Bootstrap percolation on G(n, p)SVANTE JANSON (joint work with Tomasz Łuczak, Tatyana Turova, Thomas Vallier)

Bootstrap percolation on a graph G is defined as the spread of *activation* or *infection* according to the following rule, with a given threshold $r \ge 2$: We start with a set $\mathcal{A}(0) \subseteq V(G)$ of *active* vertices. Each inactive vertex that has at least r active neigbours becomes active. This is repeated until no more vertices become active, i.e., when no inactive vertex has r or more active neigbours.

We are mainly interested in the final size A^* of the active set, and in particular whether eventually all vertices will be active or not. If they are, we say that the initial set $\mathcal{A}(0)$ percolates. We will study a sequence of graphs of order $n \to \infty$; we then also say that (a sequence of) $\mathcal{A}(0)$ almost percolates if the number of vertices that remain inactive is o(n), i.e., if $A^* = n - o(n)$.

Bootstrap percolation has been studied on various graphs, both deterministic and random; one can study either a random initial set or the deterministic problem of choosing an initial set that is optimal in some sense. For example, a classical folklore problem is to find the minmal percolating set in a two-dimensional grid; see Balogh and Pete [3] and Bollobas [5]. (These references also treat higherdimensional grids.) Some further references for random initial sets on various graphs are Cerf and Manzo [6], Holroyd [7] (grids); Balogh and Bollobás [1] (hypercube); Balogh, Peres and Pete [2] (infinite trees); Balogh and Pittel [4] (random regular graphs).

We here study bootstrap percolation on the Erdös-Rényi random graph $G_{n,p}$ (which somewhat surprisingly seems to have been neglected so far in this context), with an initial set $\mathcal{A}(0)$ consisting of a given number *a* vertices chosen at random. This was first studied by Vallier [8]; we here present a simple method that allows us to both simplify the proofs and improve the results.

In order to analyze the bootstrap percolation process on $G_{n,p}$, we change the time scale and consider at each time step the spread of activation from one vertex only. Choose $u_1 \in \mathcal{A}(0)$ and give each of its neighbours a mark; we then say that u_1 is used, and let $\mathcal{Z}(1) := \{u_1\}$ be the set of used vertices at time 1. We continue recursively: At time t + 1, choose a vertex $u_{t+1} \in \mathcal{A}(t) \setminus \mathcal{Z}(t)$ (provided this set is non-empty). We give each neighbour of u_{t+1} a new mark. Let $\Delta \mathcal{A}(t+1)$ be the set of inactive vertices with r marks; these now become active and we let $\mathcal{A}(t+1) = \mathcal{A}(t) \cup \Delta \mathcal{A}(t+1)$ be the set of active vertices at time t. We finally set $\mathcal{Z}(t+1) = \mathcal{Z}(t) \cup \{u_{t+1}\} = \{u_i : i \leq t+1\}$, the set of used vertices.

The process stops when $\mathcal{A}(t) \setminus \mathcal{Z}(t) = \emptyset$, i.e., when all active vertices are used. We denote this time by T;

(1)
$$T := \min\{t \ge 0 : \mathcal{A}(t) \setminus \mathcal{Z}(t) = \emptyset\}.$$

Thus the final infected set is $\mathcal{A}(T) = \mathcal{Z}(T)$, and its size is

(2)
$$A^* := |\mathcal{A}(T)| = |\mathcal{Z}(T)| = T$$

Hence, the set $\mathcal{A}(0)$ percolates if and only if T = n, and $\mathcal{A}(0)$ almost percolates if and only if T = n - o(n).

Since $|\mathcal{Z}(t)| = t$ and $\mathcal{Z}(t) \subseteq \mathcal{A}(t)$ for t = 0, ..., T, we also have, with $A(t) := |\mathcal{A}(t)|$, the number of active vertices at time t,

(3)
$$T = \min\{t \ge 0 : A(t) = t\}.$$

We analyze this process by the standard method of revealing the edges of the graph $G_{n,p}$ only on a need-to-know basis. We thus begin by choosing u_1 as above and then reveal its neighbours; we then find u_2 and reveal its neighbours, and so on. Let, for $i \notin \mathcal{Z}(s)$, $I_i(s)$ be the indicator function that there is an edge between the vertices u_s and i. This is also the indicator that i gets a mark at time s, so if $M_i(t)$ is the number of marks i has at time t, then

(4)
$$M_i(t) = \sum_{s=1}^t I_i(s),$$

at least until *i* is activated (and what happens later does not matter). Note that if $i \notin \mathcal{A}(0)$, then, for every $t \leq T$, $i \in \mathcal{A}(t)$ if and only if $M_i(t) \geq r$.

The crucial feature of this description of the process, which makes the analysis simple, is that the random variables $I_i(s)$ are i.i.d. Be(p). We have defined $I_i(s)$ only for $s \leq T$ and $i \notin \mathcal{Z}(s)$, but it is convenient to add further (redundant) variables so that $I_i(s)$ are defined, and i.i.d., for all $i \in V_n$ and all $s \geq 1$.

Define, for $i \in V_n \setminus \mathcal{A}(0)$,

(5)
$$Y_i := \min\{t : M_i(t) \ge r\}$$

If $Y_i \leq T$, then Y_i is the time vertex *i* becomes active, but if $Y_i > T$, then Y_i never becomes active. Thus, for $t \leq T$,

$$\mathcal{A}(t) = \mathcal{A}(0) \cup \{i \notin \mathcal{A}(0) : Y_i \le t\}.$$

By (4) and (5), each Y_i has a negative binomial distribution NegBin(r, p);

$$\mathbb{P}(Y_i = k) = \mathbb{P}(M_i(k-1) = r-1, I_i(k) = 1) = \binom{k-1}{r-1} p^k (1-p)^{r-k};$$

moreover, these random variables Y_i are i.i.d.

We let, for t = 0, 1, 2, ...,

$$S(t) := |\{i \notin \mathcal{A}(0) : Y_i \le t\}|,$$

so

(6)
$$A(t) = S(t) + A(0) = S(t) + a.$$

By (3), (2) and (6), it suffices to study the stochastic process S(t). Note that S(t) is a sum of n - a i.i.d. processes $\mathbf{1}[t \ge Y_i]$, each of which is 0/1-valued and jumps from 0 to 1 at time Y_i . The fact that S(t), and thus A(t), is a sum of i.i.d. processes makes the analysis easy; in particular, for any given t,

$$S(t) \sim \operatorname{Bin}(n-a, \mathbb{P}(Y_1 \le t)).$$

We have, for any given t_0 ,

$$T \ge t_0 \iff \min_{t < t_0} (A(t) - t) > 0 \iff a + \min_{t < t_0} (S(t) - t) > 0 \iff a > -\min_{t < t_0} (S(t) - t).$$

(Note that this is exact; so far no approximation has been done.)

To find the threshold for (almost) percolation, we thus only have to find the minimum $\min_{t < t_0} (S(t) - t)$ for $t_0 = n$ or t_0 close to n. Standard concentration results show that $S(t) \approx \mathbb{E} S(t)$, where

$$\mathbb{E} S(t) = (n-a) \mathbb{P}(Y_1 \le t) = (n-a) \mathbb{P}(M_1(t) \ge r),$$

and explicit results are easily found.

For notational simplicity we state the result for r = 2 only. In this case, $\mathbb{E} S(t) - t$ has a minimum $1/(2np^2)$ at $t = 1/(np^2)$ (asymptotically), and we obtain the following result.

Theorem 1. Let r = 2, and assume $n^{-1} \ll p = p(n) \ll n^{-1/2}$. Then the threshold for (almost) percolation is

$$a_* := \frac{1}{2np^2}.$$

More precisely, for any fixed $\delta > 0$,

- (i) If $|\mathcal{A}(0)| \le (1-\epsilon)a_*$, then where $A^* \le 2|\mathcal{A}(0)|$.
- (ii) If $|\mathcal{A}(0)| \ge (1+\epsilon)a_*$, then whp $A^* = n o(n)$. If further $np \ge \log n + \log \log n + \omega(n)$ for some $\omega(n) \to \infty$, then whp $A^* = n$, so $\mathcal{A}(0)$ percolates completely.

Moreover, $S(t) - \mathbb{E} S(t)$ converges after normalization to a Gaussian process, and it is easy to refine the results above and obtain very precise information on the width of the critical window (which is of the order $\sqrt{a_*}$); we also obtain a Gaussian limit law for the final size A^* in the subcritical case.

Details will appear.

References

- J. Balogh and B. Bollobás, Bootstrap percolation on the hypercube. Probab. Theory Related Fields 134 (2006), no. 4, 624–648.
- [2] J. Balogh, Y. Peres and G. Pete, Bootstrap percolation on infinite trees and non-amenable groups. Combin. Probab. Comput. 15 (2006), no. 5, 715–730.
- [3] J. Balogh and G. Pete, Random disease on the square grid. Random Structures Algorithms 13 (1998), no. 3-4, 409–422. 60C05
- [4] J. Balogh and B. G. Pittel, Bootstrap percolation on the random regular graph. Random Structures Algorithms 30 (2007), no. 1-2, 257–286.
- [5] B. Bollobás, The Art of Mathematics. Coffee Time in Memphis. Cambridge University Press, New York, 2006.
- [6] R. Cerf and F. Manzo, The threshold regime of finite volume bootstrap percolation. Stochastic Process. Appl. 101 (2002), no. 1, 69–82.
- [7] A. E. Holroyd, Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theory Related Fields 125 (2003), no. 2, 195–224.
- [8] T. Vallier, Random graph models and their applications. Ph. D. thesis, Lund University, 2007.