Asymptotics for the maximum of a random walk with negative increments

Serguei Foss
foss@ma.hw.ac.uk

Large Deviations, Lecture 1

Short Instructional Courses, September 2006

Heriot-Watt University
 Edinburgh

This lecture (SF):
One-dimensional random walk, asymptotics in two main cases (the "classical" and the "heavy-tailed") out of five.

Next lecture (TK):
The LD Principle in \mathbb{R}^{1}.
Lectures 3-5 (AP):
General LD Principle and Applications.
There will be 4 additional hours in LD's in the afternoons - for lecturing an additional matherial, discussions, and exercises.

1 Notation and definitions

Consider a sequence $\xi, \xi_{1}, \xi_{2}, \ldots$ of independent identically distributed (i.i.d.) random variables (r.v.'s) with a common distribution function $F(x)=\mathbf{P}(\xi \leq x)$. Let

$$
\begin{aligned}
S_{0} & =0, \quad S_{n}=\sum_{1}^{n} \xi_{i}, \quad n \geq 1 \\
M_{n} & =\max _{0 \leq i \leq n} S_{i}, \quad M=\sup _{n \geq 0} M_{n} \equiv M_{\infty}
\end{aligned}
$$

We are interested in the asymptotics for $\mathbf{P}(M>x)$ when $x \rightarrow \infty$.
First, there is $0-1$ Law:
Either $\mathbf{P}(M<\infty)=1$ (in other words, M is finite a.s.) or $\mathbf{P}(M=\infty)=1$ (in other words, M is infinite a.s.).
Further, if
the mean (expectation, drift) of ξ exists (i.e. $\mathbf{E}|\xi|<\infty$)
then
$\mathbf{P}(M<\infty)=1$ if and only if $\mathbf{E} \xi=-a<0$ (se, e.g., Feller [5]).
If the mean does not exist $(\mathbf{E}|\xi|=\infty)$, then M is finite a.s. if and only if

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x d F(x)}{m(x)}<\infty \tag{1}
\end{equation*}
$$

where $m(x)=\mathbf{E}(\min (x,-\xi)$ - see Erickson ([4]).
Let $\varphi(t)=\mathbf{E} e^{t \xi}$ be a moment generating function of ξ.. Clearly, $\varphi(0)=1$. If $\varphi(t)$ is finite for some $t>0$, then it is finite for all $0<u<t$ and convex in this interval since $\varphi^{\prime \prime}(u)=\mathbf{E}\left(\xi^{2} e^{u \xi}\right) \geq 0$.
There are 5 cases of interest:
(I) the mean does not exist, but condition (1) holds;
(II) $a>0$ and $\varphi(t)=\infty$ for all $t>0$ (the case of heavy-tailed distribution);
(III) $a>0$ and there exists $\gamma>0$ such that

$$
\begin{equation*}
\varphi(\gamma)=1 \tag{2}
\end{equation*}
$$

and $\varphi^{\prime}(\gamma)<\infty$ (this is the "classical case", here $\varphi^{\prime}(\gamma)$ means the left derivative);
(IV) $a>0$, (2) holds, but $\varphi^{\prime}(\gamma)=\infty$;
(V) $a>0, \varphi(t)<\infty$ for some $t>0$, but (2) is violated.

We consider today only cases (II) and (III). For the asymptotics in other cases, see recent papers [3], [8], [6], and futher references therein.

2 Applications

(a) Queueing theory. Stationary (limiting) waiting time W in a single server queue coincides in distribution with the supremum M of an associated random walk.
Consider a single-server queue with i.i.d. interarrival times t_{n} and independent of them i.i.d. service times σ_{n}. Assume that customer 1 arrives in an empty system. Then its waiting time (before service) is $W_{1}=0$. Customer 2 arrives t_{1} units of time later, and its waiting time is $W_{2}=\max \left(0, \sigma_{1}-t_{1}\right)$. By induction,

$$
W_{n+1}=\max \left(0, W_{n}+\sigma_{n}-t_{n}\right)
$$

Let $\xi_{n}=\sigma_{n}-t_{n}$. Note that

$$
\begin{aligned}
W_{n+1} & =\max \left(0, W_{n}+\xi_{n}\right) \\
& =\max \left(0, \max \left(0, W_{n-1}+\xi_{n-1}\right)+\xi_{n}\right) \\
& =\max \left(0, \xi_{n}, \xi_{n}+\xi_{n-1}+W_{n-1}\right) \\
& =\ldots \\
& =\max \left(0, \xi_{n}, \xi_{n}+\xi_{n-1}, \ldots, \xi_{n}+\ldots+\xi_{1}\right)
\end{aligned}
$$

Since $\left\{\xi_{n}\right\}$ is an i.i.d. sequence, W_{n+1} has the same distribution as

$$
M_{n}=\max \left(0, \xi_{1}, \xi_{1}+\xi_{2}, \ldots, \xi_{1}+\ldots+\xi_{n}\right)
$$

Therefore, as $n \rightarrow \infty$, distributions of W_{n} converge weakly to that of M.
One can use also the "Loynes scheme". Assume that i.i.d.r.v.'s ξ_{n} are defined for all $-\infty<n<\infty$ (this extension may be done using Kolmogorov's theorem). Clearly, W_{n+1} has the same distribution as

$$
\widetilde{M}_{n}=\max \left(0, \xi_{-1}, \xi_{-1}+\xi_{-2}, \ldots, \xi_{-1}+\ldots+\xi_{-n}\right)
$$

Here we do not reverse numbering - we just shift all indices by $(-n-1)$. Then $\widetilde{M}_{n+1} \geq \widetilde{M}_{n}$ a.s. for all n and \widetilde{M}_{n} converge monotonically to the supremum

$$
\widetilde{M}=\sup _{n \geq 0} \sum_{i=1}^{n} \xi_{-j}
$$

of a random walk with increments $\left\{\xi_{-n}\right\}$.
Remark 1. You will meet Loynes scheme again tomorrow during the 2nd lecture on stability methods.
(b) Risk theory. In the risk theory, $\mathbf{P}(M>x)$ may be interpreted as a probability of ruin (in the infinite time horizon).
In the risk theory setting, an insurance company has an initial capital x. Consequent i.i.d. claims have sizes σ_{n}, and independent of them i.i.d. "interclaim times" are t_{n}. There is a surplus process with rate $c>0$. A ruin occurs if

$$
\inf _{n}\left\{x+\sum_{i=1}^{n}\left(c t_{i}-\sigma_{i}\right)\right\}<0
$$

or, equivalently,

$$
\sup _{n \geq 0} \sum_{i=1}^{n}\left(\sigma_{i}-c t_{i}\right)>x
$$

where $\left\{\sigma_{i}-c t_{i}\right\}_{i \geq 1}$ is an i.i.d. sequence.

3 Elements of renewal theory

A r.v. ξ has a lattice (arithmetic) distribution with $\operatorname{span} h>0$ if

$$
\sum_{n=-\infty}^{\infty} \mathbf{P}(\xi=n h)=1
$$

and if h is a maximal number with this property. Clearly, any r.v. has either a lattice distrubion (with uniquely determined span) or a non-lattice (non-arithmetic) distribution. Let $\xi, \xi_{1}, \xi_{2}, \ldots$ be an i.i.d. sequence of random variables with a finite positive mean $b=\mathbf{E} \xi$. For any x, let

$$
\tau(x)=\min \left\{n: S_{n}>x\right\}
$$

be the firrst hitting time of (x, ∞), and

$$
\chi(x)=S_{\tau(x)}-x
$$

an overshoot over x.
Here are some basic facts:
(i) since $b>0, \tau(x)$ is a.s. finite for any x and, moreover, $\mathbf{E} \tau(x)<\infty$.
(ii) If ξ has a non-arithmetic distribution, distributions of $\chi(x)$ converge (weakly), as $x \rightarrow \infty$, to a proper continuous distribution of, say, random variable $\chi(\infty)$. This means that

$$
\mathbf{E} g(\chi(x)) \rightarrow \mathbf{E} g(\chi(\infty)), \quad x \rightarrow \infty
$$

for any bounded continuous function, or, equivalently,

$$
\mathbf{P}(\chi(x) \leq t) \rightarrow \mathbf{P}(\chi(\infty) \leq t), \quad x \rightarrow \infty
$$

for any t.
(iii) If ξ has an arithmetic distribution with span h, distributions of $\{\chi(n h), n=1,2, \ldots\}$ converge weakly, as $n \rightarrow \infty$, to a proper discrete distribution, of, say, random variable $\widetilde{\chi}(\infty)$.
Remark 2. See, e.g., Asmussen ([1]), Feller ([5]), or/and Gut ([7]) for more detailed treatment of renewal theory and, in particular, for limiting distributions of $\cdot \chi(\infty)$ and $\widetilde{\chi}(\infty)$.

4 The classical case

4.1 Exponential change of measure (Cramer transform)

Note that

$$
\varphi(\gamma) \equiv \mathbf{E} e^{\gamma \xi}=\int_{-\infty}^{\infty} e^{\gamma x} d F(x)=1
$$

Introduce a new distribution function

$$
d F^{*}(x)=e^{\gamma x} d F(x)
$$

Thus, F^{*} is a probability distribution function.
For any n and for any bounded function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, let $\mathbf{E}^{*} g\left(\xi_{1}, \ldots, \xi_{n}\right)$ be an expectation with respect to distribution F^{*} :

$$
\mathbf{E}^{*} g\left(\xi_{1}, \ldots, \xi_{n}\right)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g\left(x_{1}, \ldots, x_{n}\right) d F^{*}\left(x_{1}\right) \ldots d F^{*}\left(x_{n}\right)
$$

and, in particular,

$$
\mathbf{P}^{*}\left(g\left(\xi_{1}, \ldots \xi_{n}\right) \in A\right)=\int \cdots \int_{g^{-1}(A)} d F^{*}\left(x_{1}\right) \ldots d F^{*}\left(x_{n}\right)
$$

Then

$$
\begin{aligned}
\mathbf{E} g\left(\xi_{1}, \ldots, \xi_{n}\right) & =\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g\left(x_{1}, \ldots, x_{n}\right) d F\left(x_{1}\right) \ldots d F\left(x_{n}\right) \\
& =\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g\left(x_{1}, \ldots, x_{n}\right) e^{-\gamma x_{1}} d F^{*}\left(x_{1}\right) \ldots e^{-\gamma x_{n}} d F^{*}\left(x_{n}\right) \\
& =\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-\gamma \sum_{i=1}^{n} x_{i}} g\left(x_{1}, \ldots, x_{n}\right) d F^{*}\left(x_{1}\right) \ldots d F^{*}\left(x_{n}\right) \\
& =\mathbf{E}^{*}\left(e^{-\gamma S_{n}} g\left(\xi_{1}, \ldots, \xi_{n}\right)\right)
\end{aligned}
$$

and, similarly,

$$
\mathbf{E}\left(g\left(\xi_{1}, \ldots, \xi_{n}\right) e^{\gamma S_{n}}\right)=\mathbf{E}^{*} g\left(\xi_{1}, \ldots, \xi_{n}\right)
$$

In particular,

$$
\mathbf{E}^{*} \xi=\int_{-\infty}^{\infty} x d F^{*}(x)=\int_{-\infty}^{\infty} x e^{\gamma x} d F(x)=\mathbf{E}\left(\xi e^{\gamma \xi}\right)
$$

and this number is positive (!) Therefore

$$
\begin{equation*}
\mathbf{P}^{*}(\tau(x)<\infty)=1 \tag{3}
\end{equation*}
$$

for all x.

Exercise 1. In the classical case, the following are equivalent:
(a) F has a lattice distribution with span h;
(b) F^{*} has a lattice distribution with span h.

Exercise 2. Assume that $t>0$ is such that $\varphi(t)<\infty$. Let

$$
d F_{t}(x)=\frac{e^{t x} d F(x)}{\varphi(t)}
$$

and denote by \mathbf{E}_{t} the corresponding extectation operator. Find an expression for $E_{t} g\left(\xi_{1}, \ldots \xi_{n}\right)$ in this case.

4.2 The asymptotics for $\mathbf{P}(M>x)$

Let \mathbf{I} be an indicator function, i.e., for any (random) event B,

$$
\mathbf{I}(B)=1 \quad \text { if the event } \quad B \quad \text { occurs and } \quad \mathbf{I}(B)=0 \quad \text { otherwise. }
$$

In particular, for any $x \in \mathbb{R}^{n}$ and for any measurable set $A \subset \mathbb{R}^{n}$,

$$
\mathbf{I}(x \in A)=1 \quad \text { if } \quad x \in A \quad \text { and } \quad \mathbf{I}(x \in A)=0 \quad \text { otherwise. }
$$

Let $\tau(x)=\min \left\{n \geq 0: S_{n}>x\right\}$ if there exists such n, and $\tau(x)=\infty$ otherwise. Then, for $x>0$,

$$
\begin{aligned}
\mathbf{P}(M>x) & =\mathbf{P}(\tau(x)<\infty) \\
& =\sum_{n=1}^{\infty} \mathbf{P}(\tau(x)=n) \\
& =\sum_{n=1}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \mathbf{I}\left(\left(x_{1}, \ldots, x_{n}\right) \in A_{n}(x)\right) d F\left(x_{1}\right) \ldots d F\left(x_{n}\right)
\end{aligned}
$$

where

$$
A_{n}(x)=\left\{\left(z_{1}, \ldots z_{n}\right): z_{1} \leq x, \ldots, z_{1}+\ldots+z_{n-1} \leq x, z_{1}+\ldots+z_{n}>x\right\}
$$

Further,

$$
\begin{aligned}
\mathbf{P}(M>x) & =\sum_{n=1}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-\gamma \sum_{i=1}^{n} x_{i}} \mathbf{I}\left(\left(x_{1}, \ldots, x_{n}\right) \in A_{n}(x)\right) d F^{*}\left(x_{1}\right) \ldots d F^{*}\left(x_{n}\right) \\
& =\sum_{n=1}^{\infty} \mathbf{E}^{*}\left(e^{-\gamma S_{n}} \mathbf{I}(\tau(x)=n)\right) \\
& =\mathbf{E}^{*}\left(e^{-\gamma S_{\tau(x)}} \mathbf{I}(\tau(x)<\infty)\right) \\
& =\mathbf{E}^{*} e^{-\gamma S_{\tau(x)}} .
\end{aligned}
$$

The very last equality follows from (3).
Since

$$
S_{\tau(x)}=x+\chi(x),
$$

we get finally
Theorem 1. (1) In the classical case,

$$
\mathbf{P}(M>x)=e^{-\gamma x} \mathbf{E}^{*} e^{-\gamma \chi(x)} .
$$

(2) Cramer upper bound. Since $\chi(x) \geq 0$, for any $x>0$,

$$
\mathbf{P}(M>x) \leq e^{-\gamma x} .
$$

(3) From the basic renewal theory,
(a) if F is non-lattice, then

$$
\begin{equation*}
\mathbf{P}(M>x) e^{\gamma x} \rightarrow \mathbf{E}^{*} e^{-\gamma \chi(\infty)} \in(0, \infty), \quad x \rightarrow \infty, \tag{4}
\end{equation*}
$$

(b) If F is lattice with span h, then

$$
\begin{equation*}
\mathbf{P}(M>n h) e^{\gamma n h} \rightarrow \mathbf{E}^{*} e^{-\gamma \tilde{\chi}(\infty)} \in(0, \infty), \quad n \rightarrow \infty . \tag{5}
\end{equation*}
$$

Exercise 3. Show that (in both lattice and non-lattice cases)
$\sup _{x \geq 0} \mathbf{P}(M>x) e^{\gamma x}<\infty$ and $\inf _{x \geq 0} \mathbf{P}(M>x) e^{\gamma x}>0$.
Corollary 1. In the classical case,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \log \mathbf{P}(M>x)=-\gamma
$$

Remark 3. This a a particular example of LDP (to be introduced in Lecture 2.)

4.3 "Typical" sample paths

Since $\mathbf{E}^{*} \xi=b>0$, the SLLN says that

$$
\begin{equation*}
\mathbf{P}^{*}\left(\frac{S_{n}}{n} \rightarrow b\right)=1, \quad \text { or } \quad \frac{S_{n}}{n} \rightarrow b \quad \mathbf{P}^{*}-\text { a.s. } \tag{6}
\end{equation*}
$$

This also means that, for any $\varepsilon>0$,

$$
\mathbf{P}^{*}\left(\sup _{m \geq n}\left|\frac{S_{n}}{n}-b\right|>\varepsilon\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

Exercise 4. Show that (6) is equivalent to the following:
for any $\varepsilon \in(0,1)$ and any $\delta \in(0,1)$, there exists $R>0$ such that

$$
\begin{equation*}
\mathbf{P}^{*}(B) \equiv \mathbf{P}^{*}\left(-R+n(b-\delta) \leq S_{n} \leq R+n(b+\delta) \quad \text { for all } \quad n\right) \geq 1-\varepsilon, \tag{7}
\end{equation*}
$$

and also to the following:
for any $\varepsilon \in(0,1)$, there exist $R>0$ and a sequence $\delta_{n} \rightarrow 0$ such that

$$
\begin{equation*}
\mathbf{P}^{*}(B) \equiv \mathbf{P}^{*}\left(-R+n\left(b-\delta_{n}\right) \leq S_{n} \leq R+n\left(b+\delta_{n}\right) \quad \text { for all } \quad n\right) \geq 1-\varepsilon . \tag{8}
\end{equation*}
$$

Let

$$
B(x)=\left\{-R+n(b-\delta) \leq S_{n} \leq R+n(b+\delta) \quad \text { for all } \quad n \leq \tau(x)\right\} .
$$

Theorem 2. For any $\varepsilon, \delta \in(0,1)$, one can choose $R>0$ such that, for any $x>0$,

$$
\mathbf{P}(B(x) \mid M>x) \geq 1-\varepsilon / C
$$

where $C=E^{*} e^{-\gamma \chi(x)}$ or $C=\inf _{x \geq 0} E^{*} e^{-\gamma \chi(x)}$.
Corollary 2. For any $\varepsilon>0$, as $x \rightarrow \infty$,

$$
\mathbf{P}\left(\left.\left|\frac{\tau(x)}{x}-\frac{1}{b}\right|>\varepsilon \right\rvert\, M>x\right) \rightarrow 0 \quad \text { and } \quad \mathbf{P}\left(\left.\sup _{k \leq \tau(x)}\left|\frac{S_{k}}{x}-\frac{k b}{x}\right|>\varepsilon \right\rvert\, M>x\right) \rightarrow 0 .
$$

Proof of Theorem 2. From Bayes formula,

$$
\mathbf{P}(B(x) \mid M>x)=\frac{\mathbf{P}(B(x), M>x)}{\mathbf{P}(M>x)} .
$$

Here

$$
\mathbf{P}(M>x)=e^{-\gamma x} E^{*} e^{-\gamma \chi(x)}
$$

and, similarly,

$$
\begin{aligned}
\mathbf{P}(B(x), M>x) & =\ldots \\
& =\mathbf{E}^{*}\left(e^{-\gamma S_{\tau(x)}} \cdot \mathbf{I}(B(x)) \mathbf{I}(\tau(x)<\infty)\right) \\
& =\mathbf{E}^{*}\left(e^{-\gamma S_{\tau(x)}} \cdot \mathbf{I}(B(x))\right) \\
& \geq \mathbf{E}^{*}\left(e^{\left.-\gamma S_{\tau(x)} \cdot \mathbf{I}(B)\right)}\right. \\
& =e^{-\gamma x}\left(\mathbf{E}^{*} e^{-\gamma \chi(x)}-\mathbf{E}^{*}\left(e^{-\gamma \chi(x)} \mathbf{I}(\bar{B})\right)\right) .
\end{aligned}
$$

Here

$$
0 \leq \mathbf{E}^{*}\left(e^{-\gamma \chi(x)} \mathbf{I}(\bar{B})\right) \leq \mathbf{E}^{*} I(\bar{B})=\mathbf{P}^{*}(\bar{B}) \leq \varepsilon,
$$

and the result follows.
Exercise 5. Prove Corollary 2.

4.4 Distributional asymptotics for the cycle maxima

Let $\theta=\min \left\{n \geq 1: S_{n} \leq 0\right\}$ be the first hitting time of the negative half-line. Note that $\theta<\infty$ a.s. Let

$$
M_{\theta}=\max _{n \leq \theta} S_{n}
$$

Theorem 3. In the classical case, as $x \rightarrow \infty$,

$$
\mathbf{P}\left(M_{\theta}>x\right) e^{\gamma x} \rightarrow\left(1-\mathbf{E} e^{\gamma S_{\theta}}\right) \mathbf{E}^{*} e^{-\gamma \chi(\infty)}
$$

Proof of Theorem 3. Let

$$
\widetilde{M}=\sup _{n \geq \theta}\left(S_{n}-S_{\theta}\right)
$$

Then \widetilde{M} does not depend on $\theta, S_{1}, \ldots, S_{\theta}$ and, in particular, on M_{θ} and S_{θ}. Further,

$$
\begin{aligned}
\mathbf{P}(M>x) & =\mathbf{P}\left(M_{\theta}>x\right)+\mathbf{P}\left(M_{\theta} \leq x, S_{\theta}+\widetilde{M}>x\right) \\
& =\mathbf{P}\left(M_{\theta}>x\right)+\mathbf{P}\left(S_{\theta}+\widetilde{M}>x\right)-\mathbf{P}\left(M_{\theta}>x, S_{\theta}+\widetilde{M}>x\right)
\end{aligned}
$$

Here

$$
\begin{aligned}
0 & \leq \mathbf{P}\left(M_{\theta}>x, S_{\theta}+\widetilde{M}>x\right) \leq \mathbf{P}\left(M_{\theta}>x, \widetilde{M}>x\right) \\
& =\mathbf{P}\left(M_{\theta}>x\right) \mathbf{P}(\widetilde{M}>x)=o\left(\mathbf{P}\left(M_{\theta}>x\right)\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\mathbf{P}\left(M_{\theta}>x\right) & \sim \mathbf{P}(M>x)-\mathbf{P}\left(M>x-\widetilde{S}_{\widetilde{\theta}}\right) \\
& =\int_{0}^{\infty} \mathbf{P}\left(-S_{\theta} \in d t\right) \mathbf{P}(M \in(x, x+t])
\end{aligned}
$$

where $\widetilde{S}_{\widetilde{\theta}}$ conicides in distribution with S_{θ} and does not depend on M. Here $f(x) \sim g(x)$ means that $f(x) / g(x) \rightarrow 1$ as $x \rightarrow \infty$.
From Theorem 2,

$$
\begin{aligned}
\mathbf{P}(M \in(x, x+t]) & =e^{-\gamma x} \mathbf{E}^{*} e^{-\gamma \chi(x)}-e^{-\gamma(x+t)} \mathbf{E}^{*} e^{-\gamma \chi(x+t)} \\
& =e^{-\gamma x}\left(\mathbf{E}^{*} e^{-\gamma \chi(x)}-e^{-\gamma t} \mathbf{E}^{*} e^{-\gamma \chi(x+t)}\right)
\end{aligned}
$$

Thus, by dominate convergence theorem,

$$
\begin{aligned}
\mathbf{P}\left(M_{\theta}>x\right) & \sim e^{-\gamma x} \mathbf{E}^{*} e^{-\gamma \chi(\infty)} \int_{0}^{\infty} \mathbf{P}\left(-S_{\theta} \in d t\right)\left(1-e^{-\gamma t}\right) \\
& =e^{-\gamma x} \mathbf{E}^{*} e^{-\gamma \chi(\infty)}\left(1-\mathbf{E} e^{-\gamma S_{\theta}}\right)
\end{aligned}
$$

5 The heavy tail case

In the heavy tail case, we need some spicific assumptinos to derive the asymptotics for $\mathbf{P}(M>x)$.

5.1 Definition and basic properties of long-tailed and subexponential distributions

5.1.1 Long-tailed distributions

Definition. A distribution F with is long-tailed (belong to the class \mathcal{L}) if $\bar{F}(x)>0$ for all x and $\bar{F}(x+1) \sim \bar{F}(x)$, i.e.

$$
\frac{\bar{F}(x+1)}{\bar{F}(x)} \rightarrow 1 \quad \text { as } \quad x \rightarrow \infty
$$

Exercise 6. Show that if $F \in \mathcal{L}$, then, for any fixed $-\infty<y<\infty$,

$$
\frac{\bar{F}(x+y)}{\bar{F}(x)} \rightarrow 1 \quad \text { as } \quad x \rightarrow \infty .
$$

Exercise 7. Show that if $F \in \mathcal{L}$, then there exists a function $h(x) \geq 0, h(x) \rightarrow \infty$ as $x \rightarrow \infty$ such that

$$
\frac{\bar{F}(x+h(x))}{\bar{F}(x)} \rightarrow 1 \quad \text { as } \quad x \rightarrow \infty .
$$

Exercise 8. Show that if $F \in \mathcal{L}$ and if $\bar{F}(x) \sim \bar{G}(x)$, then $G \in \mathcal{L}$.
Examples of long-tailed distributions:
(1) Pareto distribution:

$$
\bar{F}(x)=x^{-\alpha} \quad \text { for } \quad x \geq 1 .
$$

(2) Weibull distribution with parameters $\beta \in(0,1)$ and $c>0$:

$$
\bar{F}(x)=e^{-c x^{\beta}} \quad \text { for } \quad x \geq 0 .
$$

(3) Log-normal distribution:
a r.v. X has a \log-normal distribution with parameters $\left(a, \sigma^{2}\right)$ if $X=e^{Y}$ where Y has a distribution $N\left(a, \sigma^{2}\right)$. In other words, X has a density function

$$
f(x)=\frac{1}{\sqrt{2} \pi x} e^{-\frac{\log x-a)^{2}}{2 \sigma^{2}}} .
$$

5.1.2 Subexponential distributions

For any distribution F on $[0, \infty)$ with unbounded support,

$$
\liminf _{x \rightarrow \infty} \frac{\overline{F * F}(x)}{\bar{F}(x)} \geq 2
$$

Indeed, for i.i.d.r.v.'s ξ_{1} and ξ_{2} with common distribution F,

$$
\begin{aligned}
\overline{F * F}(x) & =\operatorname{Pr}\left(\xi_{1}+\xi_{2}>x\right) \geq \mathbf{P}\left(\left\{\xi_{1}>x\right\} \bigcup\left\{\xi_{2}>x\right\}\right) \\
& =2 \mathbf{P}\left(\xi_{1}>x\right)-\mathbf{P}\left(\xi_{1}>x\right)^{2}=\bar{F}(x)(2-\bar{F}(x)) \sim 2 \bar{F}(x) .
\end{aligned}
$$

Now we introduce a special class of distributions for which a limit of the latter ratio exists and equals 2.
Definition. Let F be a distribution on $[0, \infty)$ with unbounded support. We say that F is subexponential and write $F \in \mathcal{S}$ if

$$
\overline{F * F}(x) \sim 2 \bar{F}(x) \quad \text { as } x \rightarrow \infty .
$$

Equivalently, a non-negative random variable ξ has a subexponential distribution if, for two independent copies ξ_{1} and ξ_{2} of ξ,

$$
\mathbf{P}\left\{\xi_{1}+\xi_{2}>x\right\} \quad \sim 2 \mathbf{P}\{\xi>x\} \quad \text { as } x \rightarrow \infty
$$

Since the equivalence

$$
\mathbf{P}\left\{\max \left(\xi_{1}, \xi_{2}\right)>x\right\}=1-(1-\mathbf{P}\{\xi>x\})^{2} \sim 2 \mathbf{P}\{\xi>x\}
$$

always holds as $x \rightarrow \infty$, we can say that F is a subexponential distribution iff

$$
\mathbf{P}\left\{\xi_{1}+\xi_{2}>x\right\} \quad \sim \mathbf{P}\left\{\max \left(\xi_{1}, \xi_{2}\right)>x\right\} \quad \text { as } x \rightarrow \infty .
$$

Moreover, since the event $\left\{\max \left(\xi_{1}, \xi_{2}\right)>x\right\}$ implies the event $\left\{\xi_{1}+\xi_{2}>x\right\}$, in subexponential case we have the following relation:

$$
\begin{equation*}
\mathbf{P}\left\{\xi_{1}+\xi_{2}>x, \max \left(\xi_{1}, \xi_{2}\right) \leq x\right\}=o(\mathbf{P}\{\xi>x\}) \quad \text { as } x \rightarrow \infty . \tag{9}
\end{equation*}
$$

Examples of SE distributions: Pareto, Weibull, Log-normal.
Exercise 9. Show (by induction) that if $F \in \mathcal{S}$, then, for any $n=3,4, \ldots$,

$$
\overline{F^{* n}}(x) \sim n \bar{F}(x) .
$$

Exercise 10. Show that $\mathcal{S} \subset \mathcal{L}$, i.e. any subexponential distribution on the positive half-line is long-tailed.

Proposition 1. Let F be a distribution on $[0, \infty)$ and ξ_{1}, ξ_{2} be two independent random variables with distribution F. Then the following assertions are equivalent:
(i) F is subexponential;
(ii) F is long-tailed and, for every function $h(x) \rightarrow \infty$,

$$
\begin{equation*}
\mathbf{P}\left\{\xi_{1}+\xi_{2}>x, \xi_{1}>h(x), \xi_{2}>h(x)\right\}=o(\bar{F}(x)) \text { as } x \rightarrow \infty ; \tag{10}
\end{equation*}
$$

(iii) there exists a function $h(x)<x / 2$ such that $h(x) \rightarrow \infty, \bar{F}(x-h(x)) \sim \bar{F}(x)$ as $x \rightarrow \infty$, and (10) holds.

Proof of $(\mathrm{i}) \Rightarrow(\mathrm{ii}) . F$ is long-tailed by Exercise 10. Note that if (10) is valid for some $h(x)$, then it follows for any $h_{1} \geq h$. So without loss of generality we assume that $h(x)<x / 2$. For $h(x)<x / 2$, the probability of the event $B=\left\{\xi_{1}+\xi_{2}>x\right\}$ is equal to

$$
\mathbf{P}\left\{B, \xi_{1} \leq h(x)\right\}+\mathbf{P}\left\{B, \xi_{2} \leq h(x)\right\}+\mathbf{P}\left\{B, \xi_{1}>h(x), \xi_{2}>h(x)\right\} .
$$

Since

$$
\begin{align*}
\mathbf{P}\left\{B, \xi_{1} \leq h(x)\right\} & =\mathbf{P}\left\{B, \xi_{2} \leq h(x)\right\} \\
& =\int_{0}^{h(x)} \bar{F}(x-y) F(d y) \sim \bar{F}(x) \int_{0}^{h(x)} F(d y) \sim \bar{F}(x), \tag{11}
\end{align*}
$$

the conclusion follows from the relation $\mathbf{P}\{B\} \sim 2 \bar{F}(x)$.
(ii) \Rightarrow (iii). By Exercise 7, if F is long-tailed then there exists a function h such that $h(x) \rightarrow \infty$ and $\bar{F}(x-h(x)) \sim \bar{F}(x)$ as $x \rightarrow \infty$.
(iii) \Rightarrow (i). Substituting (11) and (10) into decomposition of the probability of the event B, we get the desired equivalence $\mathbf{P}\{B\} \sim 2 \bar{F}(x)$. The proof is complete.
Let $\left\{\xi_{n}\right\}$ be a sequence of i.i.d. non-negative random variables with common distribution $F(B)=\mathbf{P}\left\{\xi_{1} \in B\right\}$. Put $S_{n}=\xi_{1}+\ldots+\xi_{n}$.

Proposition 2. Assume that $F \in \mathcal{S}$. Then, for any $\varepsilon>0$, there exists $c(\varepsilon)>0$ such that, for any $x \geq 0$ and $n \geq 1$,

$$
\overline{F^{* n}}(x) \leq c(\varepsilon)(1+\varepsilon)^{n} \bar{F}(x)
$$

Proof. For $x_{0}>0$ and $k \geq 1$, put

$$
A_{k} \equiv A_{k}\left(x_{0}\right)=\sup _{x>x_{0}} \frac{\overline{F^{* k}}(x)}{\bar{F}(x)}
$$

Take any $\varepsilon>0$. It follows from (9) that there exists x_{0} such that, for any $x>x_{0}$,

$$
\mathbf{P}\left\{\xi_{1}+\xi_{2}>x, \xi_{2} \leq x\right\} \leq(1+\varepsilon / 2) \bar{F}(x)
$$

We have the following decomposition

$$
\begin{aligned}
\mathbf{P}\left\{S_{n}>x\right\} & =\mathbf{P}\left\{S_{n}>x, \xi_{n} \leq x-x_{0}\right\}+\mathbf{P}\left\{S_{n}>x, \xi_{n}>x-x_{0}\right\} \\
& \equiv P_{1}(x)+P_{2}(x)
\end{aligned}
$$

By the definition of A_{n-1} and x_{0}, for any $x>x_{0}$,

$$
\begin{align*}
P_{1}(x) & =\int_{0}^{x-x_{0}} \mathbf{P}\left\{S_{n-1}>x-y\right\} \mathbf{P}\left\{\xi_{n} \in d y\right\} \\
& \leq A_{n-1} \int_{0}^{x-x_{0}} \bar{F}(x-y) \mathbf{P}\left\{\xi_{n} \in d y\right\} \\
& =A_{n-1} \mathbf{P}\left\{\xi_{1}+\xi_{n}>x, \xi_{n} \leq x-x_{0}\right\} \leq A_{n-1}(1+\varepsilon / 2) \bar{F}(x) \tag{12}
\end{align*}
$$

Further,

$$
P_{2}(x) \leq \mathbf{P}\left\{\xi_{n}>x-x_{0}\right\} \leq L \bar{F}(x)
$$

where

$$
L=\sup _{y} \frac{\bar{F}\left(y-x_{0}\right)}{\bar{F}(y)}
$$

Since $F \in \mathcal{L}, L$ is finite. Then, for any $x>x_{0}$,

$$
\begin{equation*}
P_{2}(x) \leq L \bar{F}(x) \tag{13}
\end{equation*}
$$

It follows from (12) and (13) that $A_{n} \leq A_{n-1}(1+\varepsilon / 2)+L$ for $n>1$. Therefore, an induction argument yields:

$$
A_{n} \leq A_{1}(1+\varepsilon / 2)^{n-1}+L \sum_{l=0}^{n-2}(1+\varepsilon / 2)^{l} \leq \operatorname{Ln}(1+\varepsilon / 2)^{n-1}
$$

This implies the conclusion of the proposition.
Let us consider now some random time τ with distribution $p_{n}=\mathbf{P}\{\tau=n\}, n \geq 0$ which is independent of $\left\{\xi_{n}\right\}$. Then the distribution of the randomly stopped sum S_{τ} is equal to

$$
\mathbf{P}\left\{S_{\tau} \in B\right\}=\sum_{n \geq 0} p_{n} F^{* n}(B) .
$$

Theorem 4. Assume $F[0, \infty)=1$ and $\mathbf{E} \tau<\infty$.
If $F \in \mathcal{S}$ and $\mathbf{E}(1+\delta)^{\tau}<\infty$ for some $\delta>0$, then

$$
\begin{equation*}
\frac{\mathbf{P}\left\{S_{\tau}>x\right\}}{\bar{F}(x)} \rightarrow \mathbf{E} \tau \quad \text { as } x \rightarrow \infty . \tag{14}
\end{equation*}
$$

A proof of Theorem 4 follows from Proposition 2 and the dominated convergence theorem.

5.2 Asymptotics for $\mathbf{P}(M>x)$ in the heavy tail case

Definition. A distribution F on the whole line is subexponential if a distribution $F \mathbf{I}(x>0$ is subexponential.

Theorem 5. Let $S_{n}=\sum_{1}^{n} \xi_{i}$ be a random walk with negative mean $-a$. Assume that a distribution F^{s} with the tail

$$
\bar{F}^{s}(x)=\min \left(1, \int_{x}^{\infty} \bar{F}(t) d t\right)
$$

is sunexponential. Then, as $x \rightarrow \infty$,

$$
\mathbf{P}(M>x) \sim \frac{1}{a} \int_{x}^{\infty} \bar{F}(t) d t .
$$

Sketch of Proof.
Step 1. Let

$$
\eta=\min \left\{n \geq 1: S_{n}>0\right\} \leq \infty
$$

and let a random variable ψ have a distribution

$$
\mathbf{P}(\psi \leq x)=\mathbf{P}\left(S_{\eta} \leq x \mid \eta<\infty\right) .
$$

Direct probabilistic calculations show that if $F^{s} \in \mathcal{L}$, then

$$
\bar{G}(x) \sim \frac{p}{q a} \bar{F}^{s}(x)
$$

where $p=\mathbf{P}(M=0)$ and $q=1-p$.
Further, if F^{s} subexponential distribution, then G is subexponential too.
Step 2. We use the following fact (see, e.g., Feller).
A random variable M has the same distribution with

$$
\sum_{1}^{\nu} \psi_{i}
$$

where ψ 's are i.i.d. and have the same distribution with ψ and ν does not depend on them and has a distribution

$$
\mathbf{P}(\nu=k)=p q^{k} \quad \text { for } \quad k=0,1,2, \ldots
$$

Then we can apply Theorem 4:

$$
\mathbf{P}(M>x) \sim \mathbf{E} \nu \bar{G}(x)
$$

where

$$
\mathbf{E} \nu=\sum_{k \geq 1} \mathbf{P}(\nu \geq k)=q+q^{2}+\ldots=\frac{q}{p} .
$$

5.3 "Typical" sample paths

Use again the SLLN:

$$
\mathbf{P}\left(\frac{S_{n}}{n} \rightarrow-a\right)=1,
$$

or for any $\varepsilon \in(0,1)$ and any $\delta \in(0,1)$, there exists $R>0$ such that

$$
\begin{equation*}
\mathbf{P}(B) \equiv \mathbf{P}\left(-R-n(a+\delta) \leq S_{n} \leq R-n(a-\delta) \quad \text { for all } \quad n\right) \geq 1-\varepsilon \tag{15}
\end{equation*}
$$

For $m=0,1, \ldots$, introduce events

$$
B_{m}=\left\{R-n(a+\delta) \leq S_{n} \leq R-n(a-\delta) \quad \text { for all } \quad n \leq m\right\} .
$$

Clearly, $B \subset B_{m}$ for all m. Then

$$
\begin{aligned}
\mathbf{P}(M>x) & \geq \sum_{n=1}^{\infty} \mathbf{P}\left(B_{n-1} \bigcap\left\{S_{n}>x\right\}\right) \\
& \geq \sum_{n=1}^{\infty} \mathbf{P}\left(B_{n-1} \bigcap\left\{\xi_{n}>x+R+n(a+\delta)\right\}\right) \\
& =\sum_{n=1}^{\infty} \mathbf{P}\left(B_{n-1}\right) \bar{F}(x+R+n(a+\delta)) \\
& \geq \mathbf{P}(B) \sum_{n=1}^{\infty} \bar{F}(x+R+n(a+\delta)) \\
& \geq(1-\varepsilon) \frac{1}{a+\delta} \int_{x-R-a-\delta}^{\infty} \bar{F}(t) d t \\
& \sim \frac{1-\varepsilon}{a+\delta} \int_{x}^{\infty} \bar{F}(t) d t .
\end{aligned}
$$

Since ε and δ are arbitrarily small, the coefficient $\frac{1-\varepsilon}{a+\delta}$ may be made as close to $1 / a$ as possible. Compare this lower bound with the result of Theorem 5 !
Further comment: since F^{s} is long-tailed, $\bar{F}(x)=o\left(\bar{F}^{s}(x)\right.$, and any finite number of first jumps are (asymptotically) negligible.

6 Further Problems

Problem 1. Let ξ_{n} have a light tail and let

$$
v=\sup \{t: \varphi(t) \leq 1\}
$$

Show that

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \log \mathbf{P}(M>x)=-v
$$

Hint: Use the following monotonicity property: for two random walks $S_{n}=\sum_{1}^{n} \xi_{i}, n=$ $1,2, \ldots$ and $\hat{S}_{n}=\sum_{1}^{n} \hat{\xi}_{i}, n=1,2, \ldots$, if $\xi_{i} \leq \hat{\xi}_{i}$ a.s. for all i, then $M \leq \hat{M}$ a.s. and, in particular, for all x,

$$
\mathbf{P}(M>x) \leq \mathbf{P}(\hat{M}>x)
$$

You may consider the following choices for $\hat{\xi}_{i}$:
(a) $\hat{\xi}_{i}=\max \left(\xi_{i}, K\right)$ for some K - for the upper bound, and
(b) $\hat{\xi}_{i}=\min \left(\xi_{i}, K\right)$ for some $K-$ for the lower bound.

Problem 2. Give a proof of Theorem 4.

References

[1] Asmussen, S. (2003) Applied Probability and Queues, 2nd Edition, Springer-Verlag.
[2] Denisov, D. (2005). A note on the asymptotics for the maximum on a random time interval of a random walk. Markov Proc. Rel.F, 11, 165-169.
[3] Denisov, D., Foss, S. and Korshunov, D. (2004). Tail asymptotics for the supremum of a random walk when the mean is not finite. Queueing Systems, 46, 15-33.
[4] Erickson, K.B. (1971). A renewal theorem for distribution on R without expectations. Bull. Amer. Math. Soc. 77, 406-410.
[5] Feller, W. (1971) An Introduction to Probability Theory and its Applications, Vol.2. Wiley.
[6] Foss, S., And Zachary, Z. (2006) On the asymptotics of the supremum of a random walk: the principle of a single big jump in the light-tailed case. http://arxiv.org/abs/math/0603330
[7] Gut, A. (1988) Stopped Random Walks. Limit Theorems and Applications. SpringerVerlag.
[8] Korshunov, D. (2005) The critical case of the Cramer-Lundberg theorem on the asymptotic tail behavior of the maximum of a negative drift random walk. Siberian Math. J. 46, 1077-1081.

