
Maximal clades in random binary search trees

Svante Janson

A phylogenetic tree, or a full binary tree is a tree where every node has outdegree
0 or 2; nodes with outdegree 0 are called external and nodes with outdegree 2
internal. By eliminating all external nodes, we get a binary tree, and this yields
a bijection between phylogenetic trees with n+ 1 external nodes and binary trees
with n nodes.

The clade of an external node v in a phylogenetic tree is the set of external
nodes that are descendants of the parent of v. (This is called a minimal clade by
[1] and [2].) Note that two clades are either nested or disjoint, and that the set of
maximal clades forms a partition of the set of external nodes. We let F (T ) denote
the number of maximal clades of a phylogenetic tree T . The maximal clades, and
the number of them, were introduced by [4], together with a biological motivation,
and further studied by [3].

Translated to the corresponding binary tree (i.e., the internal nodes), a clade is
thus a node having outdegree at most 1, and a maximal clade is a clade such that
all ancestors have outdegree 2.

We consider a random binary search tree Tn (which corresponds to the Yule–
Harding model of a random phylogenetic tree) and the number of maximal clades
Xn := F (Tn) in it. We consider asymptotics as n→∞.

It was proved by [5] and [3] that

(1) EXn = EF (Tn) = αn+O(1),

where that the mean number of maximal clades EXn ∼ αn, where

(2) α =
1− e−2

4
.

Moreover, [3] found also corresponding results for the variance and higher central
moments:

E(Xn − EXn)2 ∼ 4α2n log n,(3)

and for any fixed integer k ≥ 3,

E(Xn − EXn)k ∼ (−1)k
2k

k − 2
αknk−1.(4)

As a consequence of (3)–(4), the limit distribution of F (Tn) (after centering and
normalization) cannot be found by the method of moments. Nevertheless, [3]
further proved asymptotic normality, where, unusually, the normalizing uses (the
square root of) half the variance:

(5)
Xn − EXn√

2α2n log n

d−→ N(0, 1).

We use probabilistic methods to reprove these theorems, together with some
further results. In particular, we can explain the appearance of half the variance
in (5) as follows:
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Fix a sequence of numbers N = N(n), and say that a clade is small if it has
at most N + 1 elements, and large otherwise. Let XN

n be the number of maximal
small clades, i.e., the small clades that are not contained in any other small clade.
It turns out that a suitable choice of N is about

√
n; we have for example the

following.

Theorem 1. Let N :=
√
n. Then Var(XN

n ) ∼ 2α2n log n and

(6)
XN

n − EXN
n√

VarXN
n

d−→ N(0, 1).

Furthermore, Xn − XN
n = op

(√
VarXN

n

)
and EXn − EXN

n = o
(√

VarXN
n

)
, so

we may replace XN
n by Xn in the numerator of (6). However,

(7) Var(Xn −XN
n ) ∼ Var(XN

n ) ∼ 2α2n log n.

The theorem thus shows that the large clades are rare, and do not contribute
to the asymptotic distribution; however, when they appear, the larges clades give
a large (actually negative) contribution to Xn, and as a result, half the variance of
Xn comes from the large clades. (When there is a large clade, there is less room
for other clades, so Xn tends to be smaller than usually.)

For higher moments, the large clades play a similar, but even more extreme,
role. Note that (for n ≥ 2) with probability 2/n, the root of Tn has outdegree 1,
and then it is the unique maximal clade, and thus Xn = 1. Since EXn = αn+O(1)
by (1), we thus have Xn − EXn = −αn + O(1) with probability 2/n, and this
single exceptional event gives a contribution ∼ (−1)k2αknk−1 to E(Xn − EXn)k,
which explains a fraction (k− 2)/k of the moment (4); in particular, this explains
why the moment is of order nk−1.

For proofs and further details, see [6].
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