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Part I – Galton–Watson trees

Let ξ be a random variable with ξ ∈ N := {0, 1, 2, . . . }. Let
pk := P(ξ = k).

A Galton–Watson process starts with a single individual; every
individual gets a number of children; these are independent copies
of ξ. ξ (or its distribution (pk)) is called the offspring distribution.

A Galton–Watson process generates a random rooted tree T (finite
or infinite), with the initial individual as the root. T is called a
Galton–Watson tree.

Fundamental theorem: T is a.s. finite ⇐⇒ E ξ ≤ 1.

The case E ξ is called critical.

A conditional Galton–Watson tree with n nodes is the random tree
T conditioned on |T | = n. (Denoted Tn.)



Remarks.

1. Conditioned Galton–Watson trees are (essentially) the same as
simply generated trees, as defined by combinatorists (introduced by
Meir and Moon, 1978).

2. We obtain the same Tn if we replace the offspring distribution ξ
by a conjugate distribution ξ̃, i.e. with

P(ξ̃ = k) = cak P(ξ = k)

for some constants a, c > 0.

3. Typically (but not in some exceptional cases, causing
condensation) we can therefore assume E ξ = 1, a critical
Galton–Watson tree.

This turns out to be the natural choice of ξ.



Many kinds of random trees occuring in various applications can
be seen as conditioned Galton–Watson trees. Some examples, all
critical (E ξ = 1):

Example A Geometric distribution Ge(1/2), pk = 2−k−1, yields
uniformly random ordered trees (plane trees).

Example A Poisson distribution Po(1), pk = e−1/k!, yields
uniformly random labelled trees.

Example A Binary distribution Bi(2, 1/2), wk =
(2
k

)
1
4 , yields

uniformly random binary trees.



Critical Galton–Watson trees form a nice and natural setting, with
many known results (possibly with extra assumptions).

Sometimes, but not always, σ2 := Var ξ <∞ has to be assumed.



Local limit close to the root

Theorem

Tn
d−→ T̂ as n→∞, where T̂ is an infinite modified

Galton–Watson tree (see below).

The limit (in distribution) in the theorem is for a topology where
convergence means convergence of outdegree for any fixed node; it
thus really means local convergence close to the root.

(It is for this purpose convenient to regard the trees as subtrees of
the infinite Ulam–Harris tree.)

Kennedy (1975), Aldous & Pitman (1998), Kolchin (1984),
Jonsson & Stefánsson (2011), et al + J



The infinite limit tree

The infinite limit tree T̂ has nodes of two types, normal and
special. The root is special.

Normal nodes have offspring (outdegree) as copies of ξ.
Special nodes have offspring as copies of ξ̂, where

P(ξ̂ = k) := kπk , k = 0, 1, 2, . . .

(This is a probability distribution because E ξ = 1. It is the
size-biased distribution of ξ.)

When a special node gets children, one of its children (selected
uniformly at random) is special.
All other children are normal.

This is the same as the size-biased Galton–Watson tree defined by
Kesten.



The spine

The limit tree T̂ can also be described as follows:

The special nodes form an infinite path from the root; we call this
path the spine of T̂ .

Each outdegree in T̂ is finite, so the tree is infinite but locally
finite.

Alternative construction: Start with the spine (an infinite path
from the root). At each node in the spine attach further branches;
the number of branches at each node in the spine is a copy of
ξ̂ − 1 and each branch is a copy of the Galton–Watson tree T with
offspring distributed as ξ; furthermore, at a node where k new
branches are attached, the number of them attached to the left of
the spine is uniformly distributed on {0, . . . , k}.

Since the critical Galton–Watson tree T is a.s. finite, it follows that
T̂ a.s. has exactly one infinite path from the root, viz. the spine.
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Local limit close to the boundary

Given a tree T , let Tv be the fringe tree at v , i.e., the subtree
rooted at v , and let T ∗ be the fringe tree at a uniformly random
node v .

Theorem

Let T ∗n , be the random fringe tree of Tn. Then, as n→∞, T ∗n
converges in distribution to the (unconditioned) Galton–Watson
tree T with offspring distribution ξ, i.e., for any fixed (finite) tree
T ,

P(T ∗n = T )→ P(T = T ).

Explicit in Aldous (1991), referring to Kolchin (1986).



Extended fringe trees

Even more generally:

Define the extended fringe tree T ∗∗ by adding also the mother of
v , with its descendents, the grandmother, and so on, i.e., by
considering T “shifted” with centre at the random node v .

Theorem

The extended fringe tree T ∗∗n converges to a random tree ˆ̂T
constructed as follows:

Add an infinite spine backwards from the root of T̂ ; let each node
in the spine be special (with a ξ̂ offspring distribution), and add
independent forward Galton–Watson trees T to all their children.

(Implicit in Jagers and Nerman.)



Quenched version

Let nT (Tn) be the number of fringe subtrees of Tn that are
isomorphic to T .

Theorem

Assume µ := E ξ = 1 and Var ξ <∞.

(i). For any fixed tree T ,

nT (Tn)

n
= P(T ∗n = T | Tn)

p−→ P(T = T ).

(ii).
nT (Tn)− n P(T = T )√

n

d−→ N(0, γ2)

for some γ2 = γ2T <∞.



General subtrees
Let S(T ) be the number of arbitrary (non-fringe) subtrees of T .

Theorem

Suppose that 0 < Var ξ <∞.

(i). There exist constants µ, σ2 > 0 such that

log S(Tn)− µn√
n

d−→ N(0, σ2).

(ii). If ξ has an exponential moment, i.e. E etξ <∞ for some
t > 0, then, assuming a technical condition,

ES(Tn)m ∼ γ′mτnm

for some constants γm > 0 and 1 < τ1 < τ2 < . . . .

Cai and Janson (2018)



Global limit

The global shape of a conditioned Galton–Watson tree with finite
offspring variance is asymptotically given by a Brownian excursion
Bex(t).

The typical distance to the root is of order
√

n, so we scale
distances by this factor.

Aldous (1990).



Part II – general CMJ branching processes

A Crump–Mode–Jagers process is a branching process in
continuous time, where each individual has a random number N of
children (with 0 ≤ N ≤ ∞), born at times when the individual
itself has ages ξ1 ≤ ξ2 . . . ; these are also random (and may be
dependent in any way). (Technically, best seen as a point process.)

Different individuals have i.i.d. life stories.

Let T∞ be the complete family tree of the process, starting with a
single individual born at time 0, and let Tt be the subtree of
individuals born up to time t.

We are interested in cases when T∞ is infinite but each Tt a.s. is
finite. Thus assume EN > 1 (supercritical case) and assume for
simplicity N ≥ 1.



Let Zt := |Tt |, the number of individuals at time t.

Assume some technical conditions.

Then there exists α > 0 (the Malthusian parameter), such that

e−αtZt
a.s.−→W

for some random variable W > 0.

(Crump, Mode, Jagers, Nerman, et al)



Define τn := inf{t : Zt ≥ n} and Tn := Tτ(n).

Thus Tn has n nodes (if birth times are a.s. distinct).



Fringe trees

Theorem

(i). (Annealed version.) The random fringe tree T ∗n converges in
distribution to the random tree T = Tτ , where τ ∼ Exp(α) is
a random time, independent of T .

(ii). (Quenched version.) For every finite tree T ,

P(T ∗n = T | Tn) =
|{v : Tn;v = T}|

|Tn|
a.s.−→ P(T = T ).

Central limit theorem?
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Extended fringe trees

Define a sin-tree T̃ as follows:

I Start with a copy of the branching process, starting with o
born at time 0.

I Give o an infinite line of ancestors, o(1), o(2), . . . , each having
a modified life history where one child is distinguished, and
called heir, and the probability is weighted by a factor e−αξ,
where ξ is the time the heir is born.

I Let the heir of o(i) be o(i−1). This defines the (negative) birth
times of the ancestors. Let all other children of the ancestors
start new copies of T .



Theorem

(i). (Annealed.) The extended fringe tree of Tn converges in
distribution to T̃ .

(ii). (Quenched.) This holds also conditioned on Tn, a.s.



Random recursive tree

Example

Children born with independent Exp(1) waiting times, i.e.,
according to a Poisson process with rate 1. The branching process
is the Yule process.

Tn is the random recursive tree. The next node is added as a child
to a uniformly chosen node.



General preferential attachment tree

Example

Let (wk)∞0 be a sequence of weights with wk ≥ 0 and w0 > 0.

Grow a tree by choosing the mother of each new node randomly
with probability proportional to wd where d is the outdegree
(number of existing children).

Tn where the waiting time for child k is Exp(wk−1).

Standard case: wk = k + 1.

Linear case: wk = χk + ρ.
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Binary search tree

Example

Each individual gets two children, one left and one right; each after
an Exp(1) time (independent).



m-ary search tree (with external nodes)

Example

m ≥ 2 fixed.

A newborn has 0 “keys”. It get m − 1 keys after independent
waiting times Y1, . . . ,Ym−1 with Yi ∼ Exp(i). When the last key
arrives, m children are born.

The m-ary search tree Tn is defined with a fixed number n keys,
while the number of nodes is random. The theory extends to this
case too, using the notion of random characteristic.



Fragmentation trees

Example

Start with an object of mass x0 > 0; break it ito b pieces with
masses V1x0, . . . ,Vbx0, where (V1, . . . ,Vb) is a random vector
with Vi ≥ 0 and

∑
i Vi = 1. Continue recursively with each piece

of mass ≥ x1, using a new copy of (V1, . . . ,Vb) each time.

Regard the fragments of masses ≥ x1 seen during the process as
nodes in the fragmentation tree.

CMJ process: An individual has b children, born at times
ξ1, . . . , ξb with ξi := − log Vi .

The fragmentation tree is the tree Tlog(x0/x1).


