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1 Notation and definitions

Consider a sequence ξ, ξ1, ξ2, . . . of independent identically distributed (i.i.d.) random
variables (r.v.’s) with a common distribution function F (x) = P(ξ ≤ x). Let

S0 = 0, Sn =
n∑
1

ξi, n ≥ 1,

Mn = max
0≤i≤n

Si, M = sup
n≥0

Mn ≡M∞.

We are interested in the asymptotics for P(M > x) when x→∞.

First, there is 0− 1 Law:
Either P(M < ∞) = 1 (in other words, M is finite a.s.) or P(M = ∞) = 1 (in other
words, M is infinite a.s.).

Further, if
the mean (expectation, drift) of ξ exists (i.e. E|ξ| <∞)
then
P(M <∞) = 1 if and only if Eξ = −a < 0 (se, e.g., Feller [5]).

If the mean does not exist (E|ξ| = ∞), then M is finite a.s. if and only if∫ ∞

0

xdF (x)
m(x)

<∞ (1)

where m(x) = E(min(x,−ξ) – see Erickson ([4]).

Let ϕ(t) = Eetξ be a moment generating function of ξ.. Clearly, ϕ(0) = 1. If ϕ(t) is
finite for some t > 0, then it is finite for all 0 < u < t and convex in this interval since
ϕ
′′
(u) = E

(
ξ2euξ

)
≥ 0.

There are 5 cases of interest:
(I) the mean does not exist, but condition (1) holds;
(II) a > 0 and ϕ(t) = ∞ for all t > 0 (the case of heavy-tailed distribution);
(III) a > 0 and there exists γ > 0 such that

ϕ(γ) = 1 (2)

and ϕ
′
(γ) <∞ (this is the “classical case”, here ϕ

′
(γ) means the left derivative);

(IV) a > 0, (2) holds, but ϕ
′
(γ) = ∞;

(V) a > 0, ϕ(t) <∞ for some t > 0, but (2) is violated.

We consider today only cases (II) and (III). For the asymptotics in other cases, see recent
papers [3], [8], [6], and futher references therein.
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2 Applications

(a) Queueing theory. Stationary (limiting) waiting time W in a single server queue
coincides in distribution with the supremum M of an associated random walk.

Consider a single-server queue with i.i.d. interarrival times tn and independent of them
i.i.d. service times σn. Assume that customer 1 arrives in an empty system. Then its
waiting time (before service) is W1 = 0. Customer 2 arrives t1 units of time later, and its
waiting time is W2 = max(0, σ1 − t1). By induction,

Wn+1 = max(0,Wn + σn − tn).

Let ξn = σn − tn. Note that

Wn+1 = max(0,Wn + ξn)

= max(0,max(0,Wn−1 + ξn−1) + ξn)

= max(0, ξn, ξn + ξn−1 +Wn−1)

= ...

= max(0, ξn, ξn + ξn−1, . . . , ξn + . . .+ ξ1)

Since {ξn} is an i.i.d. sequence, Wn+1 has the same distribution as

Mn = max(0, ξ1, ξ1 + ξ2, . . . , ξ1 + . . .+ ξn).

Therefore, as n→∞, distributions of Wn converge weakly to that of M .

One can use also the “Loynes scheme”. Assume that i.i.d.r.v.’s ξn are defined for all
−∞ < n <∞ (this extension may be done using Kolmogorov’s theorem). Clearly, Wn+1

has the same distribution as

M̃n = max(0, ξ−1, ξ−1 + ξ−2, . . . , ξ−1 + . . .+ ξ−n)

Here we do not reverse numbering – we just shift all indices by (−n−1). Then M̃n+1 ≥ M̃n

a.s. for all n and M̃n converge monotonically to the supremum

M̃ = sup
n≥0

n∑
i=1

ξ−j

of a random walk with increments {ξ−n}.
Remark 1. You will meet Loynes scheme again tomorrow during the 2nd lecture on sta-
bility methods.

(b) Risk theory. In the risk theory, P(M > x) may be interpreted as a probability of
ruin (in the infinite time horizon).

In the risk theory setting, an insurance company has an initial capital x. Consequent i.i.d.
claims have sizes σn, and independent of them i.i.d. “interclaim times” are tn. There is a
surplus process with rate c > 0. A ruin occurs if

inf
n
{x+

n∑
i=1

(cti − σi)} < 0,

or, equivalently,

sup
n≥0

n∑
i=1

(σi − cti) > x

where {σi − cti}i≥1 is an i.i.d. sequence.
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3 Elements of renewal theory

A r.v. ξ has a lattice (arithmetic) distribution with span h > 0 if

∞∑
n=−∞

P(ξ = nh) = 1

and if h is a maximal number with this property. Clearly, any r.v. has either a lattice
distrubion (with uniquely determined span) or a non-lattice (non-arithmetic) distribution.

Let ξ, ξ1, ξ2, . . . be an i.i.d. sequence of random variables with a finite positive mean
b = Eξ. For any x, let

τ(x) = min{n : Sn > x}

be the firrst hitting time of (x,∞), and

χ(x) = Sτ(x) − x

an overshoot over x.

Here are some basic facts:
(i) since b > 0, τ(x) is a.s. finite for any x and, moreover, Eτ(x) <∞.
(ii) If ξ has a non-arithmetic distribution, distributions of χ(x) converge (weakly), as
x → ∞, to a proper continuous distribution of, say, random variable χ(∞). This means
that

Eg(χ(x)) → Eg(χ(∞)), x→∞

for any bounded continuous function, or, equivalently,

P(χ(x) ≤ t) → P(χ(∞) ≤ t), x→∞

for any t.
(iii) If ξ has an arithmetic distribution with span h, distributions of {χ(nh), n = 1, 2, . . .}
converge weakly, as n → ∞, to a proper discrete distribution, of, say, random variable
χ̃(∞).

Remark 2. See, e.g., Asmussen ([1]), Feller ([5]), or/and Gut ([7]) for more detailed treat-
ment of renewal theory and, in particular, for limiting distributions of .χ(∞) and χ̃(∞).
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4 The classical case

4.1 Exponential change of measure (Cramer transform)

Note that
ϕ(γ) ≡ Eeγξ =

∫ ∞

−∞
eγxdF (x) = 1.

Introduce a new distribution function

dF ∗(x) = eγxdF (x).

Thus, F ∗ is a probability distribution function.

For any n and for any bounded function g : Rn → R, let E∗g(ξ1, . . . , ξn) be an expectation
with respect to distribution F ∗:

E∗g(ξ1, . . . , ξn) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
g(x1, . . . , xn)dF ∗(x1) . . . dF ∗(xn)

and, in particular,

P∗(g(ξ1, . . . ξn) ∈ A) =
∫
· · ·
∫

g−1(A)
dF ∗(x1) . . . dF ∗(xn).

Then

Eg(ξ1, . . . , ξn) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
g(x1, . . . , xn)dF (x1) . . . dF (xn)

=
∫ ∞

−∞
· · ·
∫ ∞

−∞
g(x1, . . . , xn)e−γx1dF ∗(x1) . . . e−γxndF ∗(xn)

=
∫ ∞

−∞
· · ·
∫ ∞

−∞
e−γ

Pn
i=1 xig(x1, . . . , xn)dF ∗(x1) . . . dF ∗(xn)

= E∗
(
e−γSng(ξ1, . . . , ξn)

)
and, similarly,

E
(
g(ξ1, . . . , ξn)eγSn

)
= E∗g(ξ1, . . . , ξn).

In particular,

E∗ξ =
∫ ∞

−∞
xdF ∗(x) =

∫ ∞

−∞
xeγxdF (x) = E

(
ξeγξ

)
,

and this number is positive (!) Therefore

P∗(τ(x) <∞) = 1 (3)

for all x.
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Exercise 1. In the classical case, the following are equivalent:
(a) F has a lattice distribution with span h;
(b) F ∗ has a lattice distribution with span h.

Exercise 2. Assume that t > 0 is such that ϕ(t) <∞. Let

dFt(x) =
etxdF (x)
ϕ(t)

and denote by Et the corresponding extectation operator. Find an expression for Etg(ξ1, . . . ξn)
in this case.
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4.2 The asymptotics for P(M > x)

Let I be an indicator function, i.e., for any (random) event B,

I(B) = 1 if the event B occurs and I(B) = 0 otherwise.

In particular, for any x ∈ Rn and for any measurable set A ⊂ Rn,

I(x ∈ A) = 1 if x ∈ A and I(x ∈ A) = 0 otherwise.

Let τ(x) = min{n ≥ 0 : Sn > x} if there exists such n, and τ(x) = ∞ otherwise. Then,
for x > 0,

P(M > x) = P(τ(x) <∞)

=
∞∑

n=1

P(τ(x) = n)

=
∞∑

n=1

∫ ∞

−∞
· · ·
∫ ∞

−∞
I((x1, . . . , xn) ∈ An(x))dF (x1) . . . dF (xn)

where

An(x) = {(z1, . . . zn) : z1 ≤ x, . . . , z1 + . . .+ zn−1 ≤ x, z1 + . . .+ zn > x}.

Further,

P(M > x) =
∞∑

n=1

∫ ∞

−∞
· · ·
∫ ∞

−∞
e−γ

Pn
i=1 xiI((x1, . . . , xn) ∈ An(x))dF ∗(x1) . . . dF ∗(xn)

=
∞∑

n=1

E∗
(
e−γSnI(τ(x) = n)

)
= E∗

(
e−γSτ(x)I(τ(x) <∞)

)
= E∗e−γSτ(x) .

The very last equality follows from (3).

Since
Sτ(x) = x+ χ(x),

we get finally

Theorem 1. (1) In the classical case,

P(M > x) = e−γxE∗e−γχ(x).

(2) Cramer upper bound. Since χ(x) ≥ 0, for any x > 0,

P(M > x) ≤ e−γx.

(3) From the basic renewal theory,
(a) if F is non-lattice, then

P(M > x)eγx → E∗e−γχ(∞) ∈ (0,∞), x→∞, (4)

(b) If F is lattice with span h, then

P(M > nh)eγnh → E∗e−γχ̃(∞) ∈ (0,∞), n→∞. (5)
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Exercise 3. Show that (in both lattice and non-lattice cases)
supx≥0 P(M > x)eγx <∞ and infx≥0 P(M > x)eγx > 0.

Corollary 1. In the classical case,

lim
x→∞

1
x

log P(M > x) = −γ.

Remark 3. This a a particular example of LDP (to be introduced in Lecture 2.)

8



4.3 “Typical” sample paths

Since E∗ξ = b > 0, the SLLN says that

P∗
(
Sn

n
→ b

)
= 1, or

Sn

n
→ b P∗ − a.s. (6)

This also means that, for any ε > 0,

P∗
(

sup
m≥n

∣∣∣Sn

n
− b
∣∣∣ > ε

)
→ 0 as n→∞.

Exercise 4. Show that (6) is equivalent to the following:
for any ε ∈ (0, 1) and any δ ∈ (0, 1), there exists R > 0 such that

P∗(B) ≡ P∗ (−R+ n(b− δ) ≤ Sn ≤ R+ n(b+ δ) for all n) ≥ 1− ε, (7)

and also to the following:
for any ε ∈ (0, 1), there exist R > 0 and a sequence δn → 0 such that

P∗(B) ≡ P∗ (−R+ n(b− δn) ≤ Sn ≤ R+ n(b+ δn) for all n) ≥ 1− ε. (8)

Let
B(x) = {−R+ n(b− δ) ≤ Sn ≤ R+ n(b+ δ) for all n ≤ τ(x)}.

Theorem 2. For any ε, δ ∈ (0, 1), one can choose R > 0 such that, for any x > 0,

P(B(x) | M > x) ≥ 1− ε/C

where C = E∗e−γχ(x) or C = infx≥0E
∗e−γχ(x).

Corollary 2. For any ε > 0, as x→∞,

P
(∣∣∣τ(x)

x
− 1
b

∣∣∣ > ε | M > x

)
→ 0 and P

(
sup

k≤τ(x)

∣∣∣Sk

x
− kb

x

∣∣∣ > ε | M > x

)
→ 0.

Proof of Theorem 2. From Bayes formula,

P(B(x) | M > x) =
P(B(x),M > x)

P(M > x)
.

Here
P(M > x) = e−γxE∗e−γχ(x)

and, similarly,

P(B(x),M > x) = . . .

= E∗
(
e−γSτ(x) · I(B(x))I(τ(x) <∞)

)
= E∗

(
e−γSτ(x) · I(B(x))

)
≥ E∗

(
e−γSτ(x) · I(B)

)
= e−γx

(
E∗e−γχ(x) −E∗

(
e−γχ(x)I(B)

))
.

Here
0 ≤ E∗

(
e−γχ(x)I(B)

)
≤ E∗I(B) = P∗(B) ≤ ε,

and the result follows.

Exercise 5. Prove Corollary 2.
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4.4 Distributional asymptotics for the cycle maxima

Let θ = min{n ≥ 1 : Sn ≤ 0} be the first hitting time of the negative half-line. Note
that θ <∞ a.s. Let

Mθ = max
n≤θ

Sn

Theorem 3. In the classical case, as x→∞,

P(Mθ > x)eγx →
(
1−EeγSθ

)
E∗e−γχ(∞).

Proof of Theorem 3. Let
M̃ = sup

n≥θ
(Sn − Sθ).

Then M̃ does not depend on θ, S1, . . . , Sθ and, in particular, on Mθ and Sθ. Further,

P(M > x) = P(Mθ > x) + P(Mθ ≤ x, Sθ + M̃ > x)

= P(Mθ > x) + P(Sθ + M̃ > x)−P(Mθ > x, Sθ + M̃ > x).

Here

0 ≤ P(Mθ > x, Sθ + M̃ > x) ≤ P(Mθ > x, M̃ > x)

= P(Mθ > x)P(M̃ > x) = o(P(Mθ > x)).

Therefore

P(Mθ > x) ∼ P(M > x)−P(M > x− S̃eθ)
=

∫ ∞

0
P(−Sθ ∈ dt)P(M ∈ (x, x+ t])

where S̃eθ conicides in distribution with Sθ and does not depend on M . Here f(x) ∼ g(x)
means that f(x)/g(x) → 1 as x→∞.

From Theorem 2,

P(M ∈ (x, x+ t]) = e−γxE∗e−γχ(x) − e−γ(x+t)E∗e−γχ(x+t)

= e−γx
(
E∗e−γχ(x) − e−γtE∗e−γχ(x+t)

)
.

Thus, by dominate convergence theorem,

P(Mθ > x) ∼ e−γxE∗e−γχ(∞)

∫ ∞

0
P(−Sθ ∈ dt)

(
1− e−γt

)
= e−γxE∗e−γχ(∞)

(
1−Ee−γSθ

)
.

10



5 The heavy tail case

In the heavy tail case, we need some spicific assumptinos to derive the asymptotics for
P(M > x).

5.1 Definition and basic properties of long-tailed and subexponential

distributions

5.1.1 Long-tailed distributions

Definition. A distribution F with is long-tailed (belong to the class L) if F (x) > 0 for
all x and F (x+ 1) ∼ F (x), i.e.

F (x+ 1)
F (x)

→ 1 as x→∞.

Exercise 6. Show that if F ∈ L, then, for any fixed −∞ < y <∞,

F (x+ y)
F (x)

→ 1 as x→∞.

Exercise 7. Show that if F ∈ L, then there exists a function h(x) ≥ 0, h(x) → ∞ as
x→∞ such that

F (x+ h(x))
F (x)

→ 1 as x→∞.

Exercise 8. Show that if F ∈ L and if F (x) ∼ G(x), then G ∈ L.

Examples of long-tailed distributions:
(1) Pareto distribution:

F (x) = x−α for x ≥ 1.

(2) Weibull distribution with parameters β ∈ (0, 1) and c > 0:

F (x) = e−cxβ
for x ≥ 0.

(3) Log-normal distribution:
a r.v. X has a log-normal distribution with parameters (a, σ2) if X = eY where Y has a
distribution N(a, σ2). In other words, X has a density function

f(x) =
1√
2πx

e−
log x−a)2

2σ2 .

5.1.2 Subexponential distributions

For any distribution F on [0,∞) with unbounded support,

lim inf
x→∞

F ∗ F (x)
F (x)

≥ 2.

Indeed, for i.i.d.r.v.’s ξ1 and ξ2 with common distribution F ,

F ∗ F (x) = Pr(ξ1 + ξ2 > x) ≥ P
(
{ξ1 > x}

⋃
{ξ2 > x}

)
= 2P(ξ1 > x)−P(ξ1 > x)2 = F (x)(2− F (x)) ∼ 2F (x).
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Now we introduce a special class of distributions for which a limit of the latter ratio exists
and equals 2.

Definition. Let F be a distribution on [0,∞) with unbounded support. We say that F
is subexponential and write F ∈ S if

F ∗ F (x) ∼ 2F (x) as x→∞.

Equivalently, a non-negative random variable ξ has a subexponential distribution if, for
two independent copies ξ1 and ξ2 of ξ,

P{ξ1 + ξ2 > x} ∼ 2P{ξ > x} as x→∞.

Since the equivalence

P{max(ξ1, ξ2) > x} = 1− (1−P{ξ > x})2 ∼ 2P{ξ > x}

always holds as x→∞, we can say that F is a subexponential distribution iff

P{ξ1 + ξ2 > x} ∼ P{max(ξ1, ξ2) > x} as x→∞.

Moreover, since the event {max(ξ1, ξ2) > x} implies the event {ξ1 + ξ2 > x}, in subexpo-
nential case we have the following relation:

P{ξ1 + ξ2 > x,max(ξ1, ξ2) ≤ x} = o(P{ξ > x}) as x→∞. (9)

Examples of SE distributions: Pareto, Weibull, Log-normal.

Exercise 9. Show (by induction) that if F ∈ S, then, for any n = 3, 4, . . .,

F ∗n(x) ∼ nF (x).

Exercise 10. Show that S ⊂ L, i.e. any subexponential distribution on the positive
half-line is long-tailed.

Proposition 1. Let F be a distribution on [0,∞) and ξ1, ξ2 be two independent random
variables with distribution F . Then the following assertions are equivalent:

(i) F is subexponential;

(ii) F is long-tailed and, for every function h(x) →∞,

P{ξ1 + ξ2 > x, ξ1 > h(x), ξ2 > h(x)} = o(F (x)) as x→∞; (10)

(iii) there exists a function h(x) < x/2 such that h(x) → ∞, F (x − h(x)) ∼ F (x) as
x→∞, and (10) holds.

Proof of (i)⇒(ii). F is long-tailed by Exercise 10. Note that if (10) is valid for some h(x),
then it follows for any h1 ≥ h. So without loss of generality we assume that h(x) < x/2.
For h(x) < x/2, the probability of the event B = {ξ1 + ξ2 > x} is equal to

P{B, ξ1 ≤ h(x)}+ P{B, ξ2 ≤ h(x)}+ P{B, ξ1 > h(x), ξ2 > h(x)}.

Since

P{B, ξ1 ≤ h(x)} = P{B, ξ2 ≤ h(x)}

=
∫ h(x)

0
F (x− y)F (dy) ∼ F (x)

∫ h(x)

0
F (dy) ∼ F (x), (11)
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the conclusion follows from the relation P{B} ∼ 2F (x).

(ii)⇒(iii). By Exercise 7, if F is long-tailed then there exists a function h such that
h(x) →∞ and F (x− h(x)) ∼ F (x) as x→∞.

(iii)⇒(i). Substituting (11) and (10) into decomposition of the probability of the event B,
we get the desired equivalence P{B} ∼ 2F (x). The proof is complete.

Let {ξn} be a sequence of i.i.d. non-negative random variables with common distribution
F (B) = P{ξ1 ∈ B}. Put Sn = ξ1 + . . .+ ξn.

Proposition 2. Assume that F ∈ S. Then, for any ε > 0, there exists c(ε) > 0 such that,
for any x ≥ 0 and n ≥ 1,

F ∗n(x) ≤ c(ε)(1 + ε)nF (x).

Proof. For x0 > 0 and k ≥ 1, put

Ak ≡ Ak(x0) = sup
x>x0

F ∗k(x)
F (x)

.

Take any ε > 0. It follows from (9) that there exists x0 such that, for any x > x0,

P{ξ1 + ξ2 > x, ξ2 ≤ x} ≤ (1 + ε/2)F (x).

We have the following decomposition

P{Sn > x} = P{Sn > x, ξn ≤ x− x0}+ P{Sn > x, ξn > x− x0}
≡ P1(x) + P2(x).

By the definition of An−1 and x0, for any x > x0,

P1(x) =
∫ x−x0

0
P{Sn−1 > x− y}P{ξn ∈ dy}

≤ An−1

∫ x−x0

0
F (x− y)P{ξn ∈ dy}

= An−1P{ξ1 + ξn > x, ξn ≤ x− x0} ≤ An−1(1 + ε/2)F (x). (12)

Further,

P2(x) ≤ P{ξn > x− x0} ≤ LF (x),

where

L = sup
y

F (y − x0)
F (y)

.

Since F ∈ L, L is finite. Then, for any x > x0,

P2(x) ≤ LF (x). (13)

It follows from (12) and (13) that An ≤ An−1(1 + ε/2) + L for n > 1. Therefore, an
induction argument yields:

An ≤ A1(1 + ε/2)n−1 + L

n−2∑
l=0

(1 + ε/2)l ≤ Ln(1 + ε/2)n−1.
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This implies the conclusion of the proposition.

Let us consider now some random time τ with distribution pn = P{τ = n}, n ≥ 0 which
is independent of {ξn}. Then the distribution of the randomly stopped sum Sτ is equal to

P{Sτ ∈ B} =
∑
n≥0

pnF
∗n(B).

Theorem 4. Assume F [0,∞) = 1 and Eτ <∞.

If F ∈ S and E(1 + δ)τ <∞ for some δ > 0, then

P{Sτ > x}
F (x)

→ Eτ as x→∞. (14)

A proof of Theorem 4 follows from Proposition 2 and the dominated convergence theorem.
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5.2 Asymptotics for P(M > x) in the heavy tail case

Definition. A distribution F on the whole line is subexponential if a distribution F I(x > 0
is subexponential.

Theorem 5. Let Sn =
∑n

1 ξi be a random walk with negative mean −a. Assume that a
distribution F s with the tail

F
s(x) = min

(
1,
∫ ∞

x
F (t)dt

)
is sunexponential. Then, as x→∞,

P(M > x) ∼ 1
a

∫ ∞

x
F (t)dt.

Sketch of Proof.

Step 1. Let
η = min{n ≥ 1 : Sn > 0} ≤ ∞

and let a random variable ψ have a distribution

P(ψ ≤ x) = P(Sη ≤ x | η <∞).

Direct probabilistic calculations show that if F s ∈ L, then

G(x) ∼ p

qa
F

s(x)

where p = P(M = 0) and q = 1− p.
Further, if F s subexponential distribution, then G is subexponential too.

Step 2. We use the following fact (see, e.g., Feller).
A random variable M has the same distribution with

ν∑
1

ψi

where ψ’s are i.i.d. and have the same distribution with ψ and ν does not depend on them
and has a distribution

P(ν = k) = pqk for k = 0, 1, 2, . . .

Then we can apply Theorem 4:

P(M > x) ∼ EνG(x)

where
Eν =

∑
k≥1

P(ν ≥ k) = q + q2 + . . . =
q

p
.

15



5.3 ”Typical” sample paths

Use again the SLLN:

P
(
Sn

n
→ −a

)
= 1,

or for any ε ∈ (0, 1) and any δ ∈ (0, 1), there exists R > 0 such that

P(B) ≡ P (−R− n(a+ δ) ≤ Sn ≤ R− n(a− δ) for all n) ≥ 1− ε. (15)

For m = 0, 1, . . ., introduce events

Bm = {R− n(a+ δ) ≤ Sn ≤ R− n(a− δ) for all n ≤ m}.

Clearly, B ⊂ Bm for all m. Then

P(M > x) ≥
∞∑

n=1

P
(
Bn−1

⋂
{Sn > x}

)
≥

∞∑
n=1

P
(
Bn−1

⋂
{ξn > x+R+ n(a+ δ)}

)
=

∞∑
n=1

P(Bn−1)F (x+R+ n(a+ δ))

≥ P(B)
∞∑

n=1

F (x+R+ n(a+ δ))

≥ (1− ε)
1

a+ δ

∫ ∞

x−R−a−δ
F (t)dt

∼ 1− ε

a+ δ

∫ ∞

x
F (t)dt.

Since ε and δ are arbitrarily small, the coefficient 1−ε
a+δ may be made as close to 1/a as

possible. Compare this lower bound with the result of Theorem 5 !

Further comment: since F s is long-tailed, F (x) = o(F s(x), and any finite number of first
jumps are (asymptotically) negligible.
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6 Further Problems

Problem 1. Let ξn have a light tail and let

v = sup{t : ϕ(t) ≤ 1}.

Show that
lim

x→∞

1
x

log P(M > x) = −v.

Hint: Use the following monotonicity property: for two random walks Sn =
∑n

1 ξi, n =
1, 2, . . . and Ŝn =

∑n
1 ξ̂i, n = 1, 2, . . ., if ξi ≤ ξ̂i a.s. for all i, then M ≤ M̂ a.s. and, in

particular, for all x,
P(M > x) ≤ P(M̂ > x).

You may consider the following choices for ξ̂i:
(a) ξ̂i = max(ξi,K) for some K – for the upper bound, and
(b) ξ̂i = min(ξi,K) for some K – for the lower bound.

Problem 2. Give a proof of Theorem 4.
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