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Erd6és and graph limits

Erdés made many contributions to graph theory.
Graph limits is not one of them.
But graph limits are a natural continuation of Erdés’ work.

In particular, the work by Erdés and Rényi on random graphs is
one way to (partially) decribe the structure of very large graphs;
the graph limit theory generalizes and extends this.



Graph limits

Quick course: (see e.g. the recent book by Lovész for details)

Some sequences of (unlabelled) graphs G, (with |G,| — o0) are
defined to be convergent.

A set of limit objects is defined, which together with the set of
unlabelled graphs forms a compact metric space.

The limit objects have (non-unique) representations as graphons,
symmetric functions [0, 1]> — [0, 1].
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Graph classes and graph limits

Let Q be a graph class, i.e., a set of (unlabelled) graphs.

Equivalently, Q can be seen as a graph property, i.e. a property
invariant under isomorphisms.

General project: Study 0, the set of graph limits that are limits of
sequences of graphs in Q.

Today only hereditary graph classes. (If G € Q, then H € Q for
every induced subgraph H of G.)



Entropy
We define the entropy of a graphon W, and of the corresponding
graph limit I, by

Ent / / dX dyv

where h is the binary entropy function
h(x) = —xlogy(x) — (1 — x) log,(1 — x).

Note that 0 < Ent(W) < 1.

This is related to the entropy of random graphs, see e.g. Aldous
(1985); it has also previously been used by Chatterjee and
Varadhan (2011) and Chatterjee and Diaconis (2011).



Speed

Let Q be a hereditary graph class, and let
Q,:={GeQ:|G|=n}.

The rate of growth of |Q,| has been studied by Alekseev (1992),
Bollobds and Thomason (1997) and many others. It is known that

Q] = 2007 +o)(3)

for some integer r € {1,2...,00} (the colouring number).



Theorem

Let O be a hereditary class of graphs. Then

|
m logs | Qn| = max Ent(I").



Corollary

|Qn| = 2°(7*) if and only if every graphon W in Q satisfies
W(x,y) € {0,1} a.e. (W is random-free).

Such properties Q are called random-free.



Maximize entropy

Forr=1,2,...,let ; ;= ((i —1)/r,i/r] and let R, be the sets of
graphons W such that

W(x,y) = %, (x,y) € li x I; with i # j;
W(x,y) € {0,1}, (x,y) el; x|

and Ry := {3}. (Thus Ry is the set of random-free graphons.)

For 0 <s < r < oo, let W/, be the graphon in R, thatis 1 on
I; x I; for i < s and 0 for i > s.



Theorem

maxp g Ent(l) =1 — 1 and
10y = 200 e
where r € {1,2...,00} and furthermore

r:sup{t: Wy, € Q for some u < t}

— min {s >1:{(x,y): W(x,y) & {0,1}} is Key1-free for W € Q}

Moreover, every graph limit in O with maximal entropy 1 —1/r
can be represented by a graphon W € R,.

r =1 if and only if Q is random-free, and r = oo if and only if Q
is the class of all graphs.



Random graphs in O

Theorem

Suppose that maXrc g Ent(I) is attained by a unique graph limit

lo. Let G, be a uniformly random (unlabelled or labelled) element
of Q,.

Then G, converges to g in probability as n — oc.



Example: Bipartite graphs

Let Q be the class of bipartite graphs.
It is easy to characterize all graph limits in Q.
There is a unique graph limit with maximum entropy, represented

by the graphon W7, € Ro.

n

Thus the colouring number r =2 and |Q,| = 22(3)+e(r?) (which
can be easily proved directly).

If G, is a uniformly random (labelled or unlabelled) bipartite graph,
then G, — W5, in probability.
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Example: Triangle-free graphs

Let Q be the class of triangle-free graphs.

This class is strictly larger than the class of bipartite graphs. The
set Q of triangle-free graph limits is strictly larger than the set of
bipartite graph limits, but the graph limit represented by Wy, is
still a unique graph limit of maximum entropy.

Thus the colouring number r =2 and |Q,| = 22(5)e(n) (asis
well-known).

If G, is a uniformly random triangle-free graph, then G, — W5 in
probability.
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K-free graphs

This extends to K;-free graphs, for any t > 2. The colouring
number is t — 1 and the unique graph limit of maximum entropy is
represented by W;" , g.

Thus, a uniformly random K;-free graph converges (in probability)
to the graphon W™, .
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Example: String graphs
Let Q be the class of string graphs.

Then |Q,| = 2¢(2)+°(") (Pach and Téth (2006)). Thus the
maximum entropy in Q is % and the colouring number r = 4.

One graph limit in Q with maximum entropy is W,",. However,
this is not unique.

Hence we do not know the limit of a uniformly random string
graph of order n, as n — oc.
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Proofs

Proofs use the graphon version of the weak regularity lemma and
approximation of graphons by step graphons, together with
elementary counting.



