, (di)n1 ) be
the random (simple) graph with the n vertices 1, . . . , n, and with vertex degrees
d1, . . . , dn, uniformly chosen among all such graphs (provided that there are any
such graphs at all; in particular,

∑
i di has to be even). A standard method to

study G(n, (di)n1 ) is to consider the related random multigraph G∗(n, (di)n1 ) defined
by taking a set of di half-edges at each vertex i and then joining the half-edges into
edges by taking a random partition of the set of all half-edges into pairs (we tacitly
assume that

∑
i di is even). This is known as the configuration model, and such

a partition of the half-edges is known as a configuration; this was introduced by
Bollobás [2], see also Section II.4 of [3]. (See Bender and Canfield [1] and Wormald
[11, 12] for related arguments.)

We obtain G(n, (di)n1 ) by conditioning G∗(n, (di)n1 ) on being a simple graph. It
is then of crucial importance to be able to estimate the probability thatG∗(n, (di)n1 )
is simple, and in particular to decide whether

(1) lim inf
n→∞

P
(
G∗(n, (di)n1 ) is simple

)
> 0

for given sequences (di)n1 = (d(n)
i )n1 (depending on n ≥ 1). (Note that (1) implies

that any statement holding for G∗(n, (di)n1 ) with probability tending to 1 does so
for G(n, (di)n1 ) too.)

A natural condition that has been used by several authors using the configura-
tion method (including myself [6]) as a sufficient condition for (1) is

(2)
n∑
i=1

di = Θ(n) and
n∑
i=1

d2
i = O(n)

together with some bound on maxi di. (Recall that A = Θ(B) means that both
A = O(B) and B = O(A) hold.) Results showing, or implying, that (2) and a
condition on maxi di imply (1) have also been given by several authors, for example
Bender and Canfield [1] with maxi di = O(1); Bollobás [2], see also Section II.4 in
[3], with maxi di ≤

√
2 log n − 1; McKay [9] with maxi di = o(n1/4); McKay and

Wormald [10] with maxi di = o(n1/3). (Some of these papers give sharp estimates
of the probability that G∗(n, (di)n1 ) is simple also when (2) does not hold.) Similar
results have also been proved for bipartite graphs [8], digraphs [5], and hypergraphs
[4].

Indeed, it is not difficult to see that the method used by Bollobás [2, 3] works,
assuming (2), provided only maxi di = o(n1/2). This has undoubtedly been noted
by several experts, but we have not been able to find a reference to it in print
when we have needed one.

One of our main result is that, in fact, (2) is sufficient for (1) without any
assumption on maxi di. Moreover, (2) is essentially necessary.
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Let N be the number of edges in G∗(n, (di)n1 ). Thus

(3) 2N =
n∑
i=1

di.

It turns out that it is more natural to state our results in terms of N than n (the
number of vertices).

We consider a sequence of random multigraphs G∗ν = G∗
(
nν , (d

(ν)
i )n1

)
and con-

sider asymptotics as ν →∞, but for notational simplicity we will omit the index
ν. (In typical application, the graphs are indexed by n, the number of vertices;
moreover, typically N = Θ(n), and then N can be replaced by n in the conditions
below.) We can state our first result as follows.

Theorem 1. Let N := 1
2

∑
i di be the number of edges in G∗(n, (di)n1 ), and assume

that N →∞. Then

(i) lim inf P(G∗(n, (di)n1 ) is simple) > 0 if and only if
∑
i d

2
i = O(N);

(ii) lim P(G∗(n, (di)n1 ) is simple) = 0 if and only if
∑
i d

2
i /N →∞.

Our second main result is an asymptotic formula for the probability thatG∗(n, (di)n1 )
is simple.

Theorem 2. Consider G∗(n, (di)n1 ) and assume that N := 1
2

∑
i di → ∞. Let

λij :=
√
di(di − 1)dj(dj − 1)/(2N); in particular λii = di(di − 1)/(2N). Then

P
(
G∗(n, (di)n1 ) is simple

)
= exp

(
− 1

2

∑
i

λii −
∑
i<j

(
λij − log(1 + λij)

))
+ o(1);

equivalently,

P
(
G∗(n, (di)n1 ) is simple

)
= exp

(
−1

4

(∑
i d

2
i

2N

)2

+
1
4

+
∑
i d

2
i (di − 1)2

16N2
+
∑
i<j

(
log(1 + λij)− λij + 1

2λ
2
ij

))
+ o(1).

In the case maxi di = o(N1/2), Theorem 2 simplifies as follows.

Corollary 3. Assume that N →∞ and maxi di = o(N1/2). Let

Λ :=
1

2N

n∑
i=1

(
di
2

)
=
∑
i d

2
i

4N
− 1

2
.

Then

P
(
G∗(n, (di)n1 ) is simple

)
= exp

(
−Λ− Λ2

)
+ o(1)

= exp
(
−1

4

(∑
i d

2
i

2N

)2

+
1
4

)
+ o(1).
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This formula is well known, at least under stronger conditions on maxi di, see,
for example, Bender and Canfield [1], Bollobás [3, Theorem II.16], McKay [9] and
McKay and Wormald [10, Lemma 5.1]. In this case, one can use the method by
Bollobás [2, 3] and show by the method of moments that the number of loops plus
the number of pairs of parallel edges is asymptotically Poisson distributed with
mean Λ + Λ2, which yields a direct proof of Corollary 3.

To prove the theorems under the weaker condition maxi di = O(N1/2), this
method fails, because this number no longer has to be approximatively Poisson
distributed; for example, two vertices with degree N1/2 will have roughly a Pois-
son distributed number of edges between them, and thus the number of pairs of
such edges will be more like the square of a Poisson variable. Instead we count
vertices with at least one loop and pairs of vertices with at least two edges be-
tween them, disregarding the number of parallel loops or edges. We show that the
indicators that a vertex or a pair of vertices is bad in this sense are asymptotically
independent. This uses a more complicated conditioning argument; we would like
to condition on the event that a certain pair of vertices is bad, but instead we
condition on the event that it has k edges given by specific pairs of half-edges,
which is easier to study; by an inclusion-exclusion type argument, we then get the
necessary estimates for the conditioning we want.

Details are given in [7].
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