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Bootstrap percolation on a graph G is defined as the spread of activation or
infection according to the following rule, with a given threshold r ≥ 2: We start
with a set A(0) ⊆ V (G) of active vertices. Each inactive vertex that has at least
r active neigbours becomes active. This is repeated until no more vertices become
active, i.e., when no inactive vertex has r or more active neigbours.

We are mainly interested in the final size A∗ of the active set, and in particular
whether eventually all vertices will be active or not. If they are, we say that the
initial set A(0) percolates. We will study a sequence of graphs of order n→∞; we
then also say that (a sequence of) A(0) almost percolates if the number of vertices
that remain inactive is o(n), i.e., if A∗ = n− o(n).

Bootstrap percolation has been studied on various graphs, both deterministic
and random; one can study either a random initial set or the deterministic problem
of choosing an initial set that is optimal in some sense. For example, a classical
folklore problem is to find the minmal percolating set in a two-dimensional grid;
see Balogh and Pete [3] and Bollobas [5]. (These references also treat higher-
dimensional grids.) Some further references for random initial sets on various
graphs are Cerf and Manzo [6], Holroyd [7] (grids); Balogh and Bollobás [1] (hy-
percube); Balogh, Peres and Pete [2] (infinite trees); Balogh and Pittel [4] (random
regular graphs).

We here study bootstrap percolation on the Erdös-Rényi random graph Gn,p

(which somewhat surprisingly seems to have been neglected so far in this context),
with an initial set A(0) consisting of a given number a vertices chosen at random.
This was first studied by Vallier [8]; we here present a simple method that allows
us to both simplify the proofs and improve the results.

In order to analyze the bootstrap percolation process on Gn,p, we change the
time scale and consider at each time step the spread of activation from one vertex
only. Choose u1 ∈ A(0) and give each of its neighbours a mark ; we then say
that u1 is used, and let Z(1) := {u1} be the set of used vertices at time 1. We
continue recursively: At time t + 1, choose a vertex ut+1 ∈ A(t) \ Z(t) (provided
this set is non-empty). We give each neighbour of ut+1 a new mark. Let ∆A(t+1)
be the set of inactive vertices with r marks; these now become active and we let
A(t+ 1) = A(t) ∪∆A(t+ 1) be the set of active vertices at time t. We finally set
Z(t+ 1) = Z(t) ∪ {ut+1} = {ui : i ≤ t+ 1}, the set of used vertices.

The process stops when A(t) \ Z(t) = ∅, i.e., when all active vertices are used.
We denote this time by T ;

(1) T := min{t ≥ 0 : A(t) \ Z(t) = ∅}.

Thus the final infected set is A(T ) = Z(T ), and its size is

(2) A∗ := |A(T )| = |Z(T )| = T.
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Hence, the set A(0) percolates if and only if T = n, and A(0) almost percolates if
and only if T = n− o(n).

Since |Z(t)| = t and Z(t) ⊆ A(t) for t = 0, . . . , T , we also have, with A(t) :=
|A(t)|, the number of active vertices at time t,

(3) T = min{t ≥ 0 : A(t) = t}.

We analyze this process by the standard method of revealing the edges of the
graph Gn,p only on a need-to-know basis. We thus begin by choosing u1 as above
and then reveal its neighbours; we then find u2 and reveal its neighbours, and so
on. Let, for i /∈ Z(s), Ii(s) be the indicator function that there is an edge between
the vertices us and i. This is also the indicator that i gets a mark at time s, so if
Mi(t) is the number of marks i has at time t, then

(4) Mi(t) =
t∑

s=1

Ii(s),

at least until i is activated (and what happens later does not matter). Note that
if i /∈ A(0), then, for every t ≤ T , i ∈ A(t) if and only if Mi(t) ≥ r.

The crucial feature of this description of the process, which makes the analysis
simple, is that the random variables Ii(s) are i.i.d. Be(p). We have defined Ii(s)
only for s ≤ T and i /∈ Z(s), but it is convenient to add further (redundant)
variables so that Ii(s) are defined, and i.i.d., for all i ∈ Vn and all s ≥ 1.

Define, for i ∈ Vn \ A(0),

(5) Yi := min
{
t : Mi(t) ≥ r

}
.

If Yi ≤ T , then Yi is the time vertex i becomes active, but if Yi > T , then Yi never
becomes active. Thus, for t ≤ T ,

A(t) = A(0) ∪ {i /∈ A(0) : Yi ≤ t}.

By (4) and (5), each Yi has a negative binomial distribution NegBin(r, p);

P(Yi = k) = P
(
Mi(k − 1) = r − 1, Ii(k) = 1

)
=
(
k − 1
r − 1

)
pk(1− p)r−k;

moreover, these random variables Yi are i.i.d.
We let, for t = 0, 1, 2, . . . ,

S(t) := |{i /∈ A(0) : Yi ≤ t}|,

so

(6) A(t) = S(t) +A(0) = S(t) + a.

By (3), (2) and (6), it suffices to study the stochastic process S(t). Note that
S(t) is a sum of n − a i.i.d. processes 1[t ≥ Yi], each of which is 0/1-valued and
jumps from 0 to 1 at time Yi. The fact that S(t), and thus A(t), is a sum of i.i.d.
processes makes the analysis easy; in particular, for any given t,

S(t) ∼ Bin
(
n− a,P(Y1 ≤ t)

)
.
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We have, for any given t0,

T ≥ t0 ⇐⇒ min
t<t0

(A(t)−t) > 0 ⇐⇒ a+min
t<t0

(S(t)−t) > 0 ⇐⇒ a > −min
t<t0

(S(t)−t).

(Note that this is exact; so far no approximation has been done.)
To find the threshold for (almost) percolation, we thus only have to find the

minimum mint<t0(S(t) − t) for t0 = n or t0 close to n. Standard concentration
results show that S(t) ≈ ES(t), where

ES(t) = (n− a) P(Y1 ≤ t) = (n− a) P(M1(t) ≥ r),
and explicit results are easily found.

For notational simplicity we state the result for r = 2 only. In this case,
ES(t)−t has a minimum 1/(2np2) at t = 1/(np2) (asymptotically), and we obtain
the following result.

Theorem 1. Let r = 2, and assume n−1 � p = p(n)� n−1/2. Then the threshold
for (almost) percolation is

a∗ :=
1

2np2
.

More precisely, for any fixed δ > 0,
(i) If |A(0)| ≤ (1− ε)a∗, then whp A∗ ≤ 2|A(0)|.

(ii) If |A(0)| ≥ (1 + ε)a∗, then whp A∗ = n − o(n). If further np ≥ log n +
log log n+ω(n) for some ω(n)→∞, then whp A∗ = n, so A(0) percolates
completely.

Moreover, S(t) − ES(t) converges after normalization to a Gaussian process,
and it is easy to refine the results above and obtain very precise information on
the width of the critical window (which is of the order

√
a∗); we also obtain a

Gaussian limit law for the final size A∗ in the subcritical case.
Details will appear.
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