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Szemerédi’s regularity lemma

Let G be a graph, with vertex set V . If X and Y are subsets of V ,
let eG (X ,Y ) be the number of edges between X and Y . If U and
W are disjoint subsets of V and ε > 0, we say that (U,W ) is
ε-regular if there exists d ∈ [0, 1] such that∣∣∣∣eG (X ,Y )

|X | · |Y |
− d

∣∣∣∣ ≤ ε
for all X ⊆ U and Y ⊆W such that |X | ≥ ε|U| and |Y | ≥ ε|W |.

Finally, a partition V1, . . . ,Vk of V is a equipartition if∣∣|Vi | − |Vj |
∣∣ ≤ 1 for all i , j .

Theorem (Szemerédi’s regularity lemma - one version)

Given m and ε > 0, there exists M = M(m, ε) such that if G is
any graph with at least M vertices, then for some ` with
m ≤ ` ≤ M, G has an equipartition into ` sets V1, . . . ,V`, such
that all but ε`2 pairs (Vi ,Vj) are ε-regular.



Thus, any graph can be partitioned like this:



Hence, we can approximate a large graph like this:



Hence, we can approximate a large graph like this:



From graphs to functions

Thus large graphs can be approximated by piecewise constant
functions on [0, 1]2

This suggests that symmetric functions [0, 1]2 → [0, 1]
(“graphons”) can be seen as limits of large graphs, and conversely.

Definition (in principle)

A sequence G1,G2, . . . of graphs with |Gn| → ∞ converges to a
graphon W : [0, 1]2 → [0, 1] if there is a sequence of Szemerédi
partitions of Gn such that the corresponding densities, regarded as
functions on [0, 1]2 converge to W .



Subgraph densities

Let G be a graph with a Szemerédi partition V1, . . . ,V`, and edge
densities dij . Let |G | = n; thus each |Vi | ≈ n/`.

Fix i and j and assume that (Vi ,Vj) is ε-regular. Then most (all
but O(ε|Vi |)) of the vertices in Vi have at least (dij − ε)|Vj |
neighbours in Vj .
(Otherwise there would be a large bad set B ⊂ Vi with
e(B,Vj) < (dij − ε)|B| |Vj |, violating the definition of ε-regularity.)
Similarly, most vertices in Vi have at most (dij + ε)|Vj | neighbours
in Vj .



Triangles



Assume that (Vi ,Vj), (Vi ,Vk), (Vj ,Vk) are ε-regular. Then most
vertices in Vi have (dij ± ε)|Vj | neighbours in Vj and (dik ± ε)|Vk |
neighbours in Vk ; moreover, denoting these sets of neighbours by
Uj and Uk , the number of edges between them is

e(Uj ,Uk) = (djk ± ε)|Uj | |Uk | = (dijdikdjk + O(ε))(n/`)2.

This holds for most vertices in Vi , and summing over all vertices
we find that the number of triangles with one vertex in each of
Vi ,Vj ,Vk is

(dijdikdjk + O(ε))(n/`)3.



Summing over all i , j , k , including irregular pairs and cases with
repetitions, we see that the number of triangles in G is

n3

`−3 ∑̀
i ,j ,k=1

dijdikdjk + O(ε) + O(`−1)


Taking the limit as `→∞ and ε→ 0, assuming that dij corresond
to step functions converging to W , we find that the number of
triangles is

n3

∫∫∫
W (x , y)W (x , z)W (y , z) dx dy dz + o(n3).



General subgraph counts

The arguments extend to counts of other subgraphs.

Definition
If F is any fixed graph, with |F | = f , let t(F ,G ) denote the
number of (labelled) copies of F in G , divided by |G |f .

Definition
A sequence of graphs Gn with |Gn| → ∞ converges to a graphon
W if

t(F ,Gn)→ t(F ,W ) :=

∫
[0,1]f

∏
ij∈E(F )

W (xi , xj) dx1 · · · dxf .



Quasirandom graphs

Definition (in principle)

A quasirandom graph looks similar to a random graph where each
edge appears with a fixed probability p.

Definition (with Szemerédi partitions – in principle)

A graph is quasirandom if it has a Szemerédi partition where each
pair (Vi ,Vj) has the same density dij = p.

Definition (with subgraph densities)

A sequence G1,G2, . . . of graphs with |Gn| → ∞ is p-quasirandom
if t(F ,Gn)→ pe(F ) for every fixed graph F .

Definition (with graph limits)

A sequence G1,G2, . . . of graphs with |Gn| → ∞ is p-quasirandom
if Gn → p (the constant graphon W (x , y) = p).
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Random graphs from Szemerédi partitions

To construct a graph with a given Szemerédi partition V1, . . . ,V`

and given densities dij :

Take ` sets of vertices V1, . . . ,V` of equal size. For each pair
(Vi ,Vj), add edges between them at random, with probability dij

for each edge. (Independently. Toss a (biased) coin for each pair
of vetices in Vi × Vj to decide whether to add an edge.)



Random graphs from graphons

Let W : [0, 1]2 → [0, 1] be a graphon. Let n ≥ 1. Gonstruct a
random graph Gn with vertex set {1, . . . , n} as follows:

Construction 1.
Let xi = i/n.
For each pair (i , j) with i < j , add an edge ij with probability
W (xi , xj).

Construction 2.
Let xi be random (i.i.d.) in [0, 1].
For each pair (i , j) with i < j , add an edge ij with probability
W (xi , xj).

Theorem
Gn →W almost surely.
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Random graphs from convergent graph sequences

Suppose that G1,G2, . . . is a convergent sequence of graphs.

For each m, construct a random graph Hmn with |Hmn| = m by
selecting m vertices from Gn at random.

Let n→∞: Then Hmn
d−→ Hm for some random graph Hm with

vertex set {1, . . . ,m}.
These random graphs are consistent, so they can be regarded as
subgraphs of an infinite random graph H∞ with vertex set
{1, 2, . . . }.

Theorem
Graph limits may be described by distributions of infinite random
graphs H∞.
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Graphons from random graphs

Let H∞ be the infinite random graph constructed above. Let

Iij =

{
1, there is an edge ij

0, there is no edge ij .

Then Iij is an exchangeable array of indicator random variables.
(The distribution is invariant under permutations.)



General representation theorem for exchangeable arrays by Aldous
and Hoover =⇒

Iij = f (xi , xj , ξij), i < j ,

for some function f and xi , ξij i.i.d. uniform in [0, 1].

=⇒ Hm is given by the construction above from the graphon

W (x , y) = E f (x , y , ξ).

Theorem

Gn →W .
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Summary

There are strong links between the Szemerédi Regularity Lemma
and graph limits.

There are some direct connections.

In other cases they appear as alternatives:
a proof may be given either by the regularity lemma (involving
combinatorial arguments, and ε→ 0)
or by graph limits (involving graphons and analytic arguments).

In any case, they both tell us that there is order in chaos.
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and graph limits.

There are some direct connections.

In other cases they appear as alternatives:
a proof may be given either by the regularity lemma (involving
combinatorial arguments, and ε→ 0)
or by graph limits (involving graphons and analytic arguments).

In any case, they both tell us that there is order in chaos.



Summary

There are strong links between the Szemerédi Regularity Lemma
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