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Consider the complete graph Kn with edge costs that are i.i.d. random variables,
with a uniform distribution U(0, 1) (or, alternatively, an exponential distribution
Exp(1)). A well-known problem is to find the minimum (cost) spanning tree T1,
and its cost c(T1). A famous result by Frieze [2] shows that as n→∞, c(T1)
converges in probability to ζ(3). (In both the uniform and exponential cases.)

Suppose now that we want a second spanning tree T2, edge-disjoint from the
first, and that we select it in a greedy fashion by first finding the minimum spanning
tree T1, and then the minimum spanning tree T2 using only the remaining edges.
(I.e., the minimum spanning tree in Kn \ T1, meaning the graph with edge set
E(Kn) \ E(T1).) We then continue and define T3 as the minimum spanning tree
in Kn \ (T1∪T2), and so on. We show that the costs c(T2), c(T3), . . . also converge
in probability to some constants.

Theorem 1. For each k ≥ 1, there exists a constant γk such that, as n→∞,

c(Tk)
p−→ γk (for both uniform and exponential cost distributions).

The result extends easily to other distributions of the edge costs, by standard
arguments, but we consider in here only the uniform and exponential cases.

By Frieze [2], γ1 = ζ(3). The constants γk for larger k are given by some
expressions in the proof, but not in a form that is easily evaluated since they involve
solutions of some non-linear functional equations (which furthermore involve a
parameter). We can show the following bounds, which imply that γk is roughly
2k for large k:

(1) k2 ≤
k∑

i=1

γi ≤ k2 + k, k ≥ 1

and

(2) 2k − 2k1/2 < γk < 2k + 2k1/2, k ≥ 1.

A minor technical problem is that T2 (and T3, . . . ) does not always exist; it
may happen that T1 is a star and then Kn \T1 is disconnected. This happens only
with a small probability, and w.h.p. (with high probability, i.e., with probability
1−o(1) as n→∞), Tk is defined for every fixed k. However, we avoid this problem
completely by modifying the model: we assume that we have a multigraph with
an infinite number of copies of each edge in Kn, and that these have the costs
given by the points in a Poisson process with intensity 1 on [0,∞). (The Poisson
processes for different edges are, of course, independent.) Note that when finding
T1, we only care about the cheapest copy of each edge, and its cost has an Exp(1)
distribution, so the problem for T1 is the same as the original one. However, we
now never run out of edges and we can define Tk for all integers k = 1, 2, 3, . . . .
Asymptotically, the three models are equivalent, and Theorem 1 holds for any of
the models.
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The multigraph model, moreover, is useful in our proofs because of the added
independence.

Frieze [2] also proved that the expectation E c(T1) converges to ζ(3). For the
multigraph model just described, this too extends.

Theorem 2. For the multigraph model, E c(Tk)→ γk for each k ≥ 1 as n→∞.

Remark 3. However, for the simple graph Kn with, say, exponential costs, there
is as said above a small but positive probability that Tk does not exist for k ≥ 2.
Hence, either E c(Tk) is undefined for k ≥ 2, or (better) we define c(Tk) =∞ when
Tk does not exist, and then E c(Tk) =∞ for k ≥ 2 and every n. Hence Theorem 2
does not hold for simple graphs, and the multigraph model is essential for studying
the expectation.

Remark 4. Frieze and Johansson [3] recently considered a related problem, where
instead of choosing spanning trees T1, T2, . . . greedily one by one, they choose k
edge-disjoint spanning trees with minimum total cost. It is easy to see, by small
examples, that selecting k spanning trees greedily one by one does not always
give a set of k edge-disjoint spanning trees with minimum cost, so the problems
are different. We can also show that, at least for k = 2, the two problems also
asymptotically have different answers, in the sense that the limiting values of the
minimum cost (which exist for both problems) are different.

The proofs are, as in many other previous papers on the random minimum
spanning tree problem, based on Kruskal’s algorithm which processes the edges
in order of increasing cost and keeps the ones that join two different components
in the forest obtained so far. (I.e., it keeps the edges that do not form a cycle
together with some previously chosen edges.) The second minimum spanning tree
can then be found by another application of the same algorithm to the remaining
edges, and so on.

The results are proved by considering a random (multi)graph process, where
copies of each edge ij arrive as a Poisson process with intensity 1/n; an edge
arriving at time t has cost t/n. We let G1(t) be the multigraph formed by the
edges that have arrived at time t. We run Kruskal’s algorithm and let F1(t) be
the forest formed by the edges selected up to time t for the minimum spanning
tree T1. We let G2(t) be the multigraph consisting of the edges in G1(t) \ F1(t),
and let F2(t) be the forest formed by the edges selected up to time t by Kruskal’s
algorithm applied to G2(t), and so on. We show, by induction in k, that each
Gk(t) is an example of an inhomogeneous random graph of the type studied in
[1]; results from [1] thus yield results on the (asymptotic) structure of Gk(t), in
particular on the existence and size of a giant component, and these structural
results are used to show the theorems above on the cost c(Tk).
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