
An epidemic on a random graph with given
vertex degrees

Svante Janson
(joint work with Malwina Luczak and Peter Windridge)

Random Structures & Algorithms, Poznań, 5 August 2013



Epidemics on graphs

Epidemics model (general idea):

1. A set of n individuals. (Today assumed static.)

2. Some individuals are infected.

3. Infected individuals may infect others when they have contact.
Perhaps at random, with some probability.

Thus general setup: the individuals are vertices in a graph; edges
means contacts that can spread the infection.

The graph can be deterministic or random.
(Today assumed static.)

Many (more or less realistic) graph models have been studied.



SIR

Today only models of the type SIR:

Individuals are Susceptible, Infected or Recovered (removed).

Transitions S → I → R.



Reed-Frost model

Example (Reed & Frost (1928))

Start with one infected individual.

An infected individual recovers after one time-step, and infects
every other vertex with a given probability p.

This is equivalent to the process of exploring a component in
G (n, p). (See e.g. Martin-Löf (1998), Hofstadt et al. (2010).)

Thus, if p = c/n, 1 < c <∞, then there is a large outbreak with
probability ρ(c) = o(1), and then the total size is ρ(c)n + op(n);
otherwise the outbreak is small (op(n)). Here 1− ρ = e−cρ.

We can see this as an epidemic on the complete graph, with
infection probabilities p, or as an epidemic on the random graph
G (n, p) with infection probabilities 1.
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Example (Reed & Frost, continuous time)

Start with one infected individual.

An infected individual recovers after a fixed time, say 1.

Until then it infects every other vertex by a Poisson process with a
given intensity λ.

Equivalent to first-passage percolation on G (n, p). (p = 1− e−λ)

Same final size as the discrete version.

Different (but similar) time evolution.
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Branching process approximation

The initial phase of an epidemic can typically be modelled by a
branching process (as in random graph theory). The expected
number of offspring is called the basic reproduction number Ro .

The final phase can typically be approximated by a backward
branching process: Start with a vertex v , consider next all vertices
that would infect v if they became infected, then all vertices that
would infect one of these, and so on. (Same mean number of
offspring R0.)

The probability of a large outbreak equals (asymptotically)
the survival probability of the forward branching process.

The size of a large outbreak (divided by n) equals (asymptotically)
the survival probability of the backward branching process.

Supercritical ⇐⇒ R0 > 1.
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Example

For the Reed–Frost model, with p = c/n, both branching processes
are the same, with Po(c) offspring.



Random recovery time

Let the times until recovery be random i.i.d. with some given
distribution.

Prime example. Exponential distribution, meaning that each
infected individual recovers with a fixed rate, independent of the
past illness. Markov property.

This introduces dependencies between the events of infecting
different individuals. (“A infects B” and “A infects C ” are
positively correlated.) Hence this corresponds to less standard
random graphs.

Forward and backward branching processes different, and in general
with different survival probabilities. (But same offspring mean.)



Time evolution

The time evolution of the epidemic in the Reed-Frost model
follows from results on distances in G (n, p).

Roughly speaking, in this and many other epidemic models, there
are three phases for a large outbreak:

Initial: Exponential growth, during a time Θ(log n), until the number
of infected is Θ(n).

Main: Growth from some εn to almost the final size in time Θ(1).

Final: Exponential dying out, during a time Θ(log n), until there are
no more infections.

(see e.g. Barbour, 1975)



SIR on random graphs with given vertex degrees

We consider from now on a specific model:

The infection is SIR. An infected individual infects each neighbour
with a constant rate β, and recovers with a constant rate ρ.

The graph is a random graph with a given degree sequence (di )
n
1.

(This model has been studied by several authors.)

We consider asymptotics as n→∞. Thus di = d
(n)
i .

Let nk be the number of vertices of degree k . Assume that
nS/n→ αS ∈ (0, 1],

∑
k knS ,k/n→ µS , etc., and nS ,k/nS → pk

(the asymptotic degree distribution for susceptible vertices).

(+ some technical conditions)
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We think of the graph as generated by the configuration model:
vertex i has di half-edges, and a matching of all half-edges is
chosen uniformly at random.

In general, this produces a multigraph, and we really study the
epidemic on this random multigraph.

This is, at least mathematically, interesting in itself. But we also
obtain results for the random simple graph by conditioning on the
multigraph being simple. This requires∑

i

d2
i = O(n)

which implies that P(simple) ≥ c > 0. (Hence the asymptotic
degree distribution (pk) has finite second moment.)

Perhaps not necessary, Bollobás and Riordan (2012) could do
without it for the giant component!
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The basic reproduction number is

R0 = αS ·
β

ρ+ β
·
∑∞

k=0(k − 1)kpk

µ
.



Assume αS = 1, i.e., αI = αR = 0. Assume also µI = µR = 0.
Define

vS(θ) =
∞∑
k=0

pkθ
k

hS(θ) = θv ′(θ)

hX (θ) = µθ2

hR(θ) =
µρ

β
θ(1− θ)

hI (θ) = hX (θ)− hS(θ)− hR(θ)

Let St , It ,Rt be the numbers of susceptible, infected and recovered
individuals at time t.



Theorem

Suppose R0 > 1.

1. There is a unique θ∞ ∈ (0, 1) with hI (θ∞) = 0. hI is strictly
negative on (0, θ∞) and strictly positive on (θ∞, 1).

2. Fix s0 ∈ (vS(θ∞), 1). There is a unique θt : R→ (θ∞, 1) such
that

d

dt
θt = −β θthI (θt)

hX (θt)
, θ0 = v−1S (s0).

θt decreases from 1 to θ∞ on (−∞,∞).

3. Let T0 := inf{t ≥ 0 : St/n ≤ s0}.
Then lim infn→∞ P(T0 <∞) > 0.
If
∑∞

k=1 knI ,k →∞, then P(T0 <∞)→ 1.



4. Let Ît be the unique solution to

d

dt
Ît =

βhI (θt)hS(θt)

hX (θt)
− ρÎt , lim

t→−∞
Ît = 0,

and let R̂t := 1− vS(θt)− Ît .
Conditional on T0 <∞ (a big outbreak),

ST0+t/n
p−→ vS(θt), IT0+t/n

p−→ Ît , RT0+t/n
p−→ R̂t ,

uniformly on (−∞,∞).

Corollary

Conditional on T0 <∞ (big outbreak), the number of susceptibles
that escape infection satisfies

S∞/n
p−→ vS(θ∞).



The equations are equivalent to the “Volz equations”, derived
heuristically by Volz (2008). (See also Miller (2011).)

Similar results have been proved by Bohman and Picollelli (2012)
and Decreusefond, Dhersin, Moyal and Tran (2012).



The function θt is not directly observable, but it is the
(asymptotic) probability that (at time t) a susceptible half-edge
has not been infected by its partner.

Hence a susceptible individual of degree k remains suceptible with
probability θkt , and the proportion remaining healthy is
(asymptotically)

αS

∑
k

pkθ
k
t = αSvS(θk).

as asserted above.

The ratio hI (θt)/hX (θt) in the differential equation above is the
infection pressure, i.e. the probability that a given susceptible
half-edge is paired to an infective half-edge.



Method

We use the standard method of revealing the edges only as they are
needed. Thus we use the following version of the epidemic process:

Initially, all half-edges are free (not paired).

Each free infective half-edge chooses a free half-edge at rate β,
uniformly at random from among all the other free half-edges.
Together the pair form an edge, and are removed from the pool of
free half-edges. If the chosen half-edge belongs to a susceptible
vertex then that vertex becomes infective.

Infective vertices also recover at rate ρ.

The idea is to concentrate on the half-edges rather than the
vertices.
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The observables St , It ,Rt are as before.

We further define Xt as the number of free half-edges at time t,
and XS,t , XI ,t , XR,t as the numbers of free susceptible, infective
and recovered half-edges.

Theorem (cont.)

5. Conditional on T0 <∞ (a big outbreak),

XS ,T0+t/n
p−→ hS(θt), XI ,T0+t/n

p−→ hI (θt),

XR,T0+t/n
p−→ hR(θt), XT0+t/n

p−→ hX (θt),

uniformly on (−∞,∞).

In particular, the infection pressure hI (θt)/hX (θt) is the limit of
the proportion XI ,T0+t/XT0+t of free half-edges that are infective.
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Proof

The idea is to use martingale arguments (Doob’s inequality) to
show convergence of the stochastic processes to deterministic
functions.



It simplifies to first make a (random) time change:

1. The equations simplify.

2. The martingale argument works best on finite intervals. The
time change compresses (−∞,∞) to a finite interval, which
nicely takes vare of the initial and final stages.

In real time, a free susceptible half-edge is infected with rate
βXI ,t/(Xt − 1).

In the time-changed version, we multiply both infection and
recovery rates by the inverse of this. Thus

I each free half-edge is “infected” with rate 1, and is then no
longer free (only susceptible half-edges become infected)

I each infected vertex recovers with intensity

ρ

β

Xt − 1

XI ,t
.

Stop when XI ,t = 0. Still a Markov process.
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Time-changed version

A free susceptible half-edge is infected with rate 1, and lives thus
an exponential Exp(1) time.

A susceptible vertex of degree k is infected with rate k , and lives a
time Exp(1/k).

By the law of large numbers (Glivenko-Cantelli), there are
≈ nS ,ke−kτ left at time τ . Thus, uniformly in τ ,

S ′τ/n
p−→
∑
k

pke−kτ = vS(e−τ )

As in theorem, with θt = e−τ(t).



Other quantities are a little more complicated, so we use
martingales: The argument above says (with S ′τ (k) the number of
susceptible vertices of degree k):

dS ′τ (k) = −kS ′τ (k) + dMτ ,

where Mτ is a martingale. The quadratic variation is easily
estimated and Doob’s inequality shows supτ |Mτ |/n

p−→ 0. Hence,
as said above,

sup
τ
|S ′τ (k)− S ′0(k)e−τ | p−→ 0

Similarly,

dX ′τ = −2βX ′I ,τ ·
X ′τ − 1

βX ′I ,τ
dτ + dMX ,τ = −2(X ′τ − 1)dτ + dMX,τ

and

sup
τ≤τ1
|X ′τ/n − hX (e−τ )| = sup

τ≤τ1
|X ′τ/n − µe−2τ | p−→ 0.
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Similarly,

dX ′R,τ =

(
−βX ′I ,τ

(
X ′R,τ

X ′τ − 1

)
+ ρX ′I ,τ

)(
X ′τ − 1

βX ′I ,τ

)
dτ + dMR,τ

= −X ′R,τdτ + ρβ−1(X ′τ − 1)dτ + dMR,τ

and, after some calculations,

sup
τ≤τ1
|X ′R,τ/n − hR(e−τ )| p−→ 0.

And so on . . .



Inverting the time-change

Let

Aτ =

∫ τ

0

1

β

(
X ′σ − 1

X ′I ,σ

)
dσ

and let τ(t) be the inverse function, so Aτ(t) = t for t ≥ 0.




