
Branching processes and random trees

Svante Janson

Modern perspectives of branching in probability
Münster, 27 September, 2017



Simply generated trees

Trees are rooted and ordered (a.k.a. plane).

w = (wk)k≥0 is a fixed weight sequence with wk ≥ 0.

The weight of a finite tree T is

w(T ) :=
∏
v∈T

wd+(v),

where d+(v) is the outdegree of v .

Trees with such weights are called simply generated trees and were
introduced by Meir and Moon (1978).

We let Tn be the random simply generated tree obtained by
picking a tree with n nodes at random with probability proportional
to its weight.



Galton–Watson trees

Let
∑∞

k=0 wk = 1, so (wk)∞1 is a probability distribution on
{0, 1, 2, . . . } (a probability weight sequence).

Let ξ be a random variable with P(ξ = k) = wk .

Then the random tree Tn = the conditioned Galton–Watson tree
with offspring distribution ξ.

(The random Galton–Watson tree defined by ξ conditioned on
having exactly n vertices.)



Many kinds of random trees occuring in various applications can
be seen as simply generated random trees and conditioned
Galton–Watson trees.

Example wk = 1 yields uniformly random ordered trees (plane
trees).

Also wk = 2−k−1, a Geometric distribution Ge(1/2)

Example wk = 1/k! yields uniformly random labelled trees.

Also wk = e−1/k!, a Poisson distribution Po(1).

Example w0 = 1, w1 = 2, w2 = 1, wk = 0 for k ≥ 3 yields
uniformly random binary trees.

Also wk =
(2
k

)
1
4 , a Binary distribution Bi(2, 1/2).



Equivalent weights

Let a, b > 0 and change wk to

w̃k := abkwk .

Then the distribution of Tn is not changed.

In other words, the new weight sequence (w̃k) defines the same
simply generated random trees Tn as (wk).

We say that weight sequence (wk) and (w̃k) are equivalent.



For many (wk) there exists an equivalent probability weight
sequence; in this case Tn can thus be seen as a conditioned
Galton–Watson tree.
(Not if grows wk grows too rapidly, such as k!.)

Moreover, in many cases this can be done such that the resulting
probability distribution has mean 1. In such cases it thus suffices
to consider the case of a probability weight sequence with mean
E ξ = 1; then Tn is a conditional critical Galton–Watson tree.

Thus, simply generated trees and (critical) conditioned
Galton–Watson trees are almost the same

– BUT ONLY ALMOST !
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Three types

Three types:

I. Critical Galton–Watson tree.

II. Subcritical Galton–Watson tree; not equivalent to any critical.
Example: (k + 1)−3/ζ(3).

III. Simply generated tree, not equivalent to any Galton–Watson
tree.
Example: wk = k!.



Critical Galton–Watson trees form a nice and natural setting, with
many known results (possibly with extra assumptions).

Some of these results can be extended to the general case,
including cases II and III.



A theorem

Theorem

Let w = (wk)k≥0 be any weight sequence with w0 > 0 and wk > 0
for some k ≥ 2.

Then Tn
d−→ T̂ as n→∞, where T̂ is an infinite modified

Galton–Watson tree (see below).

The limit (in distribution) in the theorem is for a topology where
convergence means convergence of outdegree for any fixed node; it
thus really means local convergence close to the root.

(It is for this purpose convenient to regard the trees as subtrees of
the infinite Ulam–Harris tree.)

Kennedy (1975), Aldous & Pitman (1998), Kolchin (1984),
Jonsson & Stefánsson (2011), et al + J



Characterizations of the cases

Let

Φ(z) :=
∞∑
k=0

wkzk

be the generating function of the weight sequence. Let ρ ∈ [0,∞]
be its radius of convergence.

If ρ > 0, then the probability weight sequences equivalent to (wk)
are

pk =
tkwk

Φ(t)
, k ≥ 0,

where t > 0 and Φ(t) <∞.
Denote the mean

∑
k kpk of this distribution by Ψ(t).



Let
ν := Ψ(ρ) := lim

t↗ρ
Ψ(t) ≤ ∞.

In words:
ν is the supremum of the means of all probability weight sequences
equivalent to (wk).



The three cases can be characterised as

I. ν ≥ 1. Then 0 < ρ ≤ ∞.

II. 0 < ν < 1. Then 0 < ρ <∞.

III. ν = ρ = 0.

In particular, ν = 0 ⇐⇒ ρ = 0.



If ν ≥ 1, let τ be the unique number in [0, ρ] such that Ψ(τ) = 1.

If 0 ≤ ν < 1, let τ := ρ.

In both cases, τ is the minimum point in [0, ρ], or [0,∞), of
Φ(t)/t.

Let

πk :=
τkwk

Φ(τ)
, k ≥ 0.

(πk) is a probability weight sequence. Its mean is µ := Ψ(τ).
Its variance is

σ2 := τΨ′(τ) =
τ2Φ′′(τ)

Φ(τ)
.
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.



The three cases again

I. ν ≥ 1. Then 0 < τ <∞ and τ ≤ ρ ≤ ∞. The weight
sequence (wk) is equivalent to (πk), which is a probability
distribution with mean µ = Ψ(τ) = 1 and probability
generating function

∑∞
k=0 πkzk with radius of convergence

ρ/τ ≥ 1. (Exponential moment iff ρ/τ > 1 iff ν > 1.)

II. 0 < ν < 1. Then 0 < τ = ρ <∞. The weight sequence (wk)
is equivalent to (πk), which is a probability distribution with
mean µ = Ψ(τ) = ν < 1 and probability generating function∑∞

k=0 πkzk with radius of convergence ρ/τ = 1.

III. ν = 0. Then τ = ρ = 0, and (wk) is not equivalent to any
probability distribution.



The infinite limit tree
Let ξ be a random variable with distribution (πk)∞k=0:

P(ξ = k) = πk , k = 0, 1, 2, . . .

Assume that µ := E ξ =
∑

k kπk ≤ 1.

There are normal and special nodes. The root is special.

Normal nodes have offspring (outdegree) as copies of ξ.
Special nodes have offspring as copies of ξ̂, where

P(ξ̂ = k) :=

{
kπk , k = 0, 1, 2, . . . ,

1− µ, k =∞.

When a special node gets a finite number of children, one of its
children is selected uniformly at random and is special.
All other children are normal.

(Based on Kesten (µ = 1) + Jonsson & Stefánsson (µ < 1).)



The spine

The special nodes form a path from the root; we call this path the
spine of T̂ .

There are three cases:



I. µ = 1 (the critical case).

ξ̂ <∞ a.s. Each special node has a special child and the spine is
an infinite path. Each outdegree in T̂ is finite, so the tree is
infinite but locally finite.

The distribution of ξ̂ is the size-biased distribution of ξ, and T̂ is
the size-biased Galton–Watson tree defined by Kesten.

Alternative construction: Start with the spine (an infinite path
from the root). At each node in the spine attach further branches;
the number of branches at each node in the spine is a copy of
ξ̂ − 1 and each branch is a copy of the Galton–Watson tree T with
offspring distributed as ξ; furthermore, at a node where k new
branches are attached, the number of them attached to the left of
the spine is uniformly distributed on {0, . . . , k}.

Since the critical Galton–Watson tree T is a.s. finite, it follows that
T̂ a.s. has exactly one infinite path from the root, viz. the spine.
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II. 0 < µ < 1 (the subcritical case).

A special node has with probability 1− µ no special child. Hence,
the spine is a.s. finite and the number L of nodes in the spine has a
(shifted) geometric distribution Ge(1− µ),

P(L = `) = (1− µ)µ`−1, ` = 1, 2, . . . .

The tree T̂ has exactly one node with infinite outdegree, viz. the
top of the spine. T̂ has no infinite path.

Alternative construction: Start with a spine of random length L.
Attach further branches that are independent copies of the
Galton–Watson tree T ; at the top of the spine we attach an
infinite number of branches and at all other nodes in the spine the

number we attach is a copy of ξ∗ − 1 where ξ∗
d
= (ξ̂ | ξ̂ <∞) has

the size-biased distribution P(ξ∗ = k) = kπk/µ.

The spine thus ends with an explosion producing an infinite number
of branches, and this is the only node with an infinite degree.
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III. µ = 0 (ρ = ν = τ = 0. Not Galton–Watson tree.)

A degenerate special case of II.

A normal node has 0 children. A special node has ∞ children, all
normal.

The root is the only special node. The spine has length L = 1.

The tree T̂ is an infinite star. (No randomness.)

Example

wk = k!.

In the limit, Tn has Po(1) branches of length 2; all others have
length 1.
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Node degrees

Theorem

As n→∞,
P(d+
Tn(o) = d)→ dπd , d ≥ 0.

Consequently,

d+
Tn(o)

d−→ ξ̂,

where ξ̂ is a random variable in {0, 1, . . . ,∞}.

Note that the sum
∑∞

0 dπd = µ of the limiting probabilities in
may be less than 1; in that case we do not have convergence to a
proper finite random variable.



If we instead take a random node, we obtain a different limit
distribution, viz. (πk).

Theorem

Let v be a uniformly random node in Tn. Then, as n→∞,

P(d+
Tn(v) = d)→ πd , d ≥ 0.

Consequently,

d+
Tn(v)

d−→ ξ,

When ν > 1, this was proved by Otter (1949).



Fringe trees

More generally:

Given a tree T , let Tv be the fringe tree at v , i.e., the subtree
rooted at v , and let T ∗ be the fringe tree at a uniformly random
node v .

Theorem

Let T ∗n , be the random fringe tree of Tn. Then, as n→∞, T ∗n
converges in distribution to the (unconditioned) Galton–Watson
tree T with offspring distribution π, i.e., for any fixed (finite) tree
T ,

P(T ∗n = T )→ P(T = T ).

For µ = 1, i.e., critical Galton–Watson trees, explicit in Aldous
(1991), referring to Kolchin (1986).



Extended fringe trees

Even more generally:

Define the extended fringe tree T ∗∗ by adding also the mother of
v , with its descendents, the grandmother, and so on, i.e., by
considering T “shifted” with centre at the random node v .



Theorem

The extended fringe tree T ∗∗n converges to a random tree ˆ̂T
constructed as follows:

(i). If µ = 1 (critical case), add an infinite spine backwards from
the root of T̂ ; let each node in the spine be special (with a ξ̂
offspring distribution), and add independent forward T
Galton–Watson trees to all their children.

(ii). If µ < 1 (subcritical case), add a spine backwards with special
nodes, until the first node with an infinite number of children
appears; then continue backwards and add more special nodes
until another node with an infinite number of children
appears; stop and discard the last node. Then add
independent forward Galton–Watson trees as above.



Quenched version

Let nT (Tn) be the number of subtrees of Tn that are isomorphic to
T .

Theorem

Assume µ := E ξ = 1 and Var ξ <∞.

(i). For any fixed tree T ,

nT (Tn)

n
= P(T ∗n = T | Tn)

p−→ P(T = T ).

(ii).
nT (Tn)− n P(T = T )√

n

d−→ N(0, γ2)

for some γ2 = γ2T <∞.



Part II – general CMJ branching processes

A Crump–Mode–Jagers process is a branching process in
continuous time, where each individual has a random number N of
children (with 0 ≤ N ≤ ∞), born at times when the individual
itself has ages ξ1 ≤ ξ2 . . . ; these are also random (and may be
dependent in any way). (Technically, best seen as a point process.)

Different individuals have i.i.d. life stories.

Let T∞ be the complete family tree of the process, starting with a
single individual born at time 0, and let Tt be the subtree of
individuals born up to time t.

We are interested in cases when T∞ is infinite but each Tt a.s. is
finite. Thus assume EN > 1 (supercritical case) and assume for
simplicity N ≥ 1.



Let Zt := |Tt |, the number of individuals at time t.

More generally, a characteristic of an individual is a random
function φ of the age t ≥ 0; we assume φ(t) ≥ 0 and φ ∈ D[0,∞).
Let, where σx is the time individual x is born,

Zφ
t :=

∑
x :σx≤t

φx(t − σx),

the total characteristic of all individuals existing at time t.



Known results (Crump, Mode, Jagers, Nerman, et al):

Assume some technical conditions.

I There exists α > 0 (the Malthusian parameter), such that

e−αtZt
a.s.−→W

for some random variable W > 0.

I More generally,
e−αtZφ

t
a.s.−→ mφW

for a constant mφ > 0.

I Hence
Zφ
t /Zt

a.s.−→ mφ.



Fix a characteristic ψ.

Define τn := inf{t : Zψ
t ≥ n} and Tn := Tτ(n).

Main example : ψ = 1.
Tn has n nodes (if birth times are a.s. distinct).



Fringe trees

Theorem

(i). (Annealed version.) The random fringe tree T ∗n converges in
distribution to the random tree T = Tτ , where τ ∼ Exp(α) is
a random time, independent of T .

(ii). (Quenched version.) For every finite tree T ,

P(T ∗n = T | Tn) =
|{v : Tn;v = T}|

|Tn|
a.s.−→ P(T = T ).



Extended fringe trees

Define a sin-tree T̃ as follows:

I Start with a copy of the branching process, starting with o
born at time 0.

I Give o an infinite line of ancestors, o(1), o(2), . . . , each having
a modified life history where one child is distinguished, and
called heir, and the probability is weighted by a factor e−αξ,
where ξ is the time the heir is born.

I Let the heir of o(i) be o(i−1). This defines the (negative) birth
times of the ancestors. Let all other children of the ancestors
start new copies of T .



Theorem

(i). (Annealed.) The extended fringe tree of Tn converges in
distribution to T̃ .

(ii). (Quenched.) This holds also conditioned on Tn, a.s.



Random recursive tree

Example

Children born with independent Exp(1) waiting times, i.e.,
according to a Poisson process with rate 1. The branching process
is the Yule process.

Tn is the random recursive tree. The next node is added as a child
to a uniformly chosen node.



General preferential attachment tree

Example

Let (wk)∞0 be a sequence of weights with wk ≥ 0 and w0 > 0.

Grow a tree by choosing the mother of each new node randomly
with probability proportional to wd where d is the outdegree
(number of existing children).

Tn where the waiting time for child k is Exp(wk−1).

Standard case: wk = k + 1.

Linear case: wk = χk + ρ.
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Binary search tree

Example

Each individual gets two children, one left and one right; each after
an Exp(1) time (independent).



m-ary search tree (with external nodes)

Example

m ≥ 2 fixed.

A newborn has 0 “keys”. It get m − 1 keys after independent
waiting times Y1, . . . ,Ym−1 with Yi ∼ Exp(i). When the last key
arrives, m children are born.

ψ(t) is the number of keys at time t.



Fragmentation trees

Example

Start with an object of mass x0 > 0; break it ito b pieces with
masses V1x0, . . . ,Vbx0, where (V1, . . . ,Vb) is a random vector
with Vi ≥ 0 and

∑
i Vi = 1. Continue recursively with each piece

of mass ≥ x1, using a new copy of (V1, . . . ,Vb) each time.

Regard the fragments of masses ≥ x1 seen during the process as
nodes in the fragmentation tree.

CMJ process: An individual has b children, born at times
ξ1, . . . , ξb with ξi := − log Vi .

The fragmentation tree is the tree Tlog(x0/x1).








