Asymptotics for the maximum of a random walk with negative increments

Serguei Foss foss@ma.hw.ac.uk

Large Deviations, Lecture 1

Short Instructional Courses, September 2006

Heriot-Watt University Edinburgh

This lecture (SF):

One-dimensional random walk, asymptotics in two main cases (the "classical" and the "heavy-tailed") out of five.

Next lecture (TK):

The LD Principle in \mathbb{R}^1 .

Lectures 3-5 (AP):

General LD Principle and Applications.

There will be 4 additional hours in LD's in the afternoons – for lecturing an additional matherial, discussions, and exercises.

1 Notation and definitions

Consider a sequence $\xi, \xi_1, \xi_2, \ldots$ of independent identically distributed (i.i.d.) random variables (r.v.'s) with a common distribution function $F(x) = \mathbf{P}(\xi \leq x)$. Let

$$S_0 = 0, \quad S_n = \sum_{i=1}^n \xi_i, \quad n \ge 1,$$

$$M_n = \max_{0 \le i \le n} S_i, \quad M = \sup_{n \ge 0} M_n \equiv M_\infty.$$

We are interested in the asymptotics for $\mathbf{P}(M > x)$ when $x \to \infty$.

First, there is 0 - 1 Law:

Either $\mathbf{P}(M < \infty) = 1$ (in other words, M is finite a.s.) or $\mathbf{P}(M = \infty) = 1$ (in other words, M is infinite a.s.).

Further, if

the mean (expectation, drift) of ξ exists (i.e. $\mathbf{E}|\xi|<\infty)$ then

 $\mathbf{P}(M < \infty) = 1$ if and only if $\mathbf{E}\xi = -a < 0$ (se, e.g., Feller [5]).

If the mean does not exist $(\mathbf{E}|\xi| = \infty)$, then M is finite a.s. if and only if

$$\int_0^\infty \frac{x dF(x)}{m(x)} < \infty \tag{1}$$

where $m(x) = \mathbf{E}(\min(x, -\xi) - \text{see Erickson ([4])})$.

Let $\varphi(t) = \mathbf{E}e^{t\xi}$ be a moment generating function of ξ .. Clearly, $\varphi(0) = 1$. If $\varphi(t)$ is finite for some t > 0, then it is finite for all 0 < u < t and convex in this interval since $\varphi''(u) = \mathbf{E}(\xi^2 e^{u\xi}) \ge 0$.

There are 5 cases of interest:

(I) the mean does not exist, but condition (1) holds;

(II) a > 0 and $\varphi(t) = \infty$ for all t > 0 (the case of heavy-tailed distribution);

(III) a > 0 and there exists $\gamma > 0$ such that

$$\varphi(\gamma) = 1 \tag{2}$$

and $\varphi'(\gamma) < \infty$ (this is the "classical case", here $\varphi'(\gamma)$ means the left derivative);

(IV) a > 0, (2) holds, but $\varphi'(\gamma) = \infty$;

(V) a > 0, $\varphi(t) < \infty$ for some t > 0, but (2) is violated.

We consider today only cases (II) and (III). For the asymptotics in other cases, see recent papers [3], [8], [6], and further references therein.

2 Applications

(a) Queueing theory. Stationary (limiting) waiting time W in a single server queue coincides in distribution with the supremum M of an associated random walk.

Consider a single-server queue with i.i.d. interarrival times t_n and independent of them i.i.d. service times σ_n . Assume that customer 1 arrives in an empty system. Then its waiting time (before service) is $W_1 = 0$. Customer 2 arrives t_1 units of time later, and its waiting time is $W_2 = \max(0, \sigma_1 - t_1)$. By induction,

$$W_{n+1} = \max(0, W_n + \sigma_n - t_n).$$

Let $\xi_n = \sigma_n - t_n$. Note that

$$W_{n+1} = \max(0, W_n + \xi_n)$$

= $\max(0, \max(0, W_{n-1} + \xi_{n-1}) + \xi_n)$
= $\max(0, \xi_n, \xi_n + \xi_{n-1} + W_{n-1})$
= ...
= $\max(0, \xi_n, \xi_n + \xi_{n-1}, \dots, \xi_n + \dots + \xi_1)$

Since $\{\xi_n\}$ is an i.i.d. sequence, W_{n+1} has the same distribution as

$$M_n = \max(0, \xi_1, \xi_1 + \xi_2, \dots, \xi_1 + \dots + \xi_n).$$

Therefore, as $n \to \infty$, distributions of W_n converge weakly to that of M.

One can use also the "Loynes scheme". Assume that i.i.d.r.v.'s ξ_n are defined for all $-\infty < n < \infty$ (this extension may be done using Kolmogorov's theorem). Clearly, W_{n+1} has the same distribution as

$$\widetilde{M}_n = \max(0, \xi_{-1}, \xi_{-1} + \xi_{-2}, \dots, \xi_{-1} + \dots + \xi_{-n})$$

Here we do not reverse numbering – we just shift all indices by (-n-1). Then $\widetilde{M}_{n+1} \ge \widetilde{M}_n$ a.s. for all n and \widetilde{M}_n converge monotonically to the supremum

$$\widetilde{M} = \sup_{n \ge 0} \sum_{i=1}^{n} \xi_{-j}$$

of a random walk with increments $\{\xi_{-n}\}$.

Remark 1. You will meet Loynes scheme again tomorrow during the 2nd lecture on stability methods.

(b) Risk theory. In the risk theory, $\mathbf{P}(M > x)$ may be interpreted as a probability of ruin (in the infinite time horizon).

In the risk theory setting, an insurance company has an initial capital x. Consequent i.i.d. claims have sizes σ_n , and independent of them i.i.d. "interclaim times" are t_n . There is a surplus process with rate c > 0. A ruin occurs if

$$\inf_{n} \{ x + \sum_{i=1}^{n} (ct_i - \sigma_i) \} < 0,$$

or, equivalently,

$$\sup_{n \ge 0} \sum_{i=1}^{n} (\sigma_i - ct_i) > x$$

where $\{\sigma_i - ct_i\}_{i \ge 1}$ is an i.i.d. sequence.

3 Elements of renewal theory

A r.v. ξ has a lattice (arithmetic) distribution with span h > 0 if

$$\sum_{n=-\infty}^{\infty} \mathbf{P}(\xi = nh) = 1$$

and if h is a maximal number with this property. Clearly, any r.v. has either a lattice distrubion (with uniquely determined span) or a *non-lattice (non-arithmetic)* distribution. Let $\xi, \xi_1, \xi_2, \ldots$ be an i.i.d. sequence of random variables with a finite positive mean $b = \mathbf{E}\xi$. For any x, let

$$\tau(x) = \min\{n : S_n > x\}$$

be the first hitting time of (x, ∞) , and

$$\chi(x) = S_{\tau(x)} - x$$

an overshoot over x.

Here are some basic facts:

(i) since b > 0, $\tau(x)$ is a.s. finite for any x and, moreover, $\mathbf{E}\tau(x) < \infty$.

(ii) If ξ has a non-arithmetic distribution, distributions of $\chi(x)$ converge (weakly), as $x \to \infty$, to a proper *continuous* distribution of, say, random variable $\chi(\infty)$. This means that

$$\mathbf{E}g(\chi(x)) \to \mathbf{E}g(\chi(\infty)), \quad x \to \infty$$

for any bounded continuous function, or, equivalently,

$$\mathbf{P}(\chi(x) \le t) \to \mathbf{P}(\chi(\infty) \le t), \quad x \to \infty$$

for any t.

(iii) If ξ has an arithmetic distribution with span h, distributions of $\{\chi(nh), n = 1, 2, ...\}$ converge weakly, as $n \to \infty$, to a proper *discrete* distribution, of, say, random variable $\tilde{\chi}(\infty)$.

Remark 2. See, e.g., Asmussen ([1]), Feller ([5]), or/and Gut ([7]) for more detailed treatment of renewal theory and, in particular, for limiting distributions of $\chi(\infty)$ and $\tilde{\chi}(\infty)$.

4 The classical case

4.1 Exponential change of measure (Cramer transform)

Note that

$$\varphi(\gamma) \equiv \mathbf{E} e^{\gamma \xi} = \int_{-\infty}^{\infty} e^{\gamma x} dF(x) = 1.$$

Introduce a new distribution function

$$dF^*(x) = e^{\gamma x} dF(x).$$

Thus, F^* is a probability distribution function.

For any n and for any bounded function $g : \mathbb{R}^n \to \mathbb{R}$, let $\mathbf{E}^* g(\xi_1, \ldots, \xi_n)$ be an expectation with respect to distribution F^* :

$$\mathbf{E}^*g(\xi_1,\ldots,\xi_n) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x_1,\ldots,x_n) dF^*(x_1)\ldots dF^*(x_n)$$

and, in particular,

$$\mathbf{P}^*(g(\xi_1,\ldots,\xi_n)\in A)=\int\cdots\int_{g^{-1}(A)}dF^*(x_1)\ldots dF^*(x_n).$$

Then

$$\begin{aligned} \mathbf{E}g(\xi_1,\ldots,\xi_n) &= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x_1,\ldots,x_n) dF(x_1) \dots dF(x_n) \\ &= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x_1,\ldots,x_n) e^{-\gamma x_1} dF^*(x_1) \dots e^{-\gamma x_n} dF^*(x_n) \\ &= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-\gamma \sum_{i=1}^n x_i} g(x_1,\ldots,x_n) dF^*(x_1) \dots dF^*(x_n) \\ &= \mathbf{E}^* \left(e^{-\gamma S_n} g(\xi_1,\ldots,\xi_n) \right) \end{aligned}$$

and, similarly,

$$\mathbf{E}\left(g(\xi_1,\ldots,\xi_n)e^{\gamma S_n}\right) = \mathbf{E}^*g(\xi_1,\ldots,\xi_n).$$

In particular,

$$\mathbf{E}^*\xi = \int_{-\infty}^{\infty} x dF^*(x) = \int_{-\infty}^{\infty} x e^{\gamma x} dF(x) = \mathbf{E}\left(\xi e^{\gamma \xi}\right),$$

and this number is positive (!) Therefore

$$\mathbf{P}^*(\tau(x) < \infty) = 1 \tag{3}$$

for all x.

Exercise 1. In the classical case, the following are equivalent:

(a) F has a lattice distribution with span h;

(b) F^* has a lattice distribution with span h.

Exercise 2. Assume that t > 0 is such that $\varphi(t) < \infty$. Let

$$dF_t(x) = \frac{e^{tx}dF(x)}{\varphi(t)}$$

and denote by \mathbf{E}_t the corresponding extectation operator. Find an expression for $E_t g(\xi_1, \ldots, \xi_n)$ in this case.

4.2 The asymptotics for P(M > x)

Let \mathbf{I} be an indicator function, i.e., for any (random) event B,

$$\mathbf{I}(B) = 1$$
 if the event *B* occurs and $\mathbf{I}(B) = 0$ otherwise.

In particular, for any $x \in \mathbb{R}^n$ and for any measurable set $A \subset \mathbb{R}^n$,

$$\mathbf{I}(x \in A) = 1$$
 if $x \in A$ and $\mathbf{I}(x \in A) = 0$ otherwise.

Let $\tau(x) = \min\{n \ge 0 : S_n > x\}$ if there exists such n, and $\tau(x) = \infty$ otherwise. Then, for x > 0,

$$\mathbf{P}(M > x) = \mathbf{P}(\tau(x) < \infty)$$

= $\sum_{n=1}^{\infty} \mathbf{P}(\tau(x) = n)$
= $\sum_{n=1}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \mathbf{I}((x_1, \dots, x_n) \in A_n(x)) dF(x_1) \dots dF(x_n)$

where

$$A_n(x) = \{(z_1, \dots, z_n) : z_1 \le x, \dots, z_1 + \dots + z_{n-1} \le x, z_1 + \dots + z_n > x\}.$$

Further,

$$\begin{aligned} \mathbf{P}(M > x) &= \sum_{n=1}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-\gamma \sum_{i=1}^{n} x_i} \mathbf{I}((x_1, \dots, x_n) \in A_n(x)) dF^*(x_1) \dots dF^*(x_n) \\ &= \sum_{n=1}^{\infty} \mathbf{E}^* \left(e^{-\gamma S_n} \mathbf{I}(\tau(x) = n) \right) \\ &= \mathbf{E}^* \left(e^{-\gamma S_{\tau(x)}} \mathbf{I}(\tau(x) < \infty) \right) \\ &= \mathbf{E}^* e^{-\gamma S_{\tau(x)}}. \end{aligned}$$

The very last equality follows from (3). Since

$$S_{\tau(x)} = x + \chi(x),$$

we get finally

Theorem 1. (1) In the classical case,

$$\mathbf{P}(M > x) = e^{-\gamma x} \mathbf{E}^* e^{-\gamma \chi(x)}.$$

(2) Cramer upper bound. Since $\chi(x) \ge 0$, for any x > 0,

$$\mathbf{P}(M > x) \le e^{-\gamma x}.$$

- (3) From the basic renewal theory,
- (a) if F is non-lattice, then

$$\mathbf{P}(M > x)e^{\gamma x} \to \mathbf{E}^* e^{-\gamma \chi(\infty)} \in (0, \infty), \quad x \to \infty,$$
(4)

(b) If F is lattice with span h, then

$$\mathbf{P}(M > nh)e^{\gamma nh} \to \mathbf{E}^* e^{-\gamma \tilde{\chi}(\infty)} \in (0, \infty), \quad n \to \infty.$$
(5)

Exercise 3. Show that (in both lattice and non-lattice cases) $\sup_{x\geq 0} \mathbf{P}(M > x)e^{\gamma x} < \infty$ and $\inf_{x\geq 0} \mathbf{P}(M > x)e^{\gamma x} > 0$.

Corollary 1. In the classical case,

$$\lim_{x \to \infty} \frac{1}{x} \log \mathbf{P}(M > x) = -\gamma$$

Remark 3. This a a particular example of LDP (to be introduced in Lecture 2.)

4.3 "Typical" sample paths

Since $\mathbf{E}^* \xi = b > 0$, the SLLN says that

$$\mathbf{P}^*\left(\frac{S_n}{n} \to b\right) = 1, \quad \text{or} \quad \frac{S_n}{n} \to b \quad \mathbf{P}^* - \text{a.s.}$$
(6)

This also means that, for any $\varepsilon > 0$,

$$\mathbf{P}^*\left(\sup_{m\geq n}\left|\frac{S_n}{n}-b\right|>\varepsilon\right)\to 0 \quad \text{as} \quad n\to\infty.$$

Exercise 4. Show that (6) is equivalent to the following:

for any $\varepsilon \in (0,1)$ and any $\delta \in (0,1)$, there exists R > 0 such that

$$\mathbf{P}^{*}(B) \equiv \mathbf{P}^{*}\left(-R + n(b-\delta) \le S_{n} \le R + n(b+\delta) \quad \text{for all} \quad n\right) \ge 1 - \varepsilon, \tag{7}$$

and also to the following:

for any $\varepsilon \in (0,1)$, there exist R > 0 and a sequence $\delta_n \to 0$ such that

$$\mathbf{P}^{*}(B) \equiv \mathbf{P}^{*}\left(-R + n(b - \delta_{n}) \le S_{n} \le R + n(b + \delta_{n}) \quad \text{for all} \quad n\right) \ge 1 - \varepsilon.$$
(8)

Let

$$B(x) = \{-R + n(b - \delta) \le S_n \le R + n(b + \delta) \text{ for all } n \le \tau(x)\}.$$

Theorem 2. For any $\varepsilon, \delta \in (0, 1)$, one can choose R > 0 such that, for any x > 0,

$$\mathbf{P}(B(x) \mid M > x) \ge 1 - \varepsilon/C$$

where $C = E^* e^{-\gamma \chi(x)}$ or $C = \inf_{x \ge 0} E^* e^{-\gamma \chi(x)}$.

Corollary 2. For any $\varepsilon > 0$, as $x \to \infty$,

$$\mathbf{P}\left(\left|\frac{\tau(x)}{x} - \frac{1}{b}\right| > \varepsilon \mid M > x\right) \to 0 \quad and \quad \mathbf{P}\left(\sup_{k \le \tau(x)} \left|\frac{S_k}{x} - \frac{kb}{x}\right| > \varepsilon \mid M > x\right) \to 0.$$

PROOF OF THEOREM 2. From Bayes formula,

$$\mathbf{P}(B(x) \mid M > x) = \frac{\mathbf{P}(B(x), M > x)}{\mathbf{P}(M > x)}.$$

Here

$$\mathbf{P}(M > x) = e^{-\gamma x} E^* e^{-\gamma \chi(x)}$$

and, similarly,

$$\begin{aligned} \mathbf{P}(B(x), M > x) &= \dots \\ &= \mathbf{E}^* \left(e^{-\gamma S_{\tau(x)}} \cdot \mathbf{I}(B(x)) \mathbf{I}(\tau(x) < \infty) \right) \\ &= \mathbf{E}^* \left(e^{-\gamma S_{\tau(x)}} \cdot \mathbf{I}(B(x)) \right) \\ &\geq \mathbf{E}^* \left(e^{-\gamma S_{\tau(x)}} \cdot \mathbf{I}(B) \right) \\ &= e^{-\gamma x} \left(\mathbf{E}^* e^{-\gamma \chi(x)} - \mathbf{E}^* \left(e^{-\gamma \chi(x)} \mathbf{I}(\overline{B}) \right) \right) \end{aligned}$$

Here

$$0 \leq \mathbf{E}^* \left(e^{-\gamma \chi(x)} \mathbf{I}(\overline{B}) \right) \leq \mathbf{E}^* I(\overline{B}) = \mathbf{P}^*(\overline{B}) \leq \varepsilon,$$

and the result follows.

Exercise 5. Prove Corollary 2.

4.4Distributional asymptotics for the cycle maxima

Let $\theta = \min\{n \ge 1 : S_n \le 0\}$ be the first hitting time of the negative half-line. Note that $\theta < \infty$ a.s. Let

$$M_{\theta} = \max_{n \le \theta} S_n$$

Theorem 3. In the classical case, as $x \to \infty$,

$$\mathbf{P}(M_{\theta} > x)e^{\gamma x} \to \left(1 - \mathbf{E}e^{\gamma S_{\theta}}\right) \mathbf{E}^* e^{-\gamma \chi(\infty)}.$$

PROOF OF THEOREM 3. Let

$$\widetilde{M} = \sup_{n \ge \theta} (S_n - S_\theta).$$

Then \widetilde{M} does not depend on $\theta, S_1, \ldots, S_{\theta}$ and, in particular, on M_{θ} and S_{θ} . Further,

$$\mathbf{P}(M > x) = \mathbf{P}(M_{\theta} > x) + \mathbf{P}(M_{\theta} \le x, S_{\theta} + M > x)$$

=
$$\mathbf{P}(M_{\theta} > x) + \mathbf{P}(S_{\theta} + \widetilde{M} > x) - \mathbf{P}(M_{\theta} > x, S_{\theta} + \widetilde{M} > x).$$

Here

$$0 \leq \mathbf{P}(M_{\theta} > x, S_{\theta} + \widetilde{M} > x) \leq \mathbf{P}(M_{\theta} > x, \widetilde{M} > x)$$

= $\mathbf{P}(M_{\theta} > x)\mathbf{P}(\widetilde{M} > x) = o(\mathbf{P}(M_{\theta} > x)).$

Therefore

$$\mathbf{P}(M_{\theta} > x) \sim \mathbf{P}(M > x) - \mathbf{P}(M > x - \widetilde{S}_{\widetilde{\theta}})$$
$$= \int_{0}^{\infty} \mathbf{P}(-S_{\theta} \in dt) \mathbf{P}(M \in (x, x + t])$$

where \widetilde{S}_{θ} conicides in distribution with S_{θ} and does not depend on M. Here $f(x) \sim g(x)$ means that $f(x)/g(x) \to 1$ as $x \to \infty$.

From Theorem 2,

$$\mathbf{P}(M \in (x, x+t]) = e^{-\gamma x} \mathbf{E}^* e^{-\gamma \chi(x)} - e^{-\gamma(x+t)} \mathbf{E}^* e^{-\gamma \chi(x+t)}$$
$$= e^{-\gamma x} \left(\mathbf{E}^* e^{-\gamma \chi(x)} - e^{-\gamma t} \mathbf{E}^* e^{-\gamma \chi(x+t)} \right).$$

Thus, by dominate convergence theorem,

$$\mathbf{P}(M_{\theta} > x) \sim e^{-\gamma x} \mathbf{E}^* e^{-\gamma \chi(\infty)} \int_0^\infty \mathbf{P}(-S_{\theta} \in dt) \left(1 - e^{-\gamma t}\right)$$
$$= e^{-\gamma x} \mathbf{E}^* e^{-\gamma \chi(\infty)} \left(1 - \mathbf{E} e^{-\gamma S_{\theta}}\right).$$

5 The heavy tail case

In the heavy tail case, we need some spicific assumptions to derive the asymptotics for $\mathbf{P}(M > x)$.

5.1 Definition and basic properties of long-tailed and subexponential distributions

5.1.1 Long-tailed distributions

Definition. A distribution F with is long-tailed (belong to the class \mathcal{L}) if $\overline{F}(x) > 0$ for all x and $\overline{F}(x+1) \sim \overline{F}(x)$, i.e.

$$\frac{\overline{F}(x+1)}{\overline{F}(x)} \to 1 \quad \text{as} \quad x \to \infty.$$

Exercise 6. Show that if $F \in \mathcal{L}$, then, for any fixed $-\infty < y < \infty$,

$$\frac{\overline{F}(x+y)}{\overline{F}(x)} \to 1 \quad \text{as} \quad x \to \infty.$$

Exercise 7. Show that if $F \in \mathcal{L}$, then there exists a function $h(x) \ge 0$, $h(x) \to \infty$ as $x \to \infty$ such that

$$\frac{F(x+h(x))}{\overline{F}(x)} \to 1 \quad \text{as} \quad x \to \infty.$$

Exercise 8. Show that if $F \in \mathcal{L}$ and if $\overline{F}(x) \sim \overline{G}(x)$, then $G \in \mathcal{L}$.

Examples of long-tailed distributions:

(1) Pareto distribution:

$$\overline{F}(x) = x^{-\alpha} \quad \text{for} \quad x \ge 1.$$

(2) Weibull distribution with parameters $\beta \in (0, 1)$ and c > 0:

$$\overline{F}(x) = e^{-cx^{\beta}}$$
 for $x \ge 0$.

(3) Log-normal distribution:

a r.v. X has a log-normal distribution with parameters (a, σ^2) if $X = e^Y$ where Y has a distribution $N(a, \sigma^2)$. In other words, X has a density function

$$f(x) = \frac{1}{\sqrt{2\pi}x} e^{-\frac{\log x - a^2}{2\sigma^2}}.$$

5.1.2 Subexponential distributions

For any distribution F on $[0,\infty)$ with unbounded support,

$$\liminf_{x \to \infty} \frac{\overline{F * F}(x)}{\overline{F}(x)} \ge 2.$$

Indeed, for i.i.d.r.v.'s ξ_1 and ξ_2 with common distribution F,

$$\overline{F * F}(x) = Pr(\xi_1 + \xi_2 > x) \ge \mathbf{P}\left(\{\xi_1 > x\} \bigcup \{\xi_2 > x\}\right)$$
$$= 2\mathbf{P}(\xi_1 > x) - \mathbf{P}(\xi_1 > x)^2 = \overline{F}(x)(2 - \overline{F}(x)) \sim 2\overline{F}(x).$$

Now we introduce a special class of distributions for which a limit of the latter ratio exists and equals 2.

Definition. Let F be a distribution on $[0, \infty)$ with unbounded support. We say that F is subexponential and write $F \in S$ if

$$\overline{F * F}(x) \sim 2\overline{F}(x) \text{ as } x \to \infty.$$

Equivalently, a non-negative random variable ξ has a subexponential distribution if, for two independent copies ξ_1 and ξ_2 of ξ ,

$$\mathbf{P}\{\xi_1 + \xi_2 > x\} \sim 2\mathbf{P}\{\xi > x\} \text{ as } x \to \infty.$$

Since the equivalence

$$\mathbf{P}\{\max(\xi_1,\xi_2) > x\} = 1 - (1 - \mathbf{P}\{\xi > x\})^2 \sim 2\mathbf{P}\{\xi > x\}$$

always holds as $x \to \infty$, we can say that F is a subexponential distribution iff

 $\mathbf{P}\{\xi_1 + \xi_2 > x\} \sim \mathbf{P}\{\max(\xi_1, \xi_2) > x\} \text{ as } x \to \infty.$

Moreover, since the event $\{\max(\xi_1, \xi_2) > x\}$ implies the event $\{\xi_1 + \xi_2 > x\}$, in subexponential case we have the following relation:

$$\mathbf{P}\{\xi_1 + \xi_2 > x, \max(\xi_1, \xi_2) \le x\} = o(\mathbf{P}\{\xi > x\}) \quad \text{as } x \to \infty.$$
(9)

Examples of SE distributions: Pareto, Weibull, Log-normal.

Exercise 9. Show (by induction) that if $F \in S$, then, for any $n = 3, 4, \ldots$,

$$\overline{F^{*n}}(x) \sim n\overline{F}(x).$$

Exercise 10. Show that $\mathcal{S} \subset \mathcal{L}$, i.e. any subexponential distribution on the positive half-line is long-tailed.

Proposition 1. Let F be a distribution on $[0, \infty)$ and ξ_1, ξ_2 be two independent random variables with distribution F. Then the following assertions are equivalent:

- (i) F is subexponential;
- (ii) F is long-tailed and, for every function $h(x) \to \infty$,

$$\mathbf{P}\{\xi_1 + \xi_2 > x, \ \xi_1 > h(x), \ \xi_2 > h(x)\} = o(\overline{F}(x)) \ as \ x \to \infty; \tag{10}$$

(iii) there exists a function h(x) < x/2 such that $h(x) \to \infty$, $\overline{F}(x - h(x)) \sim \overline{F}(x)$ as $x \to \infty$, and (10) holds.

PROOF of (i) \Rightarrow (ii). *F* is long-tailed by Exercise 10. Note that if (10) is valid for some h(x), then it follows for any $h_1 \ge h$. So without loss of generality we assume that h(x) < x/2. For h(x) < x/2, the probability of the event $B = \{\xi_1 + \xi_2 > x\}$ is equal to

$$\mathbf{P}\{B, \ \xi_1 \le h(x)\} + \mathbf{P}\{B, \ \xi_2 \le h(x)\} + \mathbf{P}\{B, \ \xi_1 > h(x), \ \xi_2 > h(x)\}.$$

Since

$$\mathbf{P}\{B, \ \xi_1 \le h(x)\} = \mathbf{P}\{B, \ \xi_2 \le h(x)\} \\ = \int_0^{h(x)} \overline{F}(x-y)F(dy) \sim \overline{F}(x) \int_0^{h(x)} F(dy) \sim \overline{F}(x), \quad (11)$$

the conclusion follows from the relation $\mathbf{P}\{B\} \sim 2\overline{F}(x)$.

(ii) \Rightarrow (iii). By Exercise 7, if F is long-tailed then there exists a function h such that $h(x) \to \infty$ and $\overline{F}(x - h(x)) \sim \overline{F}(x)$ as $x \to \infty$.

(iii) \Rightarrow (i). Substituting (11) and (10) into decomposition of the probability of the event B, we get the desired equivalence $\mathbf{P}\{B\} \sim 2\overline{F}(x)$. The proof is complete.

Let $\{\xi_n\}$ be a sequence of i.i.d. non-negative random variables with common distribution $F(B) = \mathbf{P}\{\xi_1 \in B\}$. Put $S_n = \xi_1 + \ldots + \xi_n$.

Proposition 2. Assume that $F \in S$. Then, for any $\varepsilon > 0$, there exists $c(\varepsilon) > 0$ such that, for any $x \ge 0$ and $n \ge 1$,

$$\overline{F^{*n}}(x) \leq c(\varepsilon)(1+\varepsilon)^n \overline{F}(x).$$

PROOF. For $x_0 > 0$ and $k \ge 1$, put

$$A_k \equiv A_k(x_0) = \sup_{x > x_0} \frac{\overline{F^{*k}(x)}}{\overline{F}(x)}.$$

Take any $\varepsilon > 0$. It follows from (9) that there exists x_0 such that, for any $x > x_0$,

$$\mathbf{P}\{\xi_1 + \xi_2 > x, \ \xi_2 \le x\} \le (1 + \varepsilon/2)\overline{F}(x).$$

We have the following decomposition

$$\begin{aligned} \mathbf{P}\{S_n > x\} &= \mathbf{P}\{S_n > x, \ \xi_n \le x - x_0\} + \mathbf{P}\{S_n > x, \ \xi_n > x - x_0\} \\ &\equiv P_1(x) + P_2(x). \end{aligned}$$

By the definition of A_{n-1} and x_0 , for any $x > x_0$,

$$P_{1}(x) = \int_{0}^{x-x_{0}} \mathbf{P}\{S_{n-1} > x - y\} \mathbf{P}\{\xi_{n} \in dy\}$$

$$\leq A_{n-1} \int_{0}^{x-x_{0}} \overline{F}(x-y) \mathbf{P}\{\xi_{n} \in dy\}$$

$$= A_{n-1} \mathbf{P}\{\xi_{1} + \xi_{n} > x, \ \xi_{n} \le x - x_{0}\} \le A_{n-1}(1 + \varepsilon/2)\overline{F}(x).$$
(12)

Further,

$$P_2(x) \leq \mathbf{P}\{\xi_n > x - x_0\} \leq L\overline{F}(x),$$

where

$$L = \sup_{y} \frac{\overline{F}(y - x_0)}{\overline{F}(y)}$$

Since $F \in \mathcal{L}$, L is finite. Then, for any $x > x_0$,

$$P_2(x) \leq L\overline{F}(x). \tag{13}$$

It follows from (12) and (13) that $A_n \leq A_{n-1}(1 + \varepsilon/2) + L$ for n > 1. Therefore, an induction argument yields:

$$A_n \leq A_1 (1 + \varepsilon/2)^{n-1} + L \sum_{l=0}^{n-2} (1 + \varepsilon/2)^l \leq Ln (1 + \varepsilon/2)^{n-1}.$$

This implies the conclusion of the proposition.

Let us consider now some random time τ with distribution $p_n = \mathbf{P}\{\tau = n\}, n \ge 0$ which is independent of $\{\xi_n\}$. Then the distribution of the randomly stopped sum S_{τ} is equal to

$$\mathbf{P}\{S_{\tau} \in B\} = \sum_{n \ge 0} p_n F^{*n}(B).$$

Theorem 4. Assume $F[0,\infty) = 1$ and $\mathbf{E}\tau < \infty$.

If $F \in S$ and $\mathbf{E}(1+\delta)^{\tau} < \infty$ for some $\delta > 0$, then

$$\frac{\mathbf{P}\{S_{\tau} > x\}}{\overline{F}(x)} \to \mathbf{E}\tau \quad as \ x \to \infty.$$
(14)

A proof of Theorem 4 follows from Proposition 2 and the dominated convergence theorem.

5.2 Asymptotics for P(M > x) in the heavy tail case

Definition. A distribution F on the whole line is subexponential if a distribution FI(x > 0 is subexponential.

Theorem 5. Let $S_n = \sum_{i=1}^{n} \xi_i$ be a random walk with negative mean -a. Assume that a distribution F^s with the tail

$$\overline{F}^{s}(x) = \min\left(1, \int_{x}^{\infty} \overline{F}(t)dt\right)$$

is sunexponential. Then, as $x \to \infty$,

$$\mathbf{P}(M > x) \sim \frac{1}{a} \int_{x}^{\infty} \overline{F}(t) dt.$$

Sketch of Proof.

Step 1. Let

$$\eta = \min\{n \ge 1 : S_n > 0\} \le \infty$$

and let a random variable ψ have a distribution

$$\mathbf{P}(\psi \le x) = \mathbf{P}(S_{\eta} \le x \mid \eta < \infty).$$

Direct probabilistic calculations show that if $F^s \in \mathcal{L}$, then

$$\overline{G}(x) \sim \frac{p}{qa} \overline{F}^s(x)$$

where $p = \mathbf{P}(M = 0)$ and q = 1 - p.

Further, if F^s subexponential distribution, then G is subexponential too.

Step 2. We use the following fact (see, e.g., Feller).

A random variable M has the same distribution with

$$\sum_{1}^{\nu}\psi_{i}$$

where ψ 's are i.i.d. and have the same distribution with ψ and ν does not depend on them and has a distribution

$$\mathbf{P}(\nu = k) = pq^k$$
 for $k = 0, 1, 2, ...$

Then we can apply Theorem 4:

$$\mathbf{P}(M > x) \sim \mathbf{E}\nu \overline{G}(x)$$

where

$$\mathbf{E}\nu = \sum_{k\geq 1} \mathbf{P}(\nu \geq k) = q + q^2 + \ldots = \frac{q}{p}.$$

5.3 "Typical" sample paths

Use again the SLLN:

$$\mathbf{P}\left(\frac{S_n}{n} \to -a\right) = 1,$$

or for any $\varepsilon \in (0,1)$ and any $\delta \in (0,1)$, there exists R > 0 such that

$$\mathbf{P}(B) \equiv \mathbf{P}\left(-R - n(a+\delta) \le S_n \le R - n(a-\delta) \quad \text{for all} \quad n\right) \ge 1 - \varepsilon.$$
(15)

For $m = 0, 1, \ldots$, introduce events

$$B_m = \{R - n(a + \delta) \le S_n \le R - n(a - \delta) \text{ for all } n \le m\}.$$

Clearly, $B \subset B_m$ for all m. Then

$$\begin{aligned} \mathbf{P}(M > x) &\geq \sum_{n=1}^{\infty} \mathbf{P} \left(B_{n-1} \bigcap \{ S_n > x \} \right) \\ &\geq \sum_{n=1}^{\infty} \mathbf{P} \left(B_{n-1} \bigcap \{ \xi_n > x + R + n(a+\delta) \} \right) \\ &= \sum_{n=1}^{\infty} \mathbf{P}(B_{n-1}) \overline{F}(x + R + n(a+\delta)) \\ &\geq \mathbf{P}(B) \sum_{n=1}^{\infty} \overline{F}(x + R + n(a+\delta)) \\ &\geq (1-\varepsilon) \frac{1}{a+\delta} \int_{x-R-a-\delta}^{\infty} \overline{F}(t) dt \\ &\sim \frac{1-\varepsilon}{a+\delta} \int_{x}^{\infty} \overline{F}(t) dt. \end{aligned}$$

Since ε and δ are arbitrarily small, the coefficient $\frac{1-\varepsilon}{a+\delta}$ may be made as close to 1/a as possible. Compare this lower bound with the result of Theorem 5 !

Further comment: since F^s is long-tailed, $\overline{F}(x) = o(\overline{F}^s(x))$, and any finite number of first jumps are (asymptotically) negligible.

6 Further Problems

Problem 1. Let ξ_n have a light tail and let

$$v = \sup\{t : \varphi(t) \le 1\}.$$

Show that

$$\lim_{x \to \infty} \frac{1}{x} \log \mathbf{P}(M > x) = -v.$$

Hint: Use the following monotonicity property: for two random walks $S_n = \sum_{i=1}^{n} \xi_i$, $n = 1, 2, \ldots$ and $\hat{S}_n = \sum_{i=1}^{n} \hat{\xi}_i$, $n = 1, 2, \ldots$, if $\xi_i \leq \hat{\xi}_i$ a.s. for all *i*, then $M \leq \hat{M}$ a.s. and, in particular, for all *x*,

$$\mathbf{P}(M > x) \le \mathbf{P}(M > x)$$

You may consider the following choices for $\hat{\xi}_i$: (a) $\hat{\xi}_i = \max(\xi_i, K)$ for some K – for the upper bound, and (b) $\hat{\xi}_i = \min(\xi_i, K)$ for some K – for the lower bound.

Problem 2. Give a proof of Theorem 4.

References

- [1] ASMUSSEN, S. (2003) Applied Probability and Queues, 2nd Edition, Springer-Verlag.
- [2] DENISOV, D. (2005). A note on the asymptotics for the maximum on a random time interval of a random walk. *Markov Proc. Rel.F*, **11**, 165–169.
- [3] DENISOV, D., FOSS, S. AND KORSHUNOV, D. (2004). Tail asymptotics for the supremum of a random walk when the mean is not finite. *Queueing Systems*, **46**, 15–33.
- [4] ERICKSON, K.B. (1971). A renewal theorem for distribution on R without expectations. Bull. Amer. Math. Soc. 77, 406–410.
- [5] FELLER, W. (1971) An Introduction to Probability Theory and its Applications, Vol.2. Wiley.
- [6] FOSS, S., AND ZACHARY, Z. (2006) On the asymptotics of the supremum of a random walk: the principle of a single big jump in the light-tailed case. http://arxiv.org/abs/math/0603330
- [7] GUT, A. (1988) Stopped Random Walks. Limit Theorems and Applications. Springer-Verlag.
- [8] KORSHUNOV, D. (2005) The critical case of the Cramer-Lundberg theorem on the asymptotic tail behavior of the maximum of a negative drift random walk. Siberian Math. J. 46, 1077–1081.