
The number of descendants in a random directed
acyclic graph

Svante Janson

29th Nordic Conference in Mathematical Statistics,
NORDSTAT 2023, Gothenburg

21 June, 2023



Directed acyclic graph (dag)

A dag is a directed acyclic (multi)graph.

A d-dag is a dag where all vertices have outdegrees d , except one
or several roots with outdegree 0.

d is a positive integer; we will take d = 2.

It is sometimes natural to direct all edges in the opposite direction.
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Our model: random d-dag
The random d-dag Dn on n vertices is constructed recursively:

1. Start with a single root 1,

2. Add vertices 2, 3, . . . , n one by one. Each new vertex k is
given d outgoing edges with endpoints uniformly and
independently chosen at random among the already existing
vertices {1, . . . , k − 1}.

(We thus allow multiple edges, so Dn is a directed multigraph.)

Remark. For d = 1, the model becomes the well known random
recursive tree; this case is quite different from d > 1 and is
excluded below.

Two possible minor variations (asymptotically the same for us):

1. Start with any number m ≥ 1 of roots.

2. Select the d parents of a new node without replacement, thus
not allowing multiple edges. (Start with ≥ d roots.)
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Earlier results

This model has been studied by several authors, mainly in
computer science, for example as a model for a random circuit
where each gate has d inputs chosen at random (D́ıaz, Serna,
Spirakis & Torán 1994, and others).

Earlier results include results on vertex degrees and leaves, and on
lengths of paths and depth.

Tiffany Lo, a postdoc in Uppsala working with me and Cecilia
Holmgren, has just shown results on subgraphs (unpublished).



Problem today

Problem
How many descendants does vertex n have?

In other words, how many vertices can be reached by a directed
path from vertex n? In the random circuit interpretation, this is
the number of gates (and inputs) that are used in the calculation
of a given output.

As far as we know, this problem was first considered by Knuth
(2023).

Notation:
Dn is the random d-dag defined above.
D̂n is the subdigraph of Dn consisting of n and all vertices and
edges that can be reached by a directed path from vertex n.
Xn := |D̂n|, the number of descendants of n.

We colour D̂n red.
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Main result

Let χ4 denote a random variable with the χ(4) distribution.

Theorem
Let d = 2. Then, as n→∞,
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Analysis

We construct the red subgraph D̂n backwards, going from vertex n
backwards to 1:

1. Start by declaring vertex n to be red, and all others black. Let
k := n.

2. If vertex k is red, then create two new edges from that vertex,
with endpoints that are randomly drawn from 1, . . . , k − 1,
and declare these endpoints red.
If k is black, delete k (and do nothing else).

3. If k = 2 then STOP; otherwise let k := k − 1 and REPEAT
from 2.



Definitions. For k = n − 1, . . . , 1:

Yk is the number of red edges that start in ≥ k + 1 and end in ≤ k .

Zk is the number of these edges that end in k .

Jk := 1{Zk ≥ 1}, which equals the indicator that k is red (i.e. can
be reached from n).

Yk−1 = Yk − Zk + 2Jk = Yk − Zk + 2 · 1{Zk ≥ 1}.

Now, do not reveal the endpoint of the edges until needed. Then
Yn−1, . . . ,Y1 is a Markov chain. Conditioned on the history, Zk

has a binomial distribution

Zk ∈ Bin(Yk , 1/k).

Thus we have a stochastic recursion of Markov type for Yk .
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Simple calculations yield (Fk is the σ-field generated by the
history)
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Define

Wk := (k + 1)Yk ,

Then

E
(
Wk−1 | Fk

)
= k E

(
Yk−1 | Fk

)
≤ (k + 1)Yk = Wk .

Thus W0, . . . ,Wn−1 is a reverse supermartingale.
(I.e. W−j , −(n − 1) ≤ j ≤ 0, is a supermartingale.)



Phase I: a Yule process

For n > k ≥ n1 := bn/ log nc, there are w.h.p. no collisions (two
edges with the same endpoint) Thus the process is essentially a
branching process, where an individual born at x lives until xU with
U ∈ U(0, 1), and then splits into 2 children. (Recall that the time
x goes backwards.)

Changing time to t := log(n/x) ∈ (0,∞) gives a Yule process
(binary splitting and Exp(1) life lengths), started with 2 individuals
(edges).

Thus, for n > k ≥ n1, the red digraph D̂n is essentially a Yule tree.

It follows that (using superscript (n) for clarity)

Ξ(n) =
W

(n)
n1

n
d−→ ξ ∈ Γ(2).
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Phase II: nothing happens for a long time

Fix n2 = n
(n)
2 such that n1 > n2 �

√
n.

Simple estimates of drift and variance for the supermartingale Wk

shows that Wk/n is essentially constant for k ∈ [n2, n1]. Formally

max
n1≥k≥n2
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Phase III: deterministic decay from a random level

For k ≤ n2, the process Wk still evolves (asymptotically) in a
deterministic way (this is essentially a law of large numbers), but
from the random level in Phase II.

Martingale methods yield, again using simple estimates of drift and
variance,
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where the stochastic process B(t) is differentiable and satisfies
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t

(
1− e−B(t)

)
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Solving this equation yields, using Phase II as an initial condition,
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The number of red vertices

We have (recall that Jk is the indicator that k is red.)

E
(
Jk | Fk

)
= 1−

(
1− 1

k

)Yk

= 1−
(

1− 1

k

)Wk/k

and, again using martingale methods, it follows that
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(Where op(1)
p−→ 0.)

QED



Conclusions

Asymptotically:

1. The number of red vertices is of order n1/2.

2. Most of these are in the range k = O(n1/2), where the density
of red vertices is positive.

3. This density is random. However, the random choices in this
dense region do not matter (law of large numbers); the
density (and thus the total number) is determined by the
random choices for the few red vertices k of order n.
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