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The model

DFS in a digraph:

I Start with an arbitrary vertex.

I Explore the arcs from that vertex one by one

I When an arc is found that leads to a vertex that has not been
seen before, explore all arcs from this vertex in the same way,
recursively, before proceeding

I When there are no more arcs found, we have created a tree
containing all descendants of the first vertex. If there is any
vertex left, start again with a new vertex, and repeat until all
vertices are explored.

This generates a spanning forest (the depth-first forest) in the
digraph.



Figure: Example of a depth-first forest (solid). (Courtesy of Donald
Knuth.)



The random digraph:

I The random digraph has n vertices. Each vertex v has a
random outdegree ηv ; these are i.i.d. (independent and
identically distributed). We denote their distribution by P.

I The endpoint of the ηv arcs from v are chosen randomly,
uniformly among all vertices (including v) and independently.

I We consider asymptotics as n→∞ and the degree
distribution P is fixed. (Extensions to P = Pn?)

Remark. The digraph is really a multi-digraph, since loops and
parallel arc may occur. (But they are few, and unimportant.)



Note that we can generate the random digraph while we do the
DFS: each time we visit a new vertex v , we sample its outdegree
ηv .

Knuth asked in particular about the case when P is a geometric
distribution Ge(1− p) (0 < p < 1). In this case, the process is
almost memory-free; each time we arrive or return to a vertex, we
toss a coin and:

I with probability p construct and follow a new arc to a random
vertex;

I with probability 1− p leave the vertex and return to its parent.

Today mainly the geometric case. The general case is treated in
detail, by a variation of the method, in our full paper (in
preparation).
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Geometric outdegrees

Assume that the outdegree distribution is geometric Ge(1− p) for
some fixed 0 < p < 1, and thus has mean

λ := E η =
p

1− p
.

Let vt be the t-th vertex discovered by the DFS (t = 1, . . . , n),
and let d(t) be the depth of vt in the resulting depth-first forest,
i.e., the number of tree edges that connect the root of the current
tree to vt . The first found vertex v1 is a root, and thus d(1) = 0.

The quantity d(t) follows a Markov chain with transitions
(1 ≤ t < n):
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I d(t + 1) = d(t) + 1. For some k ≥ 1, vt has at least k
outgoing arcs, the first k − 1 arcs lead to vertices already
visited, and the kth arc leads to a new vertex. Probability:

∞∑
k=1

pk
( t
n

)k−1(
1− t

n

)
=

(1− t/n)p

1− pt/n
. (1)

I d(t + 1) = d(t), assuming d(t) > 0. All arcs from vt lead to
already visited vertices, i.e., the first case does not happen;
furthermore, the parent of vt has at least one future (not yet
seen) arc leading to an unvisited vertex. These two events are
independent. Moreover, by the lack-of-memory property, the
second event has the probability (1). Probability:(

1− (1− t/n)p

1− pt/n

)(1− t/n)p

1− pt/n
. (2)



I d(t + 1) = d(t)− `, assuming d(t) > ` ≥ 1.
Similar. All arcs from vt lead to already visited vertices, and
so do all future arcs from the ` nearest ancestors of vt , but
not from the (`+ 1)th. Probability:(

1− (1− t/n)p

1− pt/n

)`+1 (1− t/n)p

1− pt/n
. (3)

I d(t + 1) = d(t)− `, assuming d(t) = ` ≥ 0.
Similar, except that the (`+ 1)th ancestor does not exist and
we ignore it. Probability:(

1− (1− t/n)p

1− pt/n

)`+1
. (4)



We can summarize this in the formula

d(t + 1) = max
(
d(t) + 1− ξt , 0

)
where ξt is a random variable, independent of the history, with the
geometric distribution Ge(πt), where

πt :=
(1− t/n)p

1− pt/n
= 1− 1− p

1− pt/n
.

Define

d̃(t) :=
t−1∑
i=1

(1− ξi ),

this is a sum of independent random variables. Induction yields

d(t) = d̃(t)− min
1≤j≤t

d̃(j), 1 ≤ t ≤ n.

Remark. Similar formulas have been used for other, related,
problems with random graphs and trees, where trees have been
coded as walks, see for example Aldous (1997). Note that in our
case, d̃(t) may have negative jumps of arbitrary size.



Let θ := t/n. Then, uniformly for 0 ≤ θ ≤ θ∗ for any θ∗ < 1,

E
[
d̃(t)

]
=

t−1∑
i=1

(1− E ξi ) =
t−1∑
i=1

(
1− 1− p

p(1− i/n)

)
= n˜̀(θ) + O(1),

where

˜̀(θ) :=

∫ θ

0

(
1− 1

λ(1− x)

)
dx = θ +

1

λ
log(1− θ).

Note that the derivative ˜̀′(θ) = 1− λ−1/(1− θ) is (strictly)
decreasing on (0, 1), i.e., ˜̀ is concave, and ˜̀(θ)→ −∞ as θ → 1.



Two (three) cases

I If λ > 1 (the supercritical case), then ˜̀′(0) > 0. There exists
θ1 ∈ (0, 1) with ˜̀(θ1) = 0.˜̀(θ) > 0 for θ ∈ (0, θ1), and ˜̀(θ) < 0 for θ ∈ (θ1, 1).

I If λ = 1 (critical) or λ < 1 (subcritical), then ˜̀′(0) ≤ 0.˜̀(θ) < 0 for θ ∈ (0, 1). Let θ1 := 0.

In all cases, θ1 is the largest solution in [0, 1] to

log(1− θ1) = −λθ1.

or
1− θ1 = exp(−λθ1)

which shows that θ1 equals the survival probability of a
Galton–Watson process with Po(λ) offspring distribution.



Let ˜̀+(θ) := max
(˜̀(θ), 0

)
.

Theorem

max
1≤t≤n

∣∣d(t)− n˜̀+(t/n)
∣∣ = OL2(n1/2).

In the supercritical case, it follows that the depth-first forest whp
consist of:

I Possibly one or a few small trees for small t

I One giant tree of size ≈ θ1n
I linearly many small trees for t > nθ1
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Moreover, Gaussian fluctuations of d̃(t) and d(t):

Theorem
In the supercritical case, in the space D[0, θ1),

n−1/2
(
d(bnθc)− n˜̀+(θ)

) d−→ Z (θ)

where Z (θ) is the continuous Gaussian process

Z (θ) = B

(
λ−2

θ

1− θ
− λ−1 log(1− θ)

)
for a Brownian motion B(x).



Let θ0 be the maximum point of ˜̀+(θ).
If λ > 1 the θ0 = 1− λ−1, otherwise θ0 = 0.

Corollary

The height Υ of the depth-first forest is

Υ := max
1≤t≤n

d(t) = υn + OL2(n1/2),

where

υ = υ(p) := ˜̀+(θ0) =

{
0, 0 < λ ≤ 1,

1− λ−1 − λ−1 log λ, λ > 1.

Moreover, the height Υ is asymptotically normally distributed.
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Corollary

The average depth d in the depth-first forest is

d :=
1

n

n∑
t=1

d(t) = αn + OL2(n1/2),

where

α = α(p) :=
1

2
θ21 −

1

λ

(
(1− θ1) log(1− θ1) + θ1

)
=
λ− 1

λ
θ1 −

1

2
θ21.

We have α = 0 if and only if λ ≤ 1, i.e., p ≤ 1/2.

Remark. When p > 1
2 , the height is thus linear in n, unlike many

other types of random trees.
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Types of arcs

Figure: Example of a depth-first forest (jungle). (Courtesy of Donald
Knuth.) Tree arcs are solid (e.g. 9©→ 3©). For example, 3©99K 3© is a
loop, 2©99K 3© is a back arc, 9©99K 7© is a forward arc, 8©99K 4© and
0©99K 2© are cross arcs.



Theorem
Let L, T , B, F and C be the numbers of loops, tree arcs, back
arcs, forward arcs, and cross arcs in the random digraph. Then

L = OL2(1),

T = τn + OL2(n1/2),

B = βn + OL2(n1/2),

F = ϕn + OL2(n1/2),

C = χn + OL2(n1/2),

where

τ := χ := θ1 +
λ

2
(1− θ1)2,

β := ϕ := λα = (λ− 1)θ1 −
λ

2
θ21.



The equalitites τ = χ and β = ϕ mean asymptotic equality of the
corresponding expectations of numbers of arcs. In fact, there are
exact equalities.

Theorem
For any n, ET = EC and

EB = EF = λE d = βn + O(n1/2).

Remark. Knuth conjectures, based on exact formulas for small n,
that, much more strongly, B and F have the same distribution for
every n. (Note that T and C do not have the same distribution;
we have T ≤ n − 1, while C may take arbitrarily large values.)



General outdegree distribution P

For a general outdegree distribution, the depth is no longer a
Markov chain.

Substitute: The DFS uses a stack of unexplored arcs, for which we
have seen the start vertex but not the end. The stack evolves as
follows:

S1 If the stack is empty, pick a new vertex v that has not been
seen before (if there is no such vertex, we have finished).
Otherwise, pop the last arc from the stack, and reveal its
endpoint v (which is uniformly random over all vertices). If v
already is seen, repeat.

S2 (v is now a new vertex) Reveal the outdegree η of v and add
to the stack η new arcs from v , with unspecified endpoints.
GOTO S1

The size I (t) of the stack is a Markov chain.



Let

ι̃+(θ) :=

{
λθ + log(1− θ), 0 ≤ θ ≤ θ1,
0, θ1 ≤ θ ≤ 1.

Theorem
Suppose that the outdegree distribution has finite variance. Then

max
1≤t≤n

∣∣I (t)− nι̃+(t/n)
∣∣ = OL2(n1/2).

The depth d(t) and other properties can be recovered from I (t).

Many (but not all) results extend to general P.


