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Part I. Galton–Watson trees
Let ξ be a random variable with ξ ∈ N := {0, 1, 2, . . . }. Let
pk := P(ξ = k).

A Galton–Watson process [Watson and Galton 1875; Bienaymé
1845] starts with a single individual; she gets a number of children,
each of these gets a number of children, and so on; the numbers of
children of different individuals are independent copies of ξ.
ξ (or its distribution (pk)) is called the offspring distribution.

A Galton–Watson process generates a random rooted tree T (finite
or infinite), with the initial individual as the root. T is called a
Galton–Watson tree.

Fundamental theorem: T is a.s. finite ⇐⇒ E ξ ≤ 1.

The case E ξ = 1 is called critical.
This case turns out to be the most important for our purposes.

A conditional Galton–Watson tree with n nodes is the random tree
T conditioned on |T | = n. (Denoted Tn.)



Simply generated trees

Trees are rooted and ordered (the children of each node are
ordered). (Unordered trees may be given random orderings.)

w = (wk)k≥0 is a fixed weight sequence with wk ≥ 0.

The weight of a finite tree T is

w(T ) :=
∏
v∈T

wd+(v),

where d+(v) is the outdegree (number of children) of v .

Trees with such weights are called simply generated trees [Meir
and Moon 1978].

We let Tn be the random simply generated tree obtained by
picking a tree with n nodes at random with probability proportional
to its weight.



Conditioned Galton–Watson trees again

Let T be a Galton–Watson tree with offspring distribution ξ.
Choose the weight sequence wk = P(ξ = k). Then, for every finite
tree T ,

P(T = T ) =
∏
v∈T

P(ξ = d+(v)) =
∏
v∈T

wd+(v) = w(T )

Thus the random simply generated tree Tn is the same as the
conditioned Galton–Watson tree Tn.

In other words, the conditioned Galton–Watson trees are the same
as the simply generated trees with a weight sequence satisfying∑∞

k=0 wk = 1 (a probability weight sequence).

This may seem quite restrictive, but it isn’t. . .



Equivalent weights

Let a, b > 0 and change wk to

w̃k := abkwk .

Then the distribution of the simply generated tree Tn is not
changed.

In other words, the new weight sequence (w̃k) defines the same
simply generated random trees Tn as (wk).

We say that the weight sequences (wk) and (w̃k) are equivalent.

In particular, if there exists a, b > 0 such that
∑

k w̃k = 1, then
the simply generated tree generated by (wk) is the same as a
conditioned Galton–Watson tree.
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For many (wk) there exists an equivalent probability weight
sequence; in this case Tn can thus be seen as a conditioned
Galton–Watson tree.
(Not if wk grows too rapidly, such as k!.)

Moreover, in many cases this can be done such that the resulting
probability distribution has mean 1. In such cases it thus suffices
to consider the case of a probability weight sequence with mean
E ξ = 1, so Tn is a critical conditional Galton–Watson tree.
This turns out to be the natural choice of ξ.

Thus, simply generated trees and (critical) conditioned
Galton–Watson trees are almost the same.

– BUT ONLY ALMOST !
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Many kinds of random trees occuring in various applications can
be seen as simply generated random trees and conditioned
Galton–Watson trees. [Aldous, Devroye, . . . ]

Example wk = 1 yields uniformly random ordered trees (plane
trees).
Also wk = 2−k−1, a Geometric distribution Ge(1/2)

Example wk = 1/k! yields uniformly random labelled trees.
Also wk = e−1/k!, a Poisson distribution Po(1).

Example w0 = 1, w1 = 2, w2 = 1, wk = 0 for k ≥ 3 yields
uniformly random binary trees.
Also wk =

(2
k

)
1
4 , a Binomial distribution Bi(2, 1/2).

Any other Geometric, Poisson or Binomial Bi(2, p) distribution will
give the same trees. The ones above are the critical distributions,
which are the natural choices.



Three types

Three types of simply generated trees:

I. Critical conditioned Galton–Watson tree.
Examples: see above.

II. Subcritical conditioned Galton–Watson tree with the m.g.f.
E etξ =∞ for t > 0; then not equivalent to any critical
conditioned Galton–Watson tree.
Example: P(ξ = k) = (k + 1)−3/ζ(3).

III. Simply generated tree, not equivalent to any conditioned
Galton–Watson tree.
Example: wk = k!.

In particular, every conditioned Galton–Watson tree is of type I or
II.
I.e., for any offspring distribution ξ, there exists a (unique)
equivalent offspring distribution as in I or II.
This is the natural offspring distribution.
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Critical Galton–Watson trees (Case I) form a nice and natural
setting, with many known results (sometimes with extra
assumptions, e.g. finite second moment or exponential moment).

Some of these results can be extended to the general case,
including cases II and III.

Remark The three cases may be characterized by properties of the
generating function Φ(z) :=

∑
k wkzk . (The p.g.f. for a

Galton–Watson tree.)

We are interested in limits as n→∞.
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A conditioned Galton–Watson tree. Case I, finite variance.
[Igor Korchemski]



A conditioned Galton–Watson tree. Case I, stable limit.
[Igor Korchemski]



A subcritical conditioned Galton–Watson tree. Case II.
[Igor Korchemski]



Node degrees

Theorem (the outdegree of a randomly chosen node)

Let Vn be a uniformly random node in a random simply generated
tree Tn.

(i). As n→∞, the outdegree d+
Tn(Vn) of Vn satisfies

d+
Tn(Vn)

d−→ ξ′

for some (finite) random variable ξ′.

(ii). If Tn is a conditioned Galton–Watson tree with offspring
distribution ξ, then ξ′ is equivalent to ξ. Furthermore, ξ′ is
the unique natural offspring distribution equivalent to ξ.
Hence ξ′ = ξ iff ξ is natural. (Case I+II)

(iii). In particular, if ξ is equivalent to some critical offspring
distribution, then ξ′ is this critical distribution. (Case I)

(iv). In case III (not a conditioned Galton–Watson tree), ξ′ = 0.



In the sequel we assume that we have chosen the natural offspring
distribution for a conditioned Galton–Watson tree. (In particular,
this includes all critical offspring distributions: E ξ = 1.)

In the less interesting Case III, we define ξ := ξ′ = 0.

Thus, in all cases, ξ′ = ξ.

Let πk := P(ξ = k). Then, the theorem says

P(d+
Tn(Vn) = k)→ πk , k ≥ 0.

Let also
µ := E ξ =

∑
k

kπk .

Recall that µ = 1 in Case I, 0 < µ < 1 in Case II, and µ = 0 in
Case III.
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Consider now instead the degree of the root o.

Theorem (the root degree)

As n→∞,

P(d+
Tn(o) = k)→ kπk , 0 ≤ k <∞.

Consequently,

d+
Tn(o)

d−→ ξ̂,

where ξ̂ is a random variable in {0, 1, . . . ,∞} with the distribution

P(ξ̂ = k) :=

{
kπk , k = 0, 1, 2, . . . ,

1− µ, k =∞.

Note that
∑∞

0 kπk = µ is = 1 in Case I, but < 1 in Cases II and
III. Hence, we have convergence to a proper finite random variable
only in Case I.
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Limits close to the root

Theorem

Let w = (wk)k≥0 be any weight sequence with w0 > 0 and wk > 0
for some k ≥ 2.

Then Tn
d−→ T̂ as n→∞, where T̂ is an infinite modified

Galton–Watson tree (see below).

The limit (in distribution) in the theorem is for a topology where
convergence means convergence of outdegree for any fixed node; it
thus really means local convergence close to the root.

(It is for this purpose convenient to regard the trees as subtrees of
the infinite Ulam–Harris tree.)

Kennedy (1975), Aldous & Pitman (1998), Kolchin (1984),
Jonsson & Stefánsson (2011), et al + J



The infinite limit tree

T̂ can be defined as follows.

There are normal and special nodes. The root is special.

Normal nodes have offspring (outdegree) as copies of ξ.
Special nodes have offspring as copies of ξ̂, where

P(ξ̂ = k) :=

{
kπk , k = 0, 1, 2, . . . ,

1− µ, k =∞.

When a special node gets a finite number of children, one of its
children is selected uniformly at random and is special.
All other children are normal.

(Based on Kesten (µ = 1) + Jonsson & Stefánsson (µ < 1).)



The spine

The special nodes form a path from the root; we call this path the
spine of T̂ .

There are three cases:



I. µ = 1 (the critical case).

ξ̂ <∞ a.s. Each special node has a special child and the spine is
an infinite path. Each outdegree in T̂ is finite, so the tree is
infinite but locally finite.

The distribution of ξ̂ is the size-biased distribution of ξ, and T̂ is
the size-biased Galton–Watson tree defined by Kesten (1986).

Alternative construction: Start with the spine (an infinite path
from the root). At each node in the spine attach further branches;
the number of branches at each node in the spine is a copy of
ξ̂ − 1 and each branch is a copy of the Galton–Watson tree T with
offspring distributed as ξ; furthermore, at a node where k new
branches are attached, the number of them attached to the left of
the spine is uniformly distributed on {0, . . . , k}.

Since the critical Galton–Watson tree T is a.s. finite, it follows that
T̂ a.s. has exactly one infinite path from the root, viz. the spine.
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II. 0 < µ < 1 (the subcritical case).

A special node has with probability 1− µ no special child. Hence,
the spine is a.s. finite and the number L of nodes in the spine has a
geometric distribution Ge(1− µ):

P(L = `) = (1− µ)µ`−1, ` = 1, 2, . . . .

The tree T̂ has exactly one node with infinite outdegree, viz. the
top of the spine. T̂ has no infinite path.

Alternative construction: Start with a spine of random length L.
Attach further branches that are independent copies of the
Galton–Watson tree T ; at the top of the spine we attach an
infinite number of branches and at all other nodes in the spine the

number we attach is a copy of ξ∗ − 1 where ξ∗
d
= (ξ̂ | ξ̂ <∞) has

the size-biased distribution P(ξ∗ = k) = kπk/µ.

The spine thus ends with an explosion producing an infinite number
of branches, and this is the only node with an infinite degree.
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III. µ = 0 (Not Galton–Watson tree.)

A degenerate special case of II.

A normal node has 0 children. A special node has ∞ children, all
normal.

The root is the only special node. The spine has length L = 1.

The tree T̂ is an infinite star. (No randomness.)

Example

wk = k!.

In the limit, Tn has Po(1) branches of length 2; all others have
length 1.



III. µ = 0 (Not Galton–Watson tree.)
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The root is the only special node. The spine has length L = 1.
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length 1.



Limits in the bulk: Fringe trees

Given a tree T and a node v , let Tv be the fringe tree at v , i.e.,
the subtree consisting of v and all its descendants.
Let T ∗ be the fringe tree at a uniformly random node V ∈ T .

Theorem

Let T ∗n be the random fringe tree of Tn. Then, as n→∞, T ∗n
converges in distribution to the (unconditioned) Galton–Watson
tree T with offspring distribution π, i.e., for any fixed (finite) tree
T ,

P(T ∗n = T )→ P(T = T ).

For µ = 1, i.e., critical Galton–Watson trees, explicit in Aldous
(1991), referring to Kolchin (1986).



Extended fringe trees

Even more generally:

Define the extended fringe tree T ∗∗ by adding also the mother of
v , with its descendents, the grandmother, and so on, i.e., by
considering T “shifted” with centre at the random node v .



Theorem (Stufler (2018))

The extended fringe tree T ∗∗n converges to a random tree ˆ̂T
constructed as follows:

(i). If µ = 1 (critical case), add an infinite spine backwards from
the root of T̂ ; let each node in the spine be special (with a ξ̂
offspring distribution), and add independent forward T
Galton–Watson trees to all their children.

(ii). If µ < 1 (subcritical case), assuming a regularity condition
(complete condensation), add a spine backwards with special
nodes, until the first node with an infinite number of children
appears; then continue backwards and add more special nodes
until another node with an infinite number of children
appears; stop and discard the last node. Then add
independent forward Galton–Watson trees as above.



Quenched version

Let nT (Tn) be the number of fringe subtrees of Tn that are
isomorphic to T .

Theorem

Assume µ := E ξ = 1 and Var ξ <∞.

(i). For any fixed tree T ,

nT (Tn)

n
= P(T ∗n = T | Tn)

p−→ P(T = T ).

(ii).
nT (Tn)− n P(T = T )√

n

d−→ N(0, γ2)

for some γ2 = γ2T <∞.



General subtrees
Let S(T ) be the number of arbitrary (non-fringe) subtrees of T .

Theorem

Suppose that 0 < Var ξ <∞.

(i). There exist constants µ, σ2 > 0 such that

log S(Tn)− µn√
n

d−→ N(0, σ2).

(ii). If ξ has an exponential moment, i.e. E etξ <∞ for some
t > 0, then, assuming a technical condition,

ES(Tn)m ∼ γ′mτnm

for some constants γm > 0 and 1 < τ1 < τ2 < . . . .

Cai and Janson (2018)



Global limit
Assume E ξ = 1 and E ξ2 <∞. In Tn, the typical distance to the
root is of order

√
n, so we scale distances by this factor. The

scaled tree converges, as a compact metric space in the
Gromov–Hausdorff topology, to a random metric space, the
Brownian continuum random tree. (Aldous 1990).

One version of this is the following (essentially Aldous 1990). For a
tree T with nodes v1, . . . , vn in depth-first order, let the height
process hT : [0, n]→ R+ be defined by h(i) = d(0, vi ), the
distance in the tree, (and h(0) = 0) and linear interpolation
between the integers.

Theorem (Aldous)

Suppose that E ξ = 1 and 0 < σ2 := Var ξ <∞. Then

1√
n

hTn(nt)
d−→ 2

σ
Bex(t), t ∈ [0, 1],

in C [0, 1], where Bex(t) is a Brownian excursion.



For E ξ = 1 and E ξ2 =∞, if ξ is in the domain of a stable law,
there are analogues with stable trees and Lévy processes.
[Duquesne, Le Gall]



Let, for a tree T ,

H(T ) := max
v∈T

d(o, v) (the height)

Wk(T ) := |{v ∈ T : d(0, v) = k}|
W (T ) := max

k
Wk(T ) (the width)

Let M := max0≤t≤1 Bex(t).

Theorem (Chassaing, Marckert, Yor)

Assume again E ξ = 1 and 0 < σ2 := Var ξ <∞. Then(
n−1/2H(Tn), n−1/2W (Tn)

) d−→
(
2σ−1M, σM ′

)
,

with M ′
d
= M.

Remark M ′ 6= M. In fact, Corr(M,M ′)
.

= −0.6428 . . .

H(Tn)W (Tn)/n
d−→ 2MM ′ with E(2MM ′)

.
= 3.046.



Theorem (Addario-Berry, Devroye, J)

Assume E ξ = 1 and 0 < σ2 := Var ξ <∞. Then, uniformly in
x > 0 and n ≥ 1,

P
(
H(Tn) > x

√
n
)
≤ Ce−cx

2

P
(
W (Tn) > x

√
n
)
≤ Ce−cx

2

Corollary

With the same assumptions

E
(
W (Tn)r

)
/nr/2 → σr2−r/2r(r − 1)Γ(r/2)ζ(r),

E
(
H(Tn)r

)
/nr/2 → σ−r2r/2r(r − 1)Γ(r/2)ζ(r).

Problem What happens when Var ξ =∞?
Is still EH(Tn) = O(

√
n)? Is EH(Tn) = o(

√
n)?



Part II – general CMJ branching processes

A Crump–Mode–Jagers process is a branching process in
continuous time, where each individual has a random number N of
children (with 0 ≤ N ≤ ∞), born at times when the individual
itself has ages ξ1 ≤ ξ2 . . . ; these are also random (and may be
dependent in any way). (Technically, best seen as a point process.)

Different individuals have i.i.d. life stories.

Let T∞ be the complete family tree of the process, starting with a
single individual born at time 0, and let Tt be the subtree of
individuals born up to time t.

We are interested in cases when T∞ is infinite but each Tt a.s. is
finite. Thus assume EN > 1 (supercritical case) and assume for
simplicity N ≥ 1.



Let Zt := |Tt |, the number of individuals at time t.

More generally, a characteristic of an individual is a random
function φ of the age t ≥ 0; we assume φ(t) ≥ 0 and φ ∈ D[0,∞).
Let, where σx is the time individual x is born,

Zφ
t :=

∑
x :σx≤t

φx(t − σx),

the total characteristic of all individuals existing at time t.



Known results (Crump, Mode, Jagers, Nerman, et al):

Assume some technical conditions.

I There exists α > 0 (the Malthusian parameter), such that

e−αtZt
a.s.−→W

for some random variable W > 0.

I More generally,
e−αtZφ

t
a.s.−→ mφW

for a constant mφ > 0.

I Hence
Zφ
t /Zt

a.s.−→ mφ.



Fix a characteristic ψ.

Define τn := inf{t : Zψ
t ≥ n} and Tn := Tτ(n).

Main example : ψ = 1.
Tn has n nodes (if birth times are a.s. distinct).

Remark The height of Tn is of order log n.

Thus lower, and more branched, than a conditioned
Galton–Watson tree. (Height order

√
n.)



Fringe trees

Theorem

(i). (Annealed version.) The random fringe tree T ∗n converges in
distribution to the random tree T = Tτ , where τ ∼ Exp(α) is
a random time, independent of T .

(ii). (Quenched version.) For every finite tree T ,

P(T ∗n = T | Tn) =
|{v : Tn;v = T}|

|Tn|
a.s.−→ P(T = T ).

Remark (ii) is a LLN type result. Is there a corresponding CLT?
I.e., is |{v : Tn;v = T}| asymptotically normal?

Partial result: Sometimes, but not always!
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Extended fringe trees

Define a sin-tree T̃ as follows:

I Start with a copy of the branching process, starting with o
born at time 0.

I Give o an infinite line of ancestors, o(1), o(2), . . . , each having
a modified life history where one child is distinguished, and
called heir, and the probability is weighted by a factor e−αξ,
where ξ is the time the heir is born.

I Let the heir of o(i) be o(i−1). This defines the (negative) birth
times of the ancestors. Let all other children of the ancestors
start new copies of T .



Theorem

(i). (Annealed.) The extended fringe tree of Tn converges in
distribution to T̃ .

(ii). (Quenched.) This holds also conditioned on Tn, a.s.



Random recursive tree

Example

Children born with independent Exp(1) waiting times, i.e.,
according to a Poisson process with rate 1. The branching process
is the Yule process.

Tn is the random recursive tree. The next node is added as a child
to a uniformly chosen node.



General preferential attachment tree

Example

Let (wk)∞0 be a sequence of weights with wk ≥ 0 and w0 > 0.

Grow a tree by choosing the mother of each new node randomly
with probability proportional to wd where d is the outdegree
(number of existing children).

Tn where the waiting time for child k is Exp(wk−1).

Standard case: wk = k + 1.

Linear case: wk = χk + ρ.
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Tn where the waiting time for child k is Exp(wk−1).

Standard case: wk = k + 1.

Linear case: wk = χk + ρ.



Binary search tree

Example

Each individual gets two children, one left and one right; each after
an Exp(1) time (independent).



m-ary search tree (with external nodes)

Example

m ≥ 2 fixed.

A newborn has 0 “keys”. It get m − 1 keys after independent
waiting times Y1, . . . ,Ym−1 with Yi ∼ Exp(i). When the last key
arrives, m children are born.

ψ(t) is the number of keys at time t.



Fragmentation trees

Example

Start with an object of mass x0 > 0; break it ito b pieces with
masses V1x0, . . . ,Vbx0, where (V1, . . . ,Vb) is a random vector
with Vi ≥ 0 and

∑
i Vi = 1. Continue recursively with each piece

of mass ≥ x1, using a new copy of (V1, . . . ,Vb) each time.

Regard the fragments of masses ≥ x1 seen during the process as
nodes in the fragmentation tree.

CMJ process: An individual has b children, born at times
ξ1, . . . , ξb with ξi := − log Vi .

The fragmentation tree is the tree Tlog(x0/x1).



THE END


