Branching processes and random trees

Svante Janson

Sto-Upp Stockholm, 28 May, 2018

(ロ)、(型)、(E)、(E)、 E) の(の)

Part I – Galton–Watson trees

Let ξ be a random variable with $\xi \in \mathbb{N} := \{0, 1, 2, ...\}$. Let $p_k := \mathbb{P}(\xi = k)$.

A *Galton–Watson process* starts with a single individual; every individual gets a number of children; these are independent copies of ξ . ξ (or its distribution (p_k)) is called the *offspring distribution*.

A Galton–Watson process generates a random rooted tree \mathcal{T} (finite or infinite), with the initial individual as the root. \mathcal{T} is called a *Galton–Watson tree*.

Fundamental theorem: \mathcal{T} is a.s. finite $\iff \mathbb{E}\xi \leq 1$.

The case $\mathbb{E}\xi$ is called *critical*.

A conditional Galton–Watson tree with *n* nodes is the random tree \mathcal{T} conditioned on $|\mathcal{T}| = n$. (Denoted \mathcal{T}_n .)

Remarks.

1. Conditioned Galton–Watson trees are (essentially) the same as *simply generated trees*, as defined by combinatorists (introduced by Meir and Moon, 1978).

2. We obtain the same T_n if we replace the offspring distribution ξ by a conjugate distribution $\tilde{\xi}$, i.e. with

 $\mathbb{P}(\tilde{\xi}=k)=ca^k\,\mathbb{P}(\xi=k)$

for some constants a, c > 0.

3. Typically (but not in some exceptional cases, causing condensation) we can therefore assume $\mathbb{E} \xi = 1$, a *critical* Galton–Watson tree.

This turns out to be the natural choice of ξ .

Many kinds of random trees occuring in various applications can be seen as conditioned Galton–Watson trees. Some examples, all critical ($\mathbb{E} \xi = 1$):

Example A *Geometric distribution* Ge(1/2), $p_k = 2^{-k-1}$, yields uniformly random *ordered trees* (*plane trees*).

Example A Poisson distribution Po(1), $p_k = e^{-1}/k!$, yields uniformly random labelled trees.

Example A Binary distribution Bi(2, 1/2), $w_k = \binom{2}{k} \frac{1}{4}$, yields uniformly random binary trees.

Critical Galton–Watson trees form a nice and natural setting, with many known results (possibly with extra assumptions).

Sometimes, but not always, $\sigma^2 := \text{Var } \xi < \infty$ has to be assumed.

Local limit close to the root

Theorem

 $\mathcal{T}_n \xrightarrow{d} \widehat{\mathcal{T}}$ as $n \to \infty$, where $\widehat{\mathcal{T}}$ is an infinite modified Galton–Watson tree (see below).

The limit (in distribution) in the theorem is for a topology where convergence means convergence of outdegree for any fixed node; it thus really means local convergence close to the root.

(It is for this purpose convenient to regard the trees as subtrees of the infinite Ulam–Harris tree.)

Kennedy (1975), Aldous & Pitman (1998), Kolchin (1984), Jonsson & Stefánsson (2011), et al + J

The infinite limit tree

The infinite limit tree $\widehat{\mathcal{T}}$ has nodes of two types, *normal* and *special*. The root is special.

Normal nodes have offspring (outdegree) as copies of ξ . Special nodes have offspring as copies of $\hat{\xi}$, where

$$\mathbb{P}(\widehat{\xi}=k):=k\pi_k, \qquad k=0,1,2,\ldots$$

(This is a probability distribution because $\mathbb{E} \xi = 1$. It is the *size-biased* distribution of ξ .)

When a special node gets children, one of its children (selected uniformly at random) is special.

All other children are normal.

This is the same as the *size-biased Galton–Watson tree* defined by Kesten.

The spine

The limit tree $\widehat{\mathcal{T}}$ can also be described as follows:

The special nodes form an infinite path from the root; we call this path the *spine* of $\widehat{\mathcal{T}}.$

Each outdegree in $\widehat{\mathcal{T}}$ is finite, so the tree is infinite but locally finite.

The spine

The limit tree $\widehat{\mathcal{T}}$ can also be described as follows:

The special nodes form an infinite path from the root; we call this path the *spine* of $\widehat{\mathcal{T}}$.

Each outdegree in $\widehat{\mathcal{T}}$ is finite, so the tree is infinite but locally finite.

Alternative construction: Start with the spine (an infinite path from the root). At each node in the spine attach further branches; the number of branches at each node in the spine is a copy of $\hat{\xi} - 1$ and each branch is a copy of the Galton–Watson tree \mathcal{T} with offspring distributed as ξ ; furthermore, at a node where k new branches are attached, the number of them attached to the left of the spine is uniformly distributed on $\{0, \ldots, k\}$.

Since the critical Galton–Watson tree ${\cal T}$ is a.s. finite, it follows that $\widehat{\cal T}$ a.s. has exactly one infinite path from the root, viz. the spine.

Local limit close to the boundary

Given a tree T, let T_v be the fringe tree at v, i.e., the subtree rooted at v, and let T^* be the fringe tree at a uniformly random node v.

Theorem

Let \mathcal{T}_n^* , be the random fringe tree of \mathcal{T}_n . Then, as $n \to \infty$, \mathcal{T}_n^* converges in distribution to the (unconditioned) Galton–Watson tree \mathcal{T} with offspring distribution ξ , i.e., for any fixed (finite) tree \mathcal{T} ,

 $\mathbb{P}(\mathcal{T}_n^*=T)\to\mathbb{P}(\mathcal{T}=T).$

Explicit in Aldous (1991), referring to Kolchin (1986).

Extended fringe trees

Even more generally:

Define the extended fringe tree T^{**} by adding also the mother of v, with its descendents, the grandmother, and so on, i.e., by considering T "shifted" with centre at the random node v.

Theorem

The extended fringe tree \mathcal{T}_n^{**} converges to a random tree $\hat{\mathcal{T}}$ constructed as follows:

Add an infinite spine backwards from the root of $\widehat{\mathcal{T}}$; let each node in the spine be special (with a $\widehat{\xi}$ offspring distribution), and add independent forward Galton–Watson trees \mathcal{T} to all their children.

(Implicit in Jagers and Nerman.)

Quenched version

Let $n_T(\mathcal{T}_n)$ be the number of fringe subtrees of \mathcal{T}_n that are isomorphic to \mathcal{T} .

Theorem

Assume $\mu := \mathbb{E} \xi = 1$ and $\operatorname{Var} \xi < \infty$.

(i). For any fixed tree T, $\frac{n_T(\mathcal{T}_n)}{n} = \mathbb{P}(\mathcal{T}_n^* = T \mid \mathcal{T}_n) \xrightarrow{\mathrm{p}} \mathbb{P}(\mathcal{T} = T).$ (ii). $\frac{n_T(\mathcal{T}_n) - n \mathbb{P}(\mathcal{T} = T)}{\sqrt{n}} \xrightarrow{\mathrm{d}} N(0, \gamma^2)$

for some $\gamma^2 = \gamma_T^2 < \infty$.

General subtrees

Let S(T) be the number of arbitrary (non-fringe) subtrees of T.

Theorem

Suppose that $0 < Var \xi < \infty$.

(i). There exist constants $\mu, \sigma^2 > 0$ such that

$$\frac{\log S(\mathcal{T}_n) - \mu n}{\sqrt{n}} \stackrel{\mathrm{d}}{\longrightarrow} \mathcal{N}(0, \sigma^2).$$

(ii). If ξ has an exponential moment, i.e. $\mathbb{E} e^{t\xi} < \infty$ for some t > 0, then, assuming a technical condition,

 $\mathbb{E} S(\mathcal{T}_n)^m \sim \gamma'_m \tau_m^n$

くしゃ (雪) (雪) (雪) (雪) (雪) (

for some constants $\gamma_m > 0$ and $1 < \tau_1 < \tau_2 < \dots$

Cai and Janson (2018)

Global limit

The global shape of a conditioned Galton–Watson tree with finite offspring variance is asymptotically given by a Brownian excursion $B_{ex}(t)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The typical distance to the root is of order \sqrt{n} , so we scale distances by this factor.

Aldous (1990).

Part II – general CMJ branching processes

A Crump-Mode-Jagers process is a branching process in continuous time, where each individual has a random number N of children (with $0 \le N \le \infty$), born at times when the individual itself has ages $\xi_1 \le \xi_2 \ldots$; these are also random (and may be dependent in any way). (Technically, best seen as a point process.)

Different individuals have i.i.d. life stories.

Let \mathcal{T}_{∞} be the complete family tree of the process, starting with a single individual born at time 0, and let \mathcal{T}_t be the subtree of individuals born up to time t.

We are interested in cases when \mathcal{T}_{∞} is infinite but each \mathcal{T}_t a.s. is finite. Thus assume $\mathbb{E} N > 1$ (supercritical case) and assume for simplicity $N \geq 1$.

Let $Z_t := |\mathcal{T}_t|$, the number of individuals at time t. Assume some technical conditions.

Then there exists $\alpha > 0$ (the Malthusian parameter), such that

 $e^{-\alpha t}Z_t \stackrel{\mathrm{a.s.}}{\longrightarrow} W$

for some random variable W > 0.

(Crump, Mode, Jagers, Nerman, et al)

Define $\tau_n := \inf\{t : Z_t \ge n\}$ and $T_n := \mathcal{T}_{\tau(n)}$. Thus T_n has *n* nodes (if birth times are a.s. distinct).

Fringe trees

Theorem

- (i). (Annealed version.) The random fringe tree T_n^* converges in distribution to the random tree $\overline{T} = \mathcal{T}_{\tau}$, where $\tau \sim \text{Exp}(\alpha)$ is a random time, independent of \mathcal{T} .
- (ii). (Quenched version.) For every finite tree T,

$$\mathbb{P}(T_n^* = T \mid T_n) = \frac{|\{v : T_{n;v} = T\}|}{|T_n|} \xrightarrow{\text{a.s.}} \mathbb{P}(\overline{\mathcal{T}} = T).$$

Fringe trees

Theorem

- (i). (Annealed version.) The random fringe tree T_n^* converges in distribution to the random tree $\overline{T} = \mathcal{T}_{\tau}$, where $\tau \sim \text{Exp}(\alpha)$ is a random time, independent of \mathcal{T} .
- (ii). (Quenched version.) For every finite tree T,

$$\mathbb{P}(T_n^* = T \mid T_n) = \frac{|\{v : T_{n;v} = T\}|}{|T_n|} \xrightarrow{\text{a.s.}} \mathbb{P}(\overline{\mathcal{T}} = T).$$

Central limit theorem?

Extended fringe trees

Define a sin-tree \tilde{T} as follows:

- Start with a copy of the branching process, starting with o born at time 0.
- ► Give *o* an infinite line of ancestors, *o*⁽¹⁾, *o*⁽²⁾,..., each having a modified life history where one child is distinguished, and called *heir*, and the probability is weighted by a factor *e*^{-αξ}, where ξ is the time the heir is born.
- ► Let the heir of o⁽ⁱ⁾ be o⁽ⁱ⁻¹⁾. This defines the (negative) birth times of the ancestors. Let all other children of the ancestors start new copies of T.

Theorem

(i). (Annealed.) The extended fringe tree of T_n converges in distribution to \tilde{T} .

(ii). (Quenched.) This holds also conditioned on T_n , a.s.

Example

Children born with independent Exp(1) waiting times, i.e., according to a Poisson process with rate 1. The branching process is the Yule process.

 T_n is the random recursive tree. The next node is added as a child to a uniformly chosen node.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

General preferential attachment tree

Example

Let $(w_k)_0^\infty$ be a sequence of weights with $w_k \ge 0$ and $w_0 > 0$.

Grow a tree by choosing the mother of each new node randomly with probability proportional to w_d where d is the outdegree (number of existing children).

 T_n where the waiting time for child k is $Exp(w_{k-1})$.

General preferential attachment tree

Example

Let $(w_k)_0^\infty$ be a sequence of weights with $w_k \ge 0$ and $w_0 > 0$.

Grow a tree by choosing the mother of each new node randomly with probability proportional to w_d where d is the outdegree (number of existing children).

 T_n where the waiting time for child k is $Exp(w_{k-1})$.

Standard case: $w_k = k + 1$.

General preferential attachment tree

Example

Let $(w_k)_0^\infty$ be a sequence of weights with $w_k \ge 0$ and $w_0 > 0$.

Grow a tree by choosing the mother of each new node randomly with probability proportional to w_d where d is the outdegree (number of existing children).

 T_n where the waiting time for child k is $Exp(w_{k-1})$.

Standard case: $w_k = k + 1$.

Linear case: $w_k = \chi k + \rho$.

Binary search tree

Example

Each individual gets two children, one left and one right; each after an Exp(1) time (independent).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

m-ary search tree (with external nodes)

Example

 $m \ge 2$ fixed.

A newborn has 0 "keys". It get m-1 keys after independent waiting times Y_1, \ldots, Y_{m-1} with $Y_i \sim \text{Exp}(i)$. When the last key arrives, m children are born.

The *m*-ary search tree T_n is defined with a fixed number *n* keys, while the number of nodes is random. The theory extends to this case too, using the notion of *random characteristic*.

Fragmentation trees

Example

Start with an object of mass $x_0 > 0$; break it ito *b* pieces with masses V_1x_0, \ldots, V_bx_0 , where (V_1, \ldots, V_b) is a random vector with $V_i \ge 0$ and $\sum_i V_i = 1$. Continue recursively with each piece of mass $\ge x_1$, using a new copy of (V_1, \ldots, V_b) each time.

Regard the fragments of masses $\ge x_1$ seen during the process as nodes in the *fragmentation tree*.

CMJ process: An individual has b children, born at times ξ_1, \ldots, ξ_b with $\xi_i := -\log V_i$.

The fragmentation tree is the tree $\mathcal{T}_{log(x_0/x_1)}$.