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Fringe subtrees

A fringe subtree in a rooted tree T is a subtree consisting of a
node v and all its descendents. We denote this tree by Tv .

The random fringe subtree T∗ is the random rooted tree obtained
by taking the subtree Tv at a uniformly random node v in T , see
Aldous (1991).



Subtree counts

Let T be the set of all finite rooted ordered trees. Let, for rooted
trees T ,T ′ ∈ T,

nT ′(T ) :=
∣∣{v ∈ T : Tv = T ′}

∣∣,
i.e., the number of subtrees of T that are equal (isomorphic) to
T ′. Then the distribution of T∗ is given by

P(T∗ = T ′) = nT ′(T )/|T |, T ′ ∈ T.

Thus, to study the distribution of T∗ is equivalent to studying the
numbers nT ′(T ).



Additive functionals

Let f be a functional of rooted trees, i.e., a function f : T→ R,
and for a tree T ∈ T consider the sum

F (T ) = F (T ; f ) :=
∑
v∈T

f (Tv ).

Thus,
F (T )/|T | = E f (T∗).

One important example of this is to take f (T ) = 1{T = T ′}, the
indicator function that T equals some given tree T ′ ∈ T; then
F (T ) = nT ′(T ). Conversely, for any f ,

F (T ) =
∑
T ′∈T

f (T ′)nT ′(T );

hence any F (T ) can be written as a linear combination of the
subtree counts nT ′(T ), so the two points of views are equivalent.



Functionals F of this type are called additive functionals. The
definition above can also be written recusively as

F (T ) = f (T ) +
d∑

i=1

F (Ti ),

where T1, . . . ,Td are the branches (i.e., the subtrees rooted at the
children of the root) of T .

f (T ) is often called a toll function.



In our case, T is a random tree, and then F (T ) is a random
variable. In particular, nT ′(T ) is a random variable for each
T ′ ∈ T, and thus the distribution of T∗, is a random probability
distribution on T, with

P
(
T∗ = T ′ | T

)
= nT ′(T )/|T |

Similarly
F (T )/|T | = E

(
f (T∗) | T

)
.



Galton-Watson trees

The random trees that we consider are conditioned Galton–Watson
trees. (Related results for some other random trees are given by
Fill and Kapur (m-ary search trees under different models) and
Holmgren and Janson (random binary search trees and random
recursive trees).)

The Galton–Watson trees are defined using an offspring
distribution ξ and we assume that E ξ = 1 and σ2 := Var ξ is finite
(and non-zero). Let pk := P(ξ = k).



Law of large numbers

Theorem (Aldous, et al.)

Let Tn be a conditioned Galton–Watson tree with n nodes, defined
by an offspring distribution ξ with E ξ = 1, and let T be the
corresponding unconditioned Galton–Watson tree. Then, as
n→∞: For every fixed tree T ,

nT (Tn)

n
= P(Tn,∗ = T | Tn)

p−→ P(T = T ).

Equivalently, for any bounded functional f on T,

F (Tn)

n
= E f

(
Tn,∗ | Tn

) p−→ E f (T ).



A central limit theorem

Theorem
Let Tn be a conditioned Galton–Watson tree of order n with
offspring distribution ξ, where E ξ = 1 and 0 < σ2 := Var ξ <∞,
and let T be the corresponding unconditioned Galton–Watson tree.
Suppose that f : T→ R is a functional of rooted trees such that
E |f (T )| <∞, and let µ := E f (T ).
(i) If E f (Tn)→ 0 as n→∞, then

EF (Tn) = nµ+ o
(√

n
)
.



Theorem, cont.

(ii) If
E f (Tn)2 → 0

as n→∞, and
∞∑
n=1

√
E(f (Tn)2)

n
<∞,

then
Var F (Tn) = nγ2 + o(n)

where

γ2 := 2E
(

f (T )
(
F (T )− |T |µ

))
− Var f (T )− µ2/σ2

is finite; moreover,

F (Tn)− nµ√
n

d−→ N(0, γ2).



Remarks

Special cases of the theorem have been proved before, by various
methods. A simple example is the number of leaves in Tn, shown
to be normal by Kolchin (1986).
Wagner (2012) considered random labelled trees (the case
ξ ∼ Po(1)) and showed the result above (and convergence of all
moments) under stronger hypotheses on f .

Joint convergence for several different F (each satisfying the
conditions in the theorem) follows immediately by the
Cramér–Wold device. For example:



Corollary

The subtree counts nT (Tn), T ∈ T, are asymptotically jointly
normal. More precisely, let πT := P(T = T ),

γT ,T := πT −
(
2|T | − 1 + σ−2

)
π2T ,

and, for T1 6= T2,

γT1,T2 := nT2(T1)πT1 + nT1(T2)πT2 −
(
|T1|+ |T2| − 1 + σ−2

)
πT1πT2 .

Then, for any trees T ,T1,T2 ∈ T,

E nT (Tn) = nπT + o
(√

n
)
,

Cov
(
nT1(Tn), nT2(Tn)

)
= nγT1,T2 + o(n),

nT (Tn)− nπT√
n

d−→ ZT ,

jointly for all T ∈ T, where ZT are jointly normal with mean
EZT = 0 and covariances Cov

(
ZT1 ,ZT2

)
= γT1,T2 .



The conditions on f say that f (T ) is (on the average, at least)
decreasing as |T | → ∞, but a rather slow decrease is sufficient; for
example, the theorem applies when f (T ) = 1/ log2 |T |.

It is in general not enough to assume that f is a bounded
functional. However, the following holds.

Theorem
The central limit theorem extends to all bounded functionals f
that are local, i.e. depend only on the first M generations of T for
some fixed M.



Remark

For f (T ) that grow with the size |T |, we cannot expect the results
to hold. See Fill and Kapur (2004) for the case of binary trees.
They show that for f (T ) = log |T |, F (Tn) is asymptotically normal,
but with a variance of the order n log n. And if f (T ) = |T |α for
some α > 0, then the variance is of order n1+2α, and F (Tn) has,
after normalization, a non-normal limiting distribution.



Remark

For the m-ary search tree (2 ≤ m ≤ 26) and random recursive tree
a similar theorem holds, but there f (T ) may grow almost as
|T |1/2, see Hwang and Neininger (2002) (binary search tree, f
depends on |T | only), Fill and Kapur (2005) (m-ary search tree, f
depends on |T | only), Holmgren and Janson (AofA 2014) (binary
search tree and random recursive tree, general f ). A reason for this
difference is that for a conditioned Galton–Watson tree, the limit
distribution of the size of the fringe subtree, which is the
distribution of |T |, decays rather slowly, with P(|T | = n) � n−3/2.
while the corresponding limit distribution for fringe subtrees in a
binary search tree or random recursive tree decays somewhat
faster, as n−2.



Problem

The asymptotic variance γ2 equals 0 in two trivial cases:
(i) f (T ) = F (T ) = F (Tn) = 0 a.s.;
(ii) {k : pk > 0} = {0, r} for some r > 1 and f (T ) = a1{|T | = 1}
for some real a; then F (Tn) = a(n − (n − 1)/r) is deterministic.
(The tree is r -ary and F is a times the number of leaves.)
We can show that if f has finite support, then γ2 > 0 except in
these trivial cases. For general f , we do not know whether γ2 = 0
is possible except in these and related trivial cases.

Is γ2 = 0 possible except when F (Tn) is deterministic for every n?



Examples

Example

f (T ) = 1{|T | = 1}. Then F (T ) is the number of leaves in T . We
have E f (T ) = P(|T | = 1) = P(ξ = 0) = p0.
The theorem yields asymptotic normality with

γ2 = 2p0(1− p0)− p0(1− p0)− p2
0/σ

2 = p0 − (1 + σ−2)p2
0 .

The asymptotic normality in this case (and a local limit theorem)
was proved by Kolchin (1986).



Example

Let nr (T ) be the number of nodes of outdegree r . Then
nr (T ) = F (T ) with f (T ) = 1 if the root of T has degree r , and
f (T ) = 0 otherwise. Asymptotic normality of nr (Tn) too was
proved by Kolchin (1986), see also Janson (2001) (joint
convergence and moment convergence, assuming at least
E ξ3 <∞), Minami (2005) and Drmota’s book (2009) (both
assuming an exponential moment) for different proofs. Similarly,
we obtain joint convergence for different r . (It seems that joint
convergence has not been proved before without assuming at least
E ξ3 <∞.)
In this example, f does not decrease and the main theorm does not
apply, but the version for bounded local f does.



Nevertheless, this result is a bit disappointing, since we do not
obtain the Kolchin’s explicit formula

γ2r = pr (1− pr )− (r − 1)2p2
r /σ

2

for the variance. The theorem shows existence of γ2 but the
formula given by the proof is rather involved, and we do not know
any way to derive the explicit value from it.
(In this example, a special argument works.)



Example

A node in a (rooted) tree is said to be protected if it is neither a
leaf nor the parent of a leaf. Convergence in probability of the
fraction of protected nodes is proved for general conditioned
Galton–Watson trees by Devroye and Janson (2013).
We can extend this to asymptotic normality. We define
f (T ) := 1{the root of T is protected}, and then F (T ) is the
number of protected nodes in T . Again, the version for bounded
and local f applies.
The asymptotic mean µ = E f (T ) is easily calculated, see Devroye
and Janson (2013).
However, we do not see how to find an explicit value of γ2.



Example

Wagner (2012) studied the number s(T ) of arbitrary subtrees (not
necessarily fringe subtrees) of the tree T , and the number s1(T ) of
such subtrees that contain the root.
He noted that if T has branches T1, . . . ,Td , then
s1(T ) =

∏d
i=1(1 + s1(Ti )) and thus

log
(
1 + s1(T )

)
= log

(
1 + s1(T )−1

)
+

d∑
i=1

log
(
1 + s1(Ti )

)
,

so log
(
1 + s1(T )

)
is an additive functional with toll function

f (T ) = log
(
1 + s1(T )−1

)
. He used this to show asymptotic

normality of log s1(Tn) and log s(Tn) for for the case of uniform
random labelled trees.
We can generalize this to arbitrary conditioned Galton–Watson
trees with E ξ = 1 and E ξ2 <∞.



Sketch of proofs

Let ξ1, ξ2, . . . be a sequence of independent copies of ξ, and let

Sn :=
n∑

i=1

ξi .



A tree is uniquely described by its degree sequence (d1, . . . , dn).
We may thus define the functional f also on finite nonnegative
integer sequences (d1, . . . , dn), n ≥ 1, by

f (d1, . . . , dn) :=

{
f (T ), (d1, . . . , dn) is the degree sequence of a tree T ,

0, otherwise.

If T has degree sequence (d1, . . . , dn), and its nodes are numbered
in depth-first order, then the subtree Tvi has degree sequence
(di , di+1, . . . , di+k−1), where k ≤ n − i + 1 is the unique index
such that (di , . . . , di+k−1) is a degree sequence of a tree. Thus,

F (T ) =
∑

1≤i≤j≤n
f (di , . . . , dj) =

n∑
k=1

n−k+1∑
i=1

f (di , . . . , di+k−1).

Moreover, if we regard (d1, . . . , dn) as a cyclic sequence and define
dn+i := di , also

F (T ) =
n∑

k=1

n∑
i=1

f (di , . . . , di+k−1).



It well-known that up to a cyclic shift, the degree sequence
(d1, . . . , dn) of the conditioned Galton–Watson tree Tn has the
same distribution as

(
(ξ1, . . . , ξn) | Sn = n − 1

)
. Since the final

sum above is invariant under cyclic shifts of (d1, . . . , dn), it follows
that

F (Tn)
d
=

(
n∑

k=1

n∑
i=1

f (ξi , . . . , ξi+k−1 mod n)
∣∣∣ Sn = n − 1

)
, (*)

where j mod n denotes the index in {1, . . . , n} that is congruent to
j modulo n.
The proofs are based on this representation.

This eliminates the combinatorics, and we are left with pure
probability theory!



Expectations

We calculate the expectation EF (Tn) using (*), which converts
this into a problem on expectations of functionals of a sequence of
i.i.d. variables conditioned on their sum. (Results of this type have
been studied before under various conditions.) By (*) and
symmetry,

EF (Tn) = n
n∑

k=1

E
(
f (ξ1, . . . , ξk) | Sn = n − 1

)
.



Let fk(T ) := f (T ) · 1{|T | = k}, and Fk the corresponding sum.

Lemma
If 1 ≤ k ≤ n, then

EFk(Tn) = n
P(Sn−k = n − k)

P(Sn = n − 1)
E fk(T ).

The following estimates are shown using the local limit theorem
and the methods used to prove it.

Lemma
Uniformly for all k with 1 ≤ k ≤ n/2, as n→∞,

P(Sn−k = n − k)

P(Sn = n − 1)
= 1 + O

(
k

n

)
+ o
(
n−1/2

)
.

If n/2 < k ≤ n, then

P(Sn−k = n − k)

P(Sn = n − 1)
= O

(
n1/2

(n − k + 1)1/2

)
.



Variances and covariances

The arguments for variances and covariances are simila but more
complicated. (More care is required since there typically is
important cancellation between different terms.)
We also show a uniform bound valid for all n.

Theorem
For any functional f : T→ R,

Var
(
F (Tn)

)1/2 ≤ C1n1/2

(
sup
k

√
E f (Tk)2 +

∞∑
k=1

√
E f (Tk)2

k

)
,

with C1 independent of f .

This bound is used in truncation arguments.



Asymptotic normality

We first consider functionals f with finite support. We use the
representation (*), where now it suffices to sum over k ≤ m for
some m <∞. We define

g(x1, . . . , xm) :=
m∑

k=1

f (x1, . . . , xk) =
m∑

k=1

fk(x1, . . . , xk).

Then (*) can be written (assuming n ≥ m)

F (Tn)
d
=

(
n∑

i=1

g(ξi , . . . , ξi+m−1 mod n)
∣∣∣ Sn = n − 1

)
.

Asymptotic normality now follows by a method by Le Cam (1958)
and Holst (1981).

For general f we use truncations.



THE REST IS SILENCE


