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Graphs

A graph is a set of nodes (or vertices) together with edges (or
links), where each edge connects two nodes. Sometimes the nodes
are directed from one node to the other, but for simplicity we will
ignore that possibility today.
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Random graphs

A random graph is a graph where nodes or edges or both are
created by some random procedure.
First example: (classical random graphs studied by Erdős and
Rényi and many others from 1959 and until today – often called
Erdős–Rényi graphs)

Fix two (large) numbers n (number of nodes) and m (number of
edges). Number the nodes 1, . . . , n. Draw two nodes at random
and join them by an edge. Repeat m times. Denoted G (n,m).

A variant: Fix n (number of nodes) and a probability p. For each
pair of nodes, make a random choice and connect the nodes by an
edge with probability p. (Toss a biased coin, throw dice, get a
random number, or use some other random procedure.) Denoted
G (n, p).
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Why?

Some reasons why a pure mathematician (like me) might want to
study random graphs:

I Random graphs provide many interesting problems in
probabilistic combinatorics.
There are many nice theorems with results that are easy to
state, and sometimes surprising. Some of them are easy to
prove, while others are quite difficult. Many different methods
from probability theory or combinatorics are used, and there is
plenty of opportunity to develop new methods.

I Some colleagues claim that they are useful for applications.
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Some reasons why an applied mathematician might want to study
random graphs:

I Graphs are used to describe possible infection routes for an
infectious disease. Typically, the graph is not known in detail
(and even if it is, it will be different tomorrow), and a suitable
random graph may be used as a model.

I Graphs and random graphs are used to describe the structure
of the Internet. (In several different ways.) Again a suitable
random model may be useful.

I Graphs are used to describe a lot of things, for example
references between scientific papers, collaborations (joint
publications) between scientists, metabolic reactions in E. coli,
interactions between proteins in yeast, telephone calls in a
given day, . . . A suitable random model may be useful.
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I We may study a random graph in order to compare its
properties with known data from a real graph.
Perhaps in order to adapt the parameters.

I If a simple random model reproduces some interesting
properties of a graph, that is a strong warning that we should
not give too much significance to those features and waste
time inventing complicated explanations for them.

I Conversely, if a random graph model fails to reproduce some
properties, this shows that there are other reasons behind
these properties, and it is meaningful to study them further.

I If we believe in our model, we can use it to predict e.g. the
spread of an epidemic.

Back to theory!
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Node degrees

The degree of a node is the number of links connecting the node
to other nodes.
The classical Erdős–Rényi random graphs have node degrees that
are random, but with a rather small random dispersion and very
small probability of having a degree that is much larger than the
average. (The distribution is Binomial or Hypergeometric, and
asymptotically Poisson.)
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Small subgraphs

Let H be a fixed graph, for example K3. Let Xn be the number of
copies of H as subgraphs of G (n, p).
Let H have vH vertices and eH edges, and let dH = eH/vH .

EXn ∼ cnvH peH

Thus EXn →∞ ⇐⇒ p � n−vH/eH = n−1/dH .

If dF ≤ dH for all subgraphs F ⊂ H (H is balanced), this is also
necessary and sufficient for P(Xn > 0)→ 1. (Xn > 0 w.h.p.)
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An unbalanced graph. dH = 7/5 = 1.4, dF = 6/4 = 1.5.
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Theorem
(A typical threshold result.)
Let mH = max{dF : F ⊆ H}. Then
XH > 0 w.h.p. ⇐⇒ p � n−1/mH .
XH = 0 w.h.p. ⇐⇒ p � n−1/mH .

Theorem (Rucinski (1988))

If p � n−1/mH and n2(1− p)→∞, then XH is asymptotically
normal.

Theorem
If dH > dF for all F ⊂ H (H is strictly balanced), and

p ∼ cn−1/dH , then XH
d−→ Po(λ) for some λ > 0.
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Proof.

XH =
∑
α

Iα

where α are the copies of H in the complete graph Kn.
The indicators are weakly dependent.
Etc.
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Components

A component in a graph is a connected part of the graph.
Example: w
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This graph has 4 components.
The graph is connected if there is only one component.
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A typical case is that there is a giant component containing a large
part of all nodes, together with many very small components with
only one or a few nodes each.

Another case, typical for very sparse graphs, is that there are many
small components but no really big one.

Svante Janson Random Graphs



Introduction
Graph properties

Other random graph models

Degrees
Small subgraphs
Components
Distances

This is often interesting in applications. For example, in
epidemiology, a component may represent the set of people that
will become ill, if one vertex is infected from the outside. Hence a
graph with a large component is likely to give large epidemics, but
a graph with only small components is safer.
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Theorem (Erdős and Rényi)

A classical Erdős–Rényi random graph G (n,m) with n nodes and
m edges has a giant component if m > n/2 but not otherwise.

More formally: If n→∞ and m ∼ cn for some constant c , and C1

is the largest component of the random graph, then

|C1|
n

p−→

{
0 if c ≤ 1/2,

ρ(2c) > 0 if c > 1/2.

If c < 1/2, then |C1| = Op(log n).
The same holds for G (n, p) with p ∼ c ′/n, with c ′ = 2c so the
threshold is c ′ = 1, i.e. p = 1/n.
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Theorem (Erdős and Rényi)

A classical Erdős–Rényi random graph G (n,m) with n nodes and
m edges is connected if m > n log n/2 but not otherwise.

More precisely: If n→∞ and m = n log n/2 + cn/2 + o(n) for
some constant c, then

P(connected)→ e−e
−c
.

The number of isolated nodes is asymptotically Po(e−c).

The same holds for G (n, p) with p = (log n + c + o(1))/n.
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Branching processes

One useful technique to study Erdős–Rényi graphs and many other
random graph models is to start at some node, find first its
neighbours, then their neighbours, and so on, until an entire
component has been explored.
For some models (for example the Erdős–Rényi graphs), the
number of new nodes found each time are (asymptotically)
independent and with the same distribution, so this yields a
branching process, more precisely a Galton–Watson process, where
each individual gets a random number of children, and these
numbers are i.i.d.

Theorem
A Galton–Watson process has a positive probability of surviving for
ever if and only if the expected number of children is > 1.
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Branching processes

For an Erdős–Rényi graph G (n, p) the expected number of
neigbours is np, so the branching process approximation yields the
condition c = np > 1.
It follows also that ρ(c) is the survival probability in a
Galton–Watson process with offspring distribution Po(c), which is
given by

1− ρ = e−cρ

In some other random graph models, we obtain instead a
multi-type branching process where individuals may be of different
types, with different offspring distributions. (Typically an infinite
number of types are needed.)
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Susceptibility

The susceptibility or mean cluster size χ(G ) is the expected size of
the component containing a random node. Equivalently, it is n
times the probability that two random nodes lie in the same
component (and thus may be connected by a path in the graph).
If the components are C1,C2, . . . , then

χ(G ) =

∑
i |Ci |2

n
.

Theorem
For G (n, p), as n→∞:

χ(G (n, p)) ∼p

{
1

1−np , 1− np � n−1/3

nρ(np)2, np − 1� n−1/3.

¡3-¿
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Distances and diameter

Given that two nodes are in the same component, we may ask for
the distance between them, i.e., the shortest path between them in
the graph. The maximum distance is the diameter. The average
distance between two random nodes is often at least as interesting.

In many graphs, the diameter and average distance are of the order
log n, and thus quite small even when the number n of nodes is
large. This phenomenon is often called Small Worlds.
It says, essentially, that the number of vertices within distance x
grows exponentially. (Roughly the same as Expander graphs.)
Example: The giant component of G (n, p) with p = c/n, c > 1.
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Other random graphs

The classical Erdős–Rényi random graphs have node degrees that
are random, but with a rather small random dispersion and very
small probability of having a degree that is much larger than the
average. (The distribution is Binomial or Hypergeometric, and
asymptotically Poisson, with an exponentially decreasing tail..)
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Power laws

Many graphs from “reality” seem to have node degrees that are
distributed according to a power law, i.e., there are constants γ
and C1 such that

number of nodes with degree k ≈ C1k−γ

or, which is roughly equivalent, with another constant C2,

number of nodes with degree at least k ≈ C2k−(γ−1).

(Since the graphs are finite (although large), this can of course
hold only in some (large) range and not for all k.)
Graphs with a power law are often called scale-free.
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The degree of a random node has (asymptotically) finite mean
⇐⇒ γ > 2.

The degree of a random node has (asymptotically) finite variance
⇐⇒ γ > 3.
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It has during the last decade been popular to study large graphs
“in real life” and find such power laws for them, often with a value
of γ between 2 and 3.

As always when something becomes popular, it is easy to
overinterpret data, and see power laws also when the evidence
really is weak. (Seek and ye shall find.)
I’m not an expert on any example, but I think that one should be
suspicious.
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Random graph models

A classical (Erdős–Rényi) random graph is thus too homogeneous
to be a good model in many applications. (In others it is
excellent.)

Many other random graph models have been proposed and
studied, especially the last 10 years, often with power laws for the
node degrees.
This has given new input and new life to the theory of random
graph, and has stimulated the mathematical development.
(Independently of whether the models are good models for
anything or not.)
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Some proposed random graph models

1. (Inequality depends on other properties.)
Fix n (number of nodes). Give each node i a number ai which we
call activity. Let A =

∑n
i=1 ai be the sum of all activities. For each

pair i , j of nodes, make a random choice and join them by an edge
ij with probability pij =

aiaj
A .

(Chung and Lu (2002), and several others.)

I If we choose all activities ai equal, say c , we get a classical
random graph G (n, p) with p = c/n.

I If we choose ai according to a power law, we get
(asymptotically) the same power law for the degrees.

I In general: the degrees of most nodes are close to their
activities, so by choosing the activities, we can obtain almost
any desired distribution of the node degrees.
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Example. Let ai be proportional to
√

n/
√

i ; this yields pij ≈ c/
√

ij
for some constant c > 0. In this case, the node degrees follow a
power law with exponent γ = 3.

Theorem
With high probability, there exist a giant component if
1
A

∑n
i=1 a2i > 1, but not otherwise.

Example. Power law with γ ≤ 3 (as in the example above): since
the harmonic series diverges, there is always a giant component
even if many edges are removed. (Good for communication
network. Bad for epidemics.)
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Proof.
Branching process approximation, with the links to the neighbours
as individuals in the branching process.
The expected number of children of a link is

∑
i

ai∑
j aj

ai =

∑
i a2i∑
i ai

.
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Variants

I Determine the probabilities pij by some other formula.
Example 2b below is the case pij = c/max(i , j). Bollobás,
Janson and Riordan (2006) have studied the case
pij = κ(i/n, j/n)/n for a given function κ on [0, 1]2 (and more
generally). (“Inhomogeneous random graph”)

Theorem (Bollobás, Janson and Riordan)

This random graph has a giant component if and only if the
integral operator with kernel κ has norm on L2[0, 1] (or,
equivalently, spectral radius) greater than 1.
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I Fix the node degrees as a given sequence d1, . . . , dn, and take
a random graph, uniformly among all possible graphs with
these degrees.
(“Configuration model”. Bender and Canfield (1978),
Bollobás (1985), Molloy and Reed (1995, 1998), and others.)

Theorem (Molloy and Reed)

The random graph with given node degrees d1, d2, . . . , dn has a
giant component if and only if

∑
i di (di − 2) > 0.
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Proof.
Branching process approximation.
The expected number of children of a link is∑

i

di∑
j dj

(di − 1) =

∑
i di (di − 1)∑

i di

and ∑
i di (di − 1)∑

i di
> 1 ⇐⇒

∑
i

di (di − 2) > 0.
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More examples: (Inequality depends on who is first.)

Let c be a constant.

2a Add new nodes one by one. After adding a node, add c edges
connecting it to c randomly chosen old nodes. (c must be an
integer.)

2b Add new nodes one by one. If there already are n nodes, make
a random choice for each old node and connect it to the new
node with probability c/n. (c can be any positive real
number.)

Theorem
In this case, there will be a giant component if c > 1/4, but not
otherwise.
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2c Add new node one by one. Each time, add with probability c
also a new edge, with two endpoints chosen at random among
all nodes (old and new). (c must be less than 1.) Known as
the CHKNS model, after Callaway, Hopcroft, Kleinberg,
Newman and Strogatz.

Theorem
For the CHKNS model, there is a giant component if c > 1/8, but
not otherwise.
More precisely, if c = 1

8 + ε, the proportion of the nodes belonging
to the giant component is (asymptotically)

exp
(
− π

2
√

2
ε−1/2 + O(log ε)

)
.

These random graphs do not have power laws for the degrees.
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More examples: (Inequality depends on chance, and “For
whosoever hath, to him shall be given”.)

3a Add nodes one by one. Join every node by an edge to one old
node; this node is chosen with probability proportional to the
number of edges that node already has.

3b (More generally.) Let c be a positive integer. Add nodes one
by one. Join every new node by c edges to c old nodes; these
nodes are chosen with probabilities proportional to the
number of edges that the nodes already have.

This model is called preferential attachment, or the
Barabási–Albert model.
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Theorem
In the Barabási–Albert model, the node degrees have a power law
distribution with exponent 3.

Minor variations of the attachment probabilities yield power laws
with other exponents.

Theorem
Let a > −1 be fixed and let the probability of attaching a new edge
to an old node of degree k be proportional to k + a. Then the
node degrees have a power law distribution with exponent 3 + a.
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Theorem (Oliveira and Spencer)

Let α > 1 be fixed and let the probability of attaching a new edge
to an old node of degree k be proportional to kα. Then only a
finite number of nodes will ever have degrees larger than
1/(α− 1), so the proportion of such vertices tends to 0.
If α > 2, then moreover, after some random time, all new nodes
will attach to the same node.
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Stochastic processes

Another useful tool is to introduce a time parameter and study
suitable stochastic processes that describe, for example, the
exploration of the successive neighbourhoods of a vertex.

Standard theorems about convergence of a stochastic process to a
deterministic function, or to a Gaussian process, then can be
applied.

Example: The existence and size of a giant component in a
random graph with given vertex degrees.
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