The number of descendants in a random directed acyclic graph

Svante Janson

29th Nordic Conference in Mathematical Statistics, NORDSTAT 2023, Gothenburg

21 June, 2023

Directed acyclic graph (dag)

A dag is a directed acyclic (multi)graph.
A $d-d a g$ is a dag where all vertices have outdegrees d, except one or several roots with outdegree 0 .
d is a positive integer; we will take $d=2$.

Directed acyclic graph (dag)

A dag is a directed acyclic (multi)graph.
A $d-d a g$ is a dag where all vertices have outdegrees d, except one or several roots with outdegree 0 .
d is a positive integer; we will take $d=2$.
It is sometimes natural to direct all edges in the opposite direction.

Our model: random d-dag

The random d-dag D_{n} on n vertices is constructed recursively:

1. Start with a single root 1 ,
2. Add vertices $2,3, \ldots, n$ one by one. Each new vertex k is given d outgoing edges with endpoints uniformly and independently chosen at random among the already existing vertices $\{1, \ldots, k-1\}$.
(We thus allow multiple edges, so D_{n} is a directed multigraph.)
Remark. For $d=1$, the model becomes the well known random recursive tree; this case is quite different from $d>1$ and is excluded below.

Our model: random d-dag

The random d-dag D_{n} on n vertices is constructed recursively:

1. Start with a single root 1 ,
2. Add vertices $2,3, \ldots, n$ one by one. Each new vertex k is given d outgoing edges with endpoints uniformly and independently chosen at random among the already existing vertices $\{1, \ldots, k-1\}$.
(We thus allow multiple edges, so D_{n} is a directed multigraph.)
Remark. For $d=1$, the model becomes the well known random recursive tree; this case is quite different from $d>1$ and is excluded below.

Two possible minor variations (asymptotically the same for us):

1. Start with any number $m \geq 1$ of roots.
2. Select the d parents of a new node without replacement, thus not allowing multiple edges. (Start with $\geq d$ roots.)

Earlier results

This model has been studied by several authors, mainly in computer science, for example as a model for a random circuit where each gate has d inputs chosen at random (Díaz, Serna, Spirakis \& Torán 1994, and others).

Earlier results include results on vertex degrees and leaves, and on lengths of paths and depth.

Tiffany Lo, a postdoc in Uppsala working with me and Cecilia Holmgren, has just shown results on subgraphs (unpublished).

Problem today

Problem

How many descendants does vertex n have?
In other words, how many vertices can be reached by a directed path from vertex n ? In the random circuit interpretation, this is the number of gates (and inputs) that are used in the calculation of a given output.
As far as we know, this problem was first considered by Knuth (2023).

Problem today

Problem
 How many descendants does vertex n have?

In other words, how many vertices can be reached by a directed path from vertex n ? In the random circuit interpretation, this is the number of gates (and inputs) that are used in the calculation of a given output.
As far as we know, this problem was first considered by Knuth (2023).

Notation:

D_{n} is the random d-dag defined above.
\widehat{D}_{n} is the subdigraph of D_{n} consisting of n and all vertices and edges that can be reached by a directed path from vertex n. $X_{n}:=\left|\widehat{D}_{n}\right|$, the number of descendants of n.
We colour \widehat{D}_{n} red.

Main result

Let χ_{4} denote a random variable with the $\chi(4)$ distribution.
Theorem
Let $d=2$. Then, as $n \rightarrow \infty$,

$$
X_{n} / \sqrt{n} \xrightarrow{\mathrm{~d}} \frac{\pi}{2 \sqrt{2}} \chi_{4}
$$

with convergence of all moments. Hence, for every fixed $r>0$,

$$
\mathbb{E} X_{n}^{r} \sim\left(\frac{\pi}{2}\right)^{r} \Gamma\left(\frac{r}{2}+2\right) n^{r / 2}
$$

and, in particular,

$$
\mathbb{E} X_{n} \sim \frac{3 \pi^{3 / 2}}{8} \sqrt{n}
$$

Analysis

We construct the red subgraph \widehat{D}_{n} backwards, going from vertex n backwards to 1 :

1. Start by declaring vertex n to be red, and all others black. Let $k:=n$.
2. If vertex k is red, then create two new edges from that vertex, with endpoints that are randomly drawn from $1, \ldots, k-1$, and declare these endpoints red.
If k is black, delete k (and do nothing else).
3. If $k=2$ then STOP; otherwise let $k:=k-1$ and REPEAT from 2 .

Definitions. For $k=n-1, \ldots, 1$:
Y_{k} is the number of red edges that start in $\geq k+1$ and end in $\leq k$. Z_{k} is the number of these edges that end in k.
$J_{k}:=\mathbb{1}\left\{Z_{k} \geq 1\right\}$, which equals the indicator that k is red (i.e. can be reached from n).

$$
Y_{k-1}=Y_{k}-Z_{k}+2 J_{k}=Y_{k}-Z_{k}+2 \cdot \mathbf{1}\left\{Z_{k} \geq 1\right\}
$$

Definitions. For $k=n-1, \ldots, 1$:
Y_{k} is the number of red edges that start in $\geq k+1$ and end in $\leq k$.
Z_{k} is the number of these edges that end in k.
$J_{k}:=\mathbb{1}\left\{Z_{k} \geq 1\right\}$, which equals the indicator that k is red (i.e. can be reached from n).

$$
Y_{k-1}=Y_{k}-Z_{k}+2 J_{k}=Y_{k}-Z_{k}+2 \cdot \mathbf{1}\left\{Z_{k} \geq 1\right\}
$$

Now, do not reveal the endpoint of the edges until needed. Then Y_{n-1}, \ldots, Y_{1} is a Markov chain. Conditioned on the history, Z_{k} has a binomial distribution

$$
Z_{k} \in \operatorname{Bin}\left(Y_{k}, 1 / k\right)
$$

Thus we have a stochastic recursion of Markov type for Y_{k}.

Simple calculations yield (\mathcal{F}_{k} is the σ-field generated by the history)

$$
\begin{aligned}
& \mathbb{E}\left(Y_{k-1} \mid \mathcal{F}_{k}\right)=Y_{k}-\frac{1}{k} Y_{k}+2\left(1-\left(1-\frac{1}{k}\right)^{Y_{k}}\right) . \\
& \mathbb{E}\left(Y_{k-1} \mid \mathcal{F}_{k}\right) \leq Y_{k}+\frac{1}{k} Y_{k}=\frac{k+1}{k} Y_{k} .
\end{aligned}
$$

Define

$$
W_{k}:=(k+1) Y_{k},
$$

Then

$$
\mathbb{E}\left(W_{k-1} \mid \mathcal{F}_{k}\right)=k \mathbb{E}\left(Y_{k-1} \mid \mathcal{F}_{k}\right) \leq(k+1) Y_{k}=W_{k}
$$

Thus W_{0}, \ldots, W_{n-1} is a reverse supermartingale. (I.e. $W_{-j},-(n-1) \leq j \leq 0$, is a supermartingale.)

Phase I: a Yule process

For $n>k \geq n_{1}:=\lfloor n / \log n\rfloor$, there are w.h.p. no collisions (two edges with the same endpoint) Thus the process is essentially a branching process, where an individual born at \times lives until $x U$ with $U \in U(0,1)$, and then splits into 2 children. (Recall that the time x goes backwards.)
Changing time to $t:=\log (n / x) \in(0, \infty)$ gives a Yule process (binary splitting and $\operatorname{Exp}(1)$ life lengths), started with 2 individuals (edges).
Thus, for $n>k \geq n_{1}$, the red digraph \widehat{D}_{n} is essentially a Yule tree.

Phase I: a Yule process

For $n>k \geq n_{1}:=\lfloor n / \log n\rfloor$, there are w.h.p. no collisions (two edges with the same endpoint) Thus the process is essentially a branching process, where an individual born at x lives until $x U$ with $U \in U(0,1)$, and then splits into 2 children. (Recall that the time x goes backwards.)
Changing time to $t:=\log (n / x) \in(0, \infty)$ gives a Yule process (binary splitting and $\operatorname{Exp}(1)$ life lengths), started with 2 individuals (edges).
Thus, for $n>k \geq n_{1}$, the red digraph \widehat{D}_{n} is essentially a Yule tree. It follows that (using superscript ${ }^{(n)}$ for clarity)

$$
\bar{\Xi}^{(n)}=\frac{W_{n_{1}}^{(n)}}{n} \xrightarrow{\mathrm{~d}} \xi \in \Gamma(2) .
$$

Phase II: nothing happens for a long time

Fix $n_{2}=n_{2}^{(n)}$ such that $n_{1}>n_{2} \gg \sqrt{n}$.
Simple estimates of drift and variance for the supermartingale W_{k} shows that W_{k} / n is essentially constant for $k \in\left[n_{2}, n_{1}\right]$. Formally

$$
\max _{n_{1} \geq k \geq n_{2}}\left|\frac{W_{k}}{n}-\equiv(n)\right| \xrightarrow{\mathrm{p}} 0
$$

Phase III: deterministic decay from a random level

For $k \leq n_{2}$, the process W_{k} still evolves (asymptotically) in a deterministic way (this is essentially a law of large numbers), but from the random level in Phase II.

Martingale methods yield, again using simple estimates of drift and variance,

$$
n^{-1} W_{t \sqrt{n}}^{(n)} \xrightarrow{\mathrm{d}} t^{2} \mathcal{B}(t) \quad \text { in } D[0, \infty)
$$

where the stochastic process $\mathcal{B}(t)$ is differentiable and satisfies

$$
\mathcal{B}^{\prime}(t)=-\frac{2}{t}\left(1-e^{-\mathcal{B}(t)}\right)
$$

Solving this equation yields, using Phase II as an initial condition,

$$
n^{-1} W_{t \sqrt{n}}^{(n)}-t^{2} \log \left(1+\bar{\Xi}^{(n)} / t^{2}\right) \rightarrow 0 \quad \text { in } D[0, \infty)
$$

The number of red vertices

We have (recall that J_{k} is the indicator that k is red.)

$$
\mathbb{E}\left(J_{k} \mid \mathcal{F}_{k}\right)=1-\left(1-\frac{1}{k}\right)^{Y_{k}}=1-\left(1-\frac{1}{k}\right)^{W_{k} / k}
$$

and, again using martingale methods, it follows that

$$
\begin{aligned}
\frac{X^{(n)}}{\sqrt{n}} & =\int_{0}^{\infty} \frac{\Xi^{(n)}}{\Xi_{(n)}^{(n)}+t^{2}} \mathrm{~d} t+o_{\mathrm{p}}(1)=\frac{\pi}{2} \sqrt{\Xi^{(n)}}+o_{\mathrm{p}}(1) \\
& \xrightarrow{\mathrm{d}} \frac{\pi}{2} \sqrt{\xi}, \quad \xi \in \Gamma(2) .
\end{aligned}
$$

(Where $o_{p}(1) \xrightarrow{\mathrm{p}} 0$.)
QED

Conclusions

Asymptotically:

1. The number of red vertices is of order $n^{1 / 2}$.
2. Most of these are in the range $k=O\left(n^{1 / 2}\right)$, where the density of red vertices is positive.
3. This density is random. However, the random choices in this dense region do not matter (law of large numbers); the density (and thus the total number) is determined by the random choices for the few red vertices k of order n.

References

Svante Janson: Descendants in a random directed acyclic graph. arXiv:2302.12467
http://www2.math.uu.se/~svante/papers/\#374
and references to other authors there

