The probability that a random multigraph is simple
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If n > 1 and (d;)7} is a sequence of non-negative integers, we let G(n, (d;)}) be
the random (simple) graph with the n vertices 1,...,n, and with vertex degrees
dy,...,d,, uniformly chosen among all such graphs (provided that there are any
such graphs at all; in particular, )", d; has to be even). A standard method to
study G(n, (d;)¥) is to consider the related random multigraph G*(n, (d;)¥) defined
by taking a set of d; half-edges at each vertex ¢ and then joining the half-edges into
edges by taking a random partition of the set of all half-edges into pairs (we tacitly
assume that ). d; is even). This is known as the configuration model, and such
a partition of the half-edges is known as a configuration; this was introduced by
Bollobés [2], see also Section I1.4 of [3]. (See Bender and Canfield [1] and Wormald
[11, 12] for related arguments.)

We obtain G(n, (d;)}) by conditioning G*(n, (d;)}) on being a simple graph. It
is then of crucial importance to be able to estimate the probability that G*(n, (d;)})
is simple, and in particular to decide whether
(1) lim inf P(G*(n, (d;)}) is simple) > 0

n—oo

for given sequences (d;)} = (din))? (depending on n > 1). (Note that (1) implies
that any statement holding for G*(n, (d;)}) with probability tending to 1 does so
for G(n, (d;)}) too.)

A natural condition that has been used by several authors using the configura-
tion method (including myself [6]) as a sufficient condition for (1) is

(2) Zd¢:®(n) and de:@(n)

together with some bound on max; d;. (Recall that A = ©(B) means that both
A = O(B) and B = O(A) hold.) Results showing, or implying, that (2) and a
condition on max; d; imply (1) have also been given by several authors, for example
Bender and Canfield [1] with max; d; = O(1); Bollobds [2], see also Section I1.4 in
[3], with max; d; < /2logn — 1; McKay [9] with max; d; = o(n'/*); McKay and
Wormald [10] with max; d; = o(n'/?). (Some of these papers give sharp estimates
of the probability that G*(n, (d;)}) is simple also when (2) does not hold.) Similar
results have also been proved for bipartite graphs [8], digraphs [5], and hypergraphs
[4].

Indeed, it is not difficult to see that the method used by Bollobés [2, 3] works,
assuming (2), provided only max; d; = o(n'/?). This has undoubtedly been noted
by several experts, but we have not been able to find a reference to it in print
when we have needed one.

One of our main result is that, in fact, (2) is sufficient for (1) without any
assumption on max; d;. Moreover, (2) is essentially necessary.
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Let N be the number of edges in G*(n, (d;)}). Thus
(3) 2N = d;.
i=1

It turns out that it is more natural to state our results in terms of N than n (the
number of vertices).

We consider a sequence of random multigraphs G}, = G*(n,, (dg”))’f) and con-
sider asymptotics as v — oo, but for notational simplicity we will omit the index
v. (In typical application, the graphs are indexed by n, the number of vertices;
moreover, typically N = ©(n), and then N can be replaced by n in the conditions
below.) We can state our first result as follows.

Theorem 1. Let N := 13" d; be the number of edges in G*(n, (d;)}), and assume
that N — oco. Then

(i) liminf P(G*(n, (d;)}) is simple) > 0 if and only if Y, d? = O(N);

(ii) HimP(G*(n, (d;)}) is simple) = 0 if and only if Y, d? /N — oo.

Our second main result is an asymptotic formula for the probability that G*(n, (d;)T)
is simple.

Theorem 2. Consider G*(n,(d;)}) and assume that N := 13°.d; — oo. Let
=/d;(d i(d; —1)/(2N); in particular \j; = d;(d; —1)/(2N). Then
P(G*(n, (d;)}) is simple) = exp(f% Z Aii — Z(/\ij —log(1 + )\ij))) + o(1);
i i<j
equivalently,

P(G*(n, (d;)}) is simple)

_ Zl i 2 1 Zid?(difly B 2
—e"p<‘4(2N) +1+W+;(l‘)g““w>”w+ﬂa)

+o(1).
In the case max; d; = o(N'/?), Theorem 2 simplifies as follows.

Corollary 3. Assume that N — co and max; d; = o(N'/?). Let

L (AN Nd
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Then
P(G*(n, (d;)7) is simple) = exp(—A — A*) + o(1)

-l LY 1)

2




This formula is well known, at least under stronger conditions on max; d;, see,
for example, Bender and Canfield [1], Bollobas [3, Theorem II.16], McKay [9] and
McKay and Wormald [10, Lemma 5.1]. In this case, one can use the method by
Bollobaés [2, 3] and show by the method of moments that the number of loops plus
the number of pairs of parallel edges is asymptotically Poisson distributed with
mean A + A2, which yields a direct proof of Corollary 3.

To prove the theorems under the weaker condition max; d; = O(N'/?), this
method fails, because this number no longer has to be approximatively Poisson
distributed; for example, two vertices with degree N'/2 will have roughly a Pois-
son distributed number of edges between them, and thus the number of pairs of
such edges will be more like the square of a Poisson variable. Instead we count
vertices with at least one loop and pairs of vertices with at least two edges be-
tween them, disregarding the number of parallel loops or edges. We show that the
indicators that a vertex or a pair of vertices is bad in this sense are asymptotically
independent. This uses a more complicated conditioning argument; we would like
to condition on the event that a certain pair of vertices is bad, but instead we
condition on the event that it has k edges given by specific pairs of half-edges,
which is easier to study; by an inclusion-exclusion type argument, we then get the
necessary estimates for the conditioning we want.

Details are given in [7].
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