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Background: Exchangeability

A finite or infinite sequence (Xi ) of random variables is
exchangeable if any permutation of the variables yields a sequence
with the same distribution.

Example An i.i.d. sequence. For example, toss a coin n times.
(n ≤ ∞)

Example You have a collection of false coins. Pick one at random,
and then toss the same coin n times.

Theorem (De Finetti)

Every infinite exchangeable sequence is of this type, i.e., a
conditionally i.i.d. sequence with a random distribution.
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Exchangeability and random graphs

I (Vertex) exchangeable random graphs and graphons

I Sparse exchangeable random graphs and graphons on [0,∞).

I Edge exchangeable random graphs.



Vertex exchangeable random graphs

A vertex exchangeable random graph (“exchangeable random
graph”) is a random graph on labelled vertices such that any
(fixed) permutation of the labels yields a random graph with the
same distribution.

This is natural if the labels are just labels without intrinsic
significance.

Example G (n, p)

Example G (n,m)
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Example (Standard construction)

1. Fix a type space S , and a probability distribution µ in S , and
a kernel (graphon) W : S × S → [0, 1].

2. Give each vertex i a type xi ∈ S (i.i.d. random according to
µ).

3. Add edge ij with probability W (xi , xj) (independently,
conditioned on the types).

Rediscovered many times: statistical block design (finite type
space); “inhomogeneous random graphs”; graph limits and
graphons (W is the graphon); ...

We may w.l.o.g. assume that S = [0, 1] and µ uniform distribution.
But we don’t have to, and sometimes we don’t want to!
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Graph limits, graphons and . . .

Lovász et al (Lovász and Szegedy (2006); Borgs, Chayes, Lovász,
Sós, Vesztergombi (2008, 2012)):

(i). If Gn is a sequence of graphs with |Gn| → ∞ such that
subgraph densities converge, then there exists a limit object, a
graph limit.

(ii). A graph limit may be represented (non-uniquely) by a
graphon. Conversely, every graphon defines a graph limit.

(iii). Given a graphon W , the random graphs G (n,W ) defined
above a.s. converge to W (in the sense of (i)).
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. . . and exchangeable random graphs

Diaconis and Janson (2008), Austin (2008):

Take n =∞. If W is a graphon, then G (∞,W ) is an
exchangeable infinite random graph.

Conversely, every exchangeable infinite random graph is G (∞,W )
for some (possibly random) W . (A special case of the
representation theorem by Aldous and Hoover for exchangeable
arrays, applied to the array of edge indicators (Iij).)

Moreover, if Gn is a sequence of graphs with |Gn| → ∞, (re)label
each Gn (by 1,2,. . . ) at random. This gives a sequence G̃n of
exchangeable random labelled graphs; G̃n converge in distribution
to an (exchangeable) infinite random graph iff Gn converges (in
the sense of subgraph densities).
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Sparse graphs
Caron and Fox(2104); Borgs, Chayes, Cohn and Holden(2016+);
Veitch and Roy(2015+)

New construction:

1. Fix a type space (S , µ), where µ is a σ-finite measure, and a
graphon W : S × S → [0, 1].
(Can take ([0,∞), λ), but don’t have to.)

2. Generate vertices {(ti , xi )}∞1 by a Poisson point process on
[0,∞)× S with intensity λ× µ.
(xi is the type of the vertex; ti is a (unique) label, and may
also be thought of as the time the vertex is born.)

3. Add edge ij with probability W (xi , xj) (independently,
conditioned on the types).

4. Define G̃t as the induced subgraph using only vertices with
ti ≤ t. Define Gt by deleting all isolated vertices.

If, for example, W is integrable, then Gt is a.s. a finite graph for
every t <∞. Typically sparse.



The formal definition of exchangeability is more technical here:

Represent the edge set of the graph Gt as a subset of [0,∞)2: an
edge between ti and tj is represented by (ti , tj) and (tj , ti ). Then
the edge set of G∞ is an exchangeable random point process in
[0,∞)2.

Conversely, Kallenberg (1990) showed (almost) that every such
exchangeable random point process is obtained from a graphon by
the construction above.
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One can define convergence of such graphons, and convergence of
graphs to such graphons, in several ways. (Not yet clear which is
best.)

GP-convergence (Veitch and Roy) can be defined by:

Wn →GP W ⇐⇒ Gt(Wn)
d−→ Gt(W ), every t <∞.

Theorem (Veitch & Roy (2016+), Janson (2017+))

For every graphon W , Gs(W )→GP W a.s. as s →∞.
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Edge exchangeable random graphs

Edge exchangeable random graphs were introduced by Crane and
Dempsey (2016+). An equivalent model, using somewhat different
formulations, was given by Broderick and Cai (2016+) and
Campbell, Cai and Broderick (2016+).

The idea is that we have a fixed (labelled) vertex set, and add a
sequence of edges (regarded as pairs of vertices). Repetions are
allowed, so we construct a multigraph. The sequence of edges is
supposed to be exchangeable.

By De Finetti’s theorem, this is equivalent to the following:

Let V be a finite or infinite set, and let µ be a deterministic or
random probability measure on the edges of the complete graph on
V .

1. Given µ, take N i.i.d. edges with distribution µ.

2. Delete all isolated vertices.



Some similarities with vertex exchangeable random graphs with a
discrete type space N, but quite different.

For example, at most one vertex of each type.



Example

Let (qi ) be a probability distribution on N. For each edge, just pick
its two endpoints independently withthis distribution.

Thus µ(ij) = qiqj .

Cf. similar “rank 1” cases of vertex exchangeable graphs, with
W (x , y) = φ(x)φ(y).



Example Pittel (2010) considered a random multigraph process
with a fixed vertex set [n] and N edges added one by one, with an
edge ij added with probability proportional to (di + α)(dj + α),
where di is the current degree of i . (Slightly modified for loops).
Here α > 0 is a fixed parameter.

Equivalently: choose vertices with probability proportional to
di + α. Then join the first two vertices to an edge, then the next
two, and so on.

Thus, the vertices are chosen according to a Pólya urn process,
starting with α balls of each colour (= vertex). The sequence of
vertices is exchangeable, and thus so is the sequence of edges.
Hence, this is an edge exchangeable random multigraph.
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starting with α balls of each colour (= vertex). The sequence of
vertices is exchangeable, and thus so is the sequence of edges.
Hence, this is an edge exchangeable random multigraph.



Example Pittel (2010) considered a random multigraph process
with a fixed vertex set [n] and N edges added one by one, with an
edge ij added with probability proportional to (di + α)(dj + α),
where di is the current degree of i . (Slightly modified for loops).
Here α > 0 is a fixed parameter.

Equivalently: choose vertices with probability proportional to
di + α. Then join the first two vertices to an edge, then the next
two, and so on.

Thus, the vertices are chosen according to a Pólya urn process,
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Remarks.

1. Exchangeability implies that conditioned on the final degree of
each vertex, all possible edge sequences have the same
probability. Hence, conditioned on the degree sequence, the
random multigraph is the multigraph given by the
configuration model.

2. A standard result for Pólya urn processes shows that the
vector (di/2N) converges to a Dirichlet(α, . . . , α) distribution
as N →∞.

3. The random sequence of vertices in the construction can be
seen as a two-parameter Chinese restaurant process with
parameters (−α, nα). A Chinese restaurant process with other
parameters yields a similar edge exchangeable random
multigraph (on a number of vertices growing to ∞).
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Chinese restaurant process with parameters (θ, α):

When there are N customers seated at k tables, with Ni ≥ 1
customers at table i , a new customer is placed at:{

table i (≤ k) with probability (N1 − α)/(n + θ)

table k + 1 (new) with probability (θ + kα)/(n + θ)

For α ∈ [0, 1] and θ > −α, the number of tables grows to ∞ a.s.
The vector of proportions sitting at each table converges a.s. to a
GEM distribution (given ordering of tables) and to a
Poisson–Dirichlet distribution (decreasing order of frequencies).



Simple graph version

We can merge multiple edges and ignore loops, and thus obtain a
random simple graph. This gives an increasing sequence of simple
graphs.

Let Gm be the resulting simple graph with m edges.

Example If P(ij) ∼ ((i ∨ j)!)−4, then a.s. Gm = Kn when m =
(n
2

)
for all large n. Thus Gn → the graphon 1 a.s.

Example There exists a distribution µ of edges on V = N such
that a.s. the sequence Gn is dense in the space of graph limits, i.e.,
for every graph limit (graphon), there exists a subsequence Gmi

converging to it.

An example of everything?

Or of nothing?
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