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General problem

Additive functional: Let f (T ) (the toll function) be a given
functional of rooted trees, and define

F (T ) :=
∑
v∈T

f (Tv ),

where Tv is the fringe tree rooted at v , i.e. the subtree consisting
of v and all its descendants.

Problem: Study asymptotics of F (Tn) (mean, variance,
distribution, . . . ) when Tn is some random tree of “size” n, and
n→∞.



Today, the random tree Tn will be a conditioned Galton–Watson
tree with |Tn| = n (the number of vertices); the offspring
distribution ξ will be critical with finite variance 0 < σ2 <∞.
(Higher moments assumed only occasionally.)

The toll function will be simply

fα(T ) := |T |α

for a constant α.

Examples.

α = 0 is trivial: F0(T ) = |T |.
(The derivative at 0 is the “shape functional”. No time today.)

α = 1 gives F1(T ) = the total pathlength.



We allow α to be complex, and we consider Fα(T ) as a function of
α ∈ C. We write

Xn(α) := Fα(Tn) =
∑
v∈Tn

|(Tn)v |α

X̃n(α) := Xn(α)− EXn(α).



Remark

Why complex α?

I Useful in proofs (also for real α) since powerful methods of
analytic functions can be used.

I Gives us new problems to study. How do the phase transitions
look in the complex plane?



Remark

Why complex α?

I Useful in proofs (also for real α) since powerful methods of
analytic functions can be used.

I Gives us new problems to study. How do the phase transitions
look in the complex plane?



There are two phase transitions for real α: α = 0 and α = 1
2 .

Thus three phases in the complex plane:

Re(α) < 0, 0 < Re(α) < 1
2 , Re(α) > 1
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What happens at the boundaries Re(α) = 0 and Re(α) = 1
2?



There are two phase transitions for real α: α = 0 and α = 1
2 .

Thus three phases in the complex plane:

Re(α) < 0, 0 < Re(α) < 1
2 , Re(α) > 1

2 .

What happens at the boundaries Re(α) = 0 and Re(α) = 1
2?



Let Tn,∗ be a random fringe tree, i.e. (Tn)v for a random vertex
v ∈ Tn. Then

EXn(α) =
∞∑
k=0

kαn P(|Tn,∗| = k).

Let T be an (unconditioned) Galton–Watson tree with the given
offspring distribution. Then Tn,∗ has asymptotically the distribution
of T (Aldous, 1991). Recall that

P(|T | = k) ∼ ck−3/2.

Consequently, the number of fringe trees of size k in Tn is
≈ cnk−3/2.

Hence, EXn(α) is dominated by small fringe trees for Reα < 1/2,
and by large fringe trees for Reα > 1/2.

Similarly, the variance, and distribution, are dominated by small
fringe trees for Reα < 0, and by large fringe trees for Reα > 0.
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Let

µ(α) := E |T |α =
∞∑
k=1

kα P(|T | = k).

This converges for Re(α) < 1
2 , and defines an analytic function in

this half-plane.

However,
µ(α)→∞ as α↗ 1

2 .



Theorem

(i). If Re(α) < 1
2 , then

EXn(α) = µ(α)n + o(n)

(ii). If Re(α) > 1
2 , then

EXn(α) =
1√
2σ

Γ(α− 1
2)

Γ(α)
nα+

1
2 + o(nα+

1
2 )

(iii). If α = 1
2 , then

EXn(1/2) =
1√

2πσ2
n log n + o(n log n).



Critical line Re(α) = 1
2

Recall that µ(α)→∞ as α↗ 1
2 .

Theorem
The function µ(α) has a continuous extension to Re(α) = 1

2 ,
α 6= 1/2.
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Let ξ be the offspring distribution.

Theorem
Suppose that E ξ2+δ <∞ where 0 < δ ≤ 1.
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function in Re(α) < 1
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2 with a simple pole at 1
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With more moments, µ(α) can be extended further. In particular,
if E ξr <∞ for all r > 0, then µ(α) is meromorphic in C, with
(simple) poles only at 1
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The additional moment assumption is really needed here.

Theorem
There exists ξ with E ξ = 1 and E ξ2 <∞ such that µ(α) cannot
be extended analytically across Re(α) = 1

2 (at any point).



Asymptotic distribution

Recall that Xn(α) := X̃n(α) + EXn(α).

Hence it suffices to consider X̃n(α) and then combine with the
results above for EXn(α).



Re(α) < 0

Let H− := {α : Re(α) < 0}.

Theorem

I There exists a random analytic function X̃ (α), α ∈ H−, such
that, as n→∞,

n−1/2X̃n(α)
d−→ X̃ (α)

for each fixed α ∈ H−, and uniformly on each compact subset
of H−. (I.e., in the space H(H−) of analytic functions on H−.)

I X̃ (α) is a complex centred Gaussian, for every fixed α ∈ H−.
Also jointly.

I The covariance matrix of X̃ (α) depends on the offspring
distribution.

In this case Xn(α) = Fα(Tn) is dominated by the many small fringe
trees. Hence normality, but not universality.



Re(α) < 0

Let H− := {α : Re(α) < 0}.

Theorem

I There exists a random analytic function X̃ (α), α ∈ H−, such
that, as n→∞,

n−1/2X̃n(α)
d−→ X̃ (α)

for each fixed α ∈ H−, and uniformly on each compact subset
of H−. (I.e., in the space H(H−) of analytic functions on H−.)

I X̃ (α) is a complex centred Gaussian, for every fixed α ∈ H−.
Also jointly.

I The covariance matrix of X̃ (α) depends on the offspring
distribution.

In this case Xn(α) = Fα(Tn) is dominated by the many small fringe
trees. Hence normality, but not universality.



Re(α) > 0

Let H+ := {α : Re(α) > 0}. (No problems for Re(α) = 1
2 .)

Theorem

I There exists a random analytic function Ỹ (α), α ∈ H+, such
that, as n→∞,

Ỹn(α) := n−α−
1
2 X̃n(α)

d−→ σ−1Ỹ (α)

for each fixed α ∈ H+, and uniformly on each compact subset
of H+. (I.e., in the space H(H+) of analytic functions on H+.)

I Ỹ (α) is not Gaussian.

I Ỹ (α) does not depend on the offspring distribution.

In this case X̃n(α) = Fα(Tn)− EFα(Tn) is dominated by the large
fringe trees. Therefore universality but not normality.
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Critical line Re(α) = 0
Theorem
Assume E ξ2+δ <∞ for some δ > 0. (Conjecture: not needed.)

I For every real t 6= 0, as n→∞,

X̃n(it)√
n log n

d−→ σ−1Z̃ (it),

where Z̃ (it) is a symmetric complex normal variable with
variance

E |Z̃ (it)|2 =
1√
π

Re
Γ(it − 1

2)

Γ(it)
> 0. (1)

I Z̃ (it) thus does not depend on the offspring distribution.

I The convergence holds jointly for any finite number of t, with
independent limits Z̃ (it) for all t > 0.

I Thus no convergence to a continuous random function on iR.



Without centring
Let, for Re(α) > 0 and α 6= 1

2 ,

Y (α) := Ỹ (α) +
1√
2σ

Γ(α− 1
2)

Γ(α)
.

Theorem

(i). If Re(α) > 1
2 , then

Yn(α) := n−α−
1
2Xn(α)

d−→ σ−1Y (α).

(ii). If 0 < Re(α) ≤ 1
2 and α 6= 1

2 , then

n−α−
1
2 [Xn(α)− nµ(α)]

d−→ σ−1Y (α).



Moment convergence

Theorem
All moments converge in the limit theorems above. If Re(α) > 0
and α 6= 1

2 , then the limiting moments κ` := EY (α)` satisfy the
recursion

κ1 =
Γ(α− 1

2)
√

2 Γ(α)
,

and, for ` ≥ 2, with α′ := α + 1
2 ,

κ` =
`Γ(`α′ − 1)√
2 Γ(`α′ − 1

2)
κ`−1

+
1

4
√
π

`−1∑
j=1

(
`

j

)
Γ(jα′ − 1

2)Γ((`− j)α′ − 1
2)

Γ(`α′ − 1
2)

κjκ`−j .



Proofs by singularity analysis of generating functions, using
properties of Hadamard products.

Disclaimer. For α = 1
2 , our proof requires that the offspring

distribution ξ satisfies E ξ2+δ <∞ for some δ > 0.



Brownian excursion, Reα > 1
Let e be a standard Brownian excursion. Recall that this is a
random continuous function [0, 1]→ [0,∞).
For a function g and s < t, define

m(g ; s, t) := inf
u∈[s,t]

g(u).

Theorem
If Reα > 1, we can represent the limit Y (α) as

Y (α) = 2α(α− 1)

∫∫
0<s<t<1

(t − s)α−2m(e; s, t) ds dt.

Proof. If we replace e by a suitably scaled version of the contour
process of Tn, then a calculation shows that the integral equals

n−α−
1
2Xn(α) + o(1). The contour process converges to e (Aldous,

1993), and the integral is a continuous functional.



Brownian excursion, Reα > 1/2

Theorem
If Reα > 1/2, we can represent the limit Y (α) as

Y (α) = 2α

∫ 1

0
tα−1e(t) dt

− 2α(α− 1)

∫∫
0<s<t<1

(t − s)α−2[e(t)−m(e; s, t)] ds dt.

Example. α = 1 (total pathlength) yields

Y (1) = 2

∫ 1

0
e(t) dt,

the Brownian excursion area. This case was proved by Aldous
(1993).



Proof: Tightness

Lemma

(i). If Reα < 0, then E |X̃n(α)|2 ≤ C (α)n.

(ii). If Reα > 0, then E |X̃n(α)|2 ≤ C (α)n2Reα+1, and thus
E |Ỹn(α)|2 ≤ C (α).

In both cases C (α) = O(1 + |α|−2).

This shows tightness at each fixed α.



Proof: Magic of analytic functions

Lemma
Let D be a domain in C and let (Yn(z)) be a sequence of random
analytic functions in H(D). Suppose that there exists a function
γ : D → (0,∞), bounded on each compact subset of D, such that

E |Yn(z)| ≤ γ(z)

for every z ∈ D. Then the sequence (Yn) is tight in the space
H(D) of analytic functions on D.

Proof. Cauchy’s integral formula, together with E
∫

=
∫
E.

Hence, the random functions Ỹn(α) are tight in H(H+).
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More magic of analytic functions

Lemma
Let D be a domain in C and let E be a subset of D that has a
limit point in D. (I.e., there exists a sequence zn ∈ E of distinct
points and z∞ ∈ D such that zn → z∞.) Suppose that (Yn) is a
tight sequence of random elements of H(D) and that there exists a
family of random variables {Yz : z ∈ E} such that for each z ∈ E,

Yn(z)
d−→ Yz and, moreover, this holds jointly for any finite set of

z ∈ E. Then Yn
d−→ Y in H(D), for some random function

Y (z) ∈ H(D).

Proof. Subsequences converge, and limits are determined by the
restriction to E , and therefore unique.

Hence, the random functions Ỹn(α) converge in distribution in
H(H+).
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Problem: Brownian excursion, Reα ≤ 1/2

For Reα > 1/2, we have seen above explicit representations of
Ỹ (α) using a Brownian excursion e(t).

We know that almost surely, this extends to an analytic function in
the halfplane H+ = {α : Reα > 0}.

It follows, using general measure theory, that there exist a
mesurable function ψ : C [0, 1]→ H(H+) such that

Y = ψ(e).

Thus there exists a measurable function Ψ : H+ × C [0, 1]→ C
such that

Y (α) = Ψ(α, e), Reα > 0.

However, this is only an existence statement, and we do not know
any explicit representation when Reα ≤ 1/2.
Is there an explicit formula giving Y (α) in terms of e(t) also for
0 < Reα < 1

2?
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THE END


