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1 History

The story begins with Khinchin1 (1929) who proves the CLT for a general random walk,
followed by Cramér2 (1938) who obtained the first LD result under additional assumptions.
These were removed later by Chernoff3 (1952) and hence the standard LD theorem is called
Chernoff’s theorem. This is what we are going to talk about here, albeit cast in more
modern terms.

2 Random walks with exponential tails; upper bound

We consider Sn =
∑n

j=1 Xj , n ≥ 1, S0 = 0, where the Xj are i.i.d. real-valued random
variables with common distribution F that possesses some exponential moments, which
means that EeθX1 < ∞ for some θ 6= 0 (otherwise the theorem below says nothing). Let
µ = EX1.

We know that Sn/n → 1, a.s. Chernoff’s theorem tells us how fast the probability
P (Sn/n > x) decays to 0 for some x > µ. It is not a surprise that the rate is exponential,
but Chernoff’s theorem gives the exact rate, i.e. the exact rate at which the logarithm
log P (Sn/n > x) goes to zero, that’s why it’s called a logarithmic asymptotic. What is
surprising is that there is a beautiful theory, both mathematically and physically about
this rate of convergence. It appears in Physics (Hamiltonian vs Lagrangian formulation of
Newtonian Mechanics), in Statistics, in Laplace’s method for asymptotics of integrals, in
Optimisation (Duality transforms), and, in Information Theory (Shannon’s theorems) and,
of course, in Probability.

To discover the theorem, let us start with some “trivialities”. Markov’s inequality says
that, for any nondecreasing function ϕ : R → R+,

P (Sn/n > x) ≤ P (ϕ(Sn) ≥ ϕ(nx)) ≤
Eϕ(Sn)

ϕ(nx)
,

so we get the BEST upper bound by finding the least value of the RHS over all such functions.
This is (a) a hard job and (b) probably futile for many functions will give Eϕ(Sn) = ∞. If
we restrict to the exponential class of functions ϕθ(x) = exp(θx), θ > 0 then we know that
at least one of them won’t give ∞ (this we assumed). So

P (Sn/n > x) ≤
EeθSn

eθnx
=

(

EeθX1
)n

e−θnx = exp
{

− n
(

θx − log EeθX1
)}

and so if we maximise θx−log EeθX1 over all θ we have the best upper bound within the class
of functions considered. So then let Λ(θ) := log EeθX1 (this is called cumulative-generating

1A Russian who wrote in German
2A Swede who wrote in French.
3An American who wrote in English.
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function of X, or, simply, cumulant) and denote the best exponent by

Λ∗(x) := sup
θ>0

(θx − Λ(θ))

So we have a Theorem:

Theorem 1.

P (Sn/n > x) ≤ e−nΛ∗(x), x > µ, n ∈ N.

Incidentally, this implies that (Borel-Cantelli at work here)

P (Sn/n > x i.o. ) = 0, for all x > µ,

which is 1
2SLLN, and the other half can be obtained by doing the same with −Sn.

3 The Legendre-Fenchel transform

Let us take a closer look at Λ and Λ∗. (Rockafellar (1970) is a classic on these things.)

A word of “convention”: Let R be R with +∞ attached to it. When f : R → R is a
convex function, i.e. the set {(x, y) ⊆ R × R : y ≥ f(x)} is a convex set, we let Df be the
set {f < ∞}. Recall that any convex function is the sup of all affine functions below it:

f(x) = sup
a,b∈R

ax+b≤f(y) ∀y

(ax + b).

Side note: an affine function g is called supporting to f at x if f ≥ g and f(x) = g(x).
Incidentally, this immediately proves Jensen’s inequality

Ef(X) ≥ f(EX),

for, clearly, E supj Zj ≥ supj EZj (for any collection {Zj} of r.v.’s) and, trivially, E(aY +
b) = aEY + b, for any r.v. Y . Putting these together, along with DCT4, gives a few
nice properties. (Whenever I talk about Λ′(θ), I do assume that Λ is defined on an open
neighbourhood of θ.)

1. Λ is convex and C1 on DΛ.

2. Λ(0) = 0, Λ′(0) = µ.

3. Λ∗(x) = supθ∈R(θx − Λ(θ)) is a convex function : R → R, that agrees with the
previously defined Λ∗(x) for x > µ.

4. Λ(θ) = supx∈R(θx − Λ∗(x)).

5. θx ≤ Λ(θ) + Λ∗(x) (Fenchel-Young inequality)

6. Λ′(θ) =
EXeθX

EeθX
= E1

θX , where E1
θ is expectation with respect to a probability mea-

sure.

4Dominated Convergence Theorem
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7. If Λ′(θ) = y then Λ∗(y) = θy − Λ(θ).

The mapping Λ 7→ Λ∗ is called Legendre-Fenchel transform and is invertible on the
space of convex functions. The geometric interpretation is important: Fix an x and find the
supporting affine function to Λ that has slope x. This is the function θ 7→ xθ−Λ∗(x). Since
the LF transform is invertible, all properties have their dual analogues.

Note that Λ 7→ Λ∗ does not require convexity of Λ, yet it always yields a convex Λ∗.
However, convexity of Λ ensures invertibility of the FL transform.

Note also that, in general, a convex function may have many supporting affine functions
at a point. However, here, differentiability ensures uniqueness.

Some examples:

1. Gaussian: Let X be standard normal. Then Λ(θ) = 1
2θ2. The sup is supx(θx− 1

2θ2) is
achieved at x = θ and so Λ∗(x) = 1

2x2. The function Λ(θ) = 1
2θ2 is the only one that

satisfies Λ = Λ∗.

2. Bernoulli: P (X = 1) = p, P (X = 0) = 1 − p. Then Λ(θ) = log(peθ + (1 − p)). Since
Λ′(θ) ∈ (0, 1), we know that the interior of the domain of Λ∗ is (0, 1) and we easily
find

Λ∗(x) = x log(x/p) + (1 − x) log((1 − x)/(1 − p)), x ∈ [0, 1],

where Λ∗(1) = Λ∗(0) = 0. Note: The Kullback-Leibler distance of the probability
measure Q from the probability measure P is defined by D(Q ‖ P ) :=

∫

dQ log dQ
dP .

So Λ∗(x) = D(BERx ‖ BERp). This is not fortuitous.

Physics The LF transform is the one that links the Lagrangian and Hamiltonian formula-
tions of Mechanics. The equations of motion of a particle from point A at time 0 to point B
at time 1 in space (here space=R

1 but it could be R
d) are found by looking as the extrema

of the action functional
∫ 1

0
L(x, ẋ)dt

The function L(x, v) is the Lagrangian (which in a motion in a field generated by potential
U(x) equals the kinetic energy minus the potential). Euler’s equations (necessary conditions
for optimality in the Calculus of Variations) result into the differential equation of motion
(mass times acceleration equals force). Hamilton’s formulation is cast in terms of another
functional known as Hamiltonian H(x, p). The relation between v 7→ L(x, v) and p 7→
H(x, p) is precisely that of a LF transform:

H(x, p) = sup
v

(

pv − L(x, v)
)

.

So, the v that achieves the supremum satisfies p = ∂
∂vL(x, v). All this is generalisable to R

d

and, indeed, to a d-dimensional manifold.

Optimisation Every convex optimisation problem (minimising a convex function on a
convex set) has an associated dual. This duality is expressed by an LF pair. See Luenberger
(1969) for a readable account with geometric intuition.
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4 Lower bound; Chernoff’s theorem

So far we have an upper bound. We now deal with a lower bound. To make things concrete,
we work, without loss of generality, on the canonical probability space Ω = R

N with the
product σ-field, P the product measure F ⊗N and let Xn(ω) = ωn, n ∈ N. We would like
to derive a lower bound for P (Sn/n > x) when x > µ. Fix a > µ. We will estimate
P (|Sn/n − a| < ε) for some small ε > 0. The idea is to change probability measure and
make the event {|Sn/n − a| < ε} be as likely as possible. We have a ∈ Do

Λ∗ and so there is
θ > 0 ≡ θ(a) > 0 such that

Λ′(θ) = a.

Recall that Λ′(θ) is the expectation of X under a different probability measure:

Fθ(B) :=
E

(

eθX1 ;X1 ∈ B
)

eΛ(θ)
.

Now consider a different probability measure on Ω, namely the one that is defined by
products of Fθ, i.e. Pθ = F⊗N

θ . We then have

EθX1 = a, lim
n→∞

Pθ(|Sn/n − a| < ε) = 1 for all ε > 0.

This allows us to perform the following magic:

P (|Sn/n − a| < ε) = Pθ(|Sn/n − a| < ε;
dP

dPθ
) = Pθ(|Sn/n − a| < ε; enΛ(θ)e−θSn)

≥ enΛ(θ)e−θn(a+ε)Pθ(|Sn/n−a| < ε) = e−n[θ(a+ε)−Λ(θ)]+o(1) ≥ e−nΛ∗(a+ε)+o(1), as n → ∞,

and so

lim
n→∞

1

n
log P (|Sn/n − a| < ε) ≥ −Λ∗(a + ε),

But P (Sn/n > x) ≥ P (|Sn/n − (x + ε)| < ε) and so

lim
n→∞

1

n
log P (|Sn/n − x| > ε) ≥ −Λ∗(x + 2ε),

and, because Λ∗ is continuous, we have proved

Theorem 2.

lim
n→∞

1

n
log P (Sn/n > x) ≥ −Λ∗(x), x > µ, x ∈ Do

Λ∗ .

Theorem 3 (Chernoff). Let Sn = X1 + · · · + Xn be a random walk in R
1 with mean

µ = EX1, cumulant Λ(θ) = EeθX whose LF transform is Λ∗(x). Then, if x > µ and for

some ε > 0, Λ∗(x + ε) < ∞,

lim
n→∞

1

n
log P (Sn/n > x) = −Λ∗(x).

Proof. Theorem 1 + Theorem 2.

Terminology: Λ∗(x) is called RATE FUNCTION because it quantifies the rate of con-
vergence of P (Sn/n > x) to zero.
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5 Large deviations

We pass on to estimating P (Sn/n ∈ B) for arbitrary Borel sets B, not necessarily semi-
infinite intervals.

We assume that Λ(θ) < ∞, to avoid technicalities. (Modifications, otherwise, are easy.)

We first assume that B = [a, b] is compact interval and that µ < a < b. Then Λ∗(a) ≤
Λ∗(b), so the rate of convergence of P (Sn/n ≥ a) dominates that of P (Sn/n ≥ b) and that
is why

1

n
log P (Sn/n ∈ [a, b]) → −Λ∗(a),

when µ < a < b.

We then consider an arbitrary B = [a, b] and, arguing likewise, we find

1

n
log P (Sn/n ∈ [a, b]) → − min

x∈[a,b]
Λ∗(x).

This motivates the definition that, for an arbitrary Borel set B, the quantity

Λ∗(B) := inf
x∈B

Λ∗(x)

represents the “slowest rate in B”.

With a bit extra work of topological nature (cover compact sets by finite ε-covers and
take an appropriate ε-interval within an open set–one over which the rate is close to the
infimum), we can prove:

Theorem 4 (large deviations theorem). For any Borel set B,

−Λ∗(Bo) ≤ lim
1

n
P (Sn/n ∈ B) ≤ lim

1

n
P (Sn/n ∈ B) ≤ −Λ∗(B),

where Bo is the interior and B the closure of B.

Equivalent to the last statement is the conjunction of the following two statements:

For all closed F, lim
1

n
P (Sn/n ∈ F ) ≤ −Λ∗(F ),

For all open G, lim
1

n
P (Sn/n ∈ G) ≥ −Λ∗(G).

Weak convergence Recall that if P, (Pn)n∈N are probability measures on (R,B(R)) then
Pn converges weakly5 to P if and only if

For all closed F, lim Pn(F ) ≤ P (F ),

For all open G, lim Pn(G) ≥ P (G).

You will see the connection between the two in the lectures by Tolya Puhalskii and in
more general framework. For the time being, just accept the consequence of the last theorem
as a definition in more general situations.

Let U be a Hausdorff topological space. A rate function I : U → R+ is a lower-
semicontinuous.6 function with closed sub-level sets7 The Borel sets B(U) is the class

5This means that
R

fdPn →
R

fdP for all bounded continuous f : R → R (something that in Analysis is
known as weak* convergence).

6Lower semicontinuity means that the epigraph {(x, y) ∈ U × R : y ≥ I(x) is a closed set in the product
topology of U × R.

7A sub-level set is a set of the form {x ∈ U : I(x) ≤ y} for some y ∈ R.
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of all sets that are obtained from countable set operations on the open sets of U. For any
B ∈ B(U), we shall let

I(B) := inf
x∈B

I(x).

Definition 1. Let U be Hausdorff. Let I be a rate function on U. Let (Pn)n∈N be probability
measures on (U,B(U)). We say that (Pn) satisfies LDP with rate function I on U if

For all closed F, lim
1

n
log Pn(F ) ≤ −I(F ),

For all open G, lim
1

n
log Pn(G) ≥ −I(G).

An I-continuity set B is such that I(Bo) = I(B). In such a case, 1
n log Pn(B) → −I(B).

The rate function is called good if all sub-level sets are not just closed, but compact.

Just as weak convergence is transferable from space to space via continuous mappings8,
so is LDP:

Theorem 5 (“contraction principle”). If (Pn) satisfies LDP on U with good rate function I
and if f : U → U

′ is continuous then (Pn◦f−1) satisfies LDP on U
′ with good rate function

I ′(y) := inf{I(x) : x ∈ f−1{y}}.

The big picture Warning: The blurb below is pure heuristics. Large deviations, loosely
speaking, means the study of deviations of a random phenomenon around its “mean be-
haviour”, provided that the “randomness” that kicks the system away from its mean is not
too bad (e.g. exponential tails). A big area of applications of Large Deviations is in studying
the deviation of the trajectory of a stochastic dynamical system from its “mean” trajectory.
The mean trajectory is typically obtained via so-called fluid limits, which is tantamount to
a functional law of large numbers. A concrete example of this is: Consider the deterministic
system

ẋ = −µx, x(0) = a > 0.

Nothing could be simpler than this. The physical phenomenon could be, for example, dis-
charging a capacitor, or watching the way that the evolution of the number of mathematical
schools that maintain some standards. We can see this system as the limit of a Markov
chain (Xt, t ≥ 0) in Z+ with rates

q(k + 1, k) = µk, n ∈ Z+.

Indeed, if we let X0 = [na] then the sequence of random functions ( 1
nXnt, t ≥ 0), n = 1, 2, . . .,

has as a limit, as n → ∞ the function x(t) that solves the ODE above, in the sense that

lim
n→∞

sup
0≤t≤T

∣

∣

∣

∣

1

n
X(nt) − x(t)

∣

∣

∣

∣

= 0,

for all T > 0. Large deviations is the study of the probability that 1
nX(n·) differs from x(·)

by some amount. Precisely, if we let Pn be the law on C[0, T ] of a continuous interpolation
to 1

nX(n·) and then the sequence (Pn) does obey an LDP with a rate function that can be
computed explicitly. Now imagine this situation in a more complicated dynamical system,
and you get a feel of what Large Deviations does in relation to dynamical systems.

8If Pn converges weakly to P on some space U and if f : U 7→ U
′ then Pn◦f

−1 converges weakly to P ◦f−1

on U
′. This you can call CONTRACTION PRINCIPLE for you may think of U as a BIG SPACE–like a

function space–and of U
′ as a small space–like R

2.
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6 Large deviations in R
d

We can easily extend Chernoff’s theorem to random walks in R
d. We let Sn = X1 +

· · · + Xn, where the Xi are i.i.d. with common distribution F for which we assume Λ(θ) =
log Ee〈θ,X1〉 < ∞ for all θ ∈ R

d. This is a restriction but it can be removed. We let

Λ∗(x) := sup
θ∈Rd

(

〈θ, x〉 − Λ(θ)
)

.

Theorem 6. The sequence of probability measures P (Sn/n ∈ ·), n ∈ N, satisfies LDP with

good rate function Λ∗.

7 Sanov’s theorem

Consider a finite set A = {1, . . . , d} called alphabet, not just for want of a better name, but
because it has applications in Information Theory. The elements of A are called letters. A
probability measure µ on A is, obviously, an assignment A 3 α 7→ µ(α) ∈ R+ of numbers
with

∑

α∈A µ(α) = 1. Given i.i.d. random variables X1, X2, . . . with values in A and common
law µ, we let

µn(α) :=
1

n

n
∑

j=1

1(Xj = α), α ∈ A,

be the empirical distribution or type9 of (X1, . . . , Xn). By the SLLN,

P (µn → µ) = 1.

Here µn → µ means µn(α) → µ(α) for all α ∈ A. The random vectors µn live in R
d and, in

particular, are concentrated in the unit simplex

Σd :=
{

x ∈ R
d
+ :

d
∑

α=1

xα = 1
}

.

Sanov’s theorem provides the rate of convergence in the the way that P (|µn − µ| > ε)
approaches 0 as n → ∞, for any ε > 0.

Now let us look at the assignment of the empirical distribution (type) to a specific
sequence of length n:

An 3 (x1, . . . , xn) 7−→ µx
n ∈ Σd,

where µx
n = (µx

n(1), . . . , µx
n(d)), µx

n(α) = 1
n

∑n
j=1 1(xj = α). The range of this map is

denoted by Fn:

Fn :=

{(

1

n

n
∑

j=1

1(xj = α), α ∈ A

)

⊆ Σd : x1, x2, . . . , xn ∈ A

}

.

For example, with A := {α, β} and n = 3, the possible sequences are (α, α, α), (α, α, β),...,
(β, β, β), and so F3(A) = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1/3, 2/3), (0, 2/3, 1/3), (1/3, 0, 2/3),
(2/3, 0, 1/3), (1/3, 2/3, 0), (2/3, 1/3, 0), (1/3, 1/3, 1/3)}. Since the set Fn is isomorphic to the

F3 if d = 29Empirical distribution is a terminology used in Statistics: If µ is an unknown distribution then the
empirical distribution is estimates µ. Type is a terminology used in Information Theory.
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set of ways to put d indistinguishable balls in n boxes, we have that

|Fn| =

(

n + d − 1

d

)

≤ (n + 1)d.

The inverse image of a ν ∈ Σd under the map x 7→ µx
n is denoted by Tn(ν): it is the set

of sequences of length n that have type ν. So An = ∪ν∈ΣdTn(ν). The cardinality of Tn(ν)
is found as follows: Amongst the n letters in a sequence we require that there are nν(α)
which have value α, α = 1, . . . , d. Think of letters as colours. In how many ways can we
arrange n objects, when nν(1) of them are of colour 1, etc., nν(d) of them are of colour d?
The answer is, of course, the multinomial coefficient

|Tn(ν)| =

(

n

nν(1), . . . , nν(d)

)

=
n!

(nν(1))! · · · (nν(d))!
.

Now let µn be the empirical distribution of the random sequence (X1, . . . , Xn), which
are i.i.d. with common law µ. Then for any ν ∈ Fn, we have

P (µn = ν) = P

( n
∑

k=1

1(Xk = α) = nν(α), 1 ≤ α ≤ d

)

=

(

n

nν(1), . . . , nν(d)

)

µ(1)nν(1) · · ·µ(d)nν(d).

By using Stirling’s approximation, and by doing some algebra we find

(n + 1)−de−nD(ν‖µ) ≤ P (µn = ν) ≤ e−nD(ν‖µ).

So if ν is away from the true distribution µ, this probability decays exponentially to zero.
Using this we GUESS what the LDP should look like. Define

I(ν) := D(ν ‖ µ), ν ∈ Σd.

A bit more work and we obtain:

Theorem 7 (Sanov’s theorem). If A is a finite set and X1, X2, . . . i.i.d. random vari-

ables with values in A and common law µ then, letting µn be the empirical distribution of

(X1, . . . , Xn), the sequence of probability measures P (µn ∈ ·) satisfy an LDP with good rate

function I.

8 Asymptotics for supremum of a random walk (stationary
regime of a queue)

Consider a random walk Sn as before, with cumulant Λ, but now suppose that mean of its
increment is negative:

EX1 = −µ < 0.

If so, then, clearly, the random variable

M := sup
n≥0

Sn

is a.s. finite. This is intimately related to the stationary regime of a queue, something we
will see in the Stability Lectures. For now, we shall prove how the distribution of M decays
to zero:
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Theorem 8 (effective bandwidth theorem10). If EX1 = −µ < 0, then

lim
x→∞

1

x
log P (M ≥ x) = −c,

where

c := inf
t>0

tΛ∗(1/t) = sup{θ > 0 : Λ(θ) ≤ 0}

Note: The exact and logarithmic asymptotics for the probability P (M > x) have been
already studied in Lecture 1. Here we propose a different way to obtain the logarithmic
asymptotics in the light-tail case.

Proof. First we deal with the lower bound. It rests on what-appears-to-be a trivial obser-
vation. Since, obviously,

P (M ≥ x) ≥ P (Sn ≥ x) for all n ∈ N, x > 0,

we have

P (M ≥ x) ≥ P (S[tx] ≥ x) = P

(

S[tx]

tx
≥

1

t

)

, for all t, x > 0.

Using Chernoff’s theorem, we have

lim
x→∞

1

tx
P

(

S[tx]

tx
≥

1

t

)

= −Λ∗(1/t),

and so

lim
x→∞

1

x
P (M ≥ x) ≥ − inf

t>0
tΛ∗(1/t) =: −c.

The upper bound uses Boole’s inequality11, so it is even more “trivial”:

P (M ≥ x) ≤

∞
∑

n=1

P (Sn ≥ x) =

∞
∑

n=1

P (eθSn ≥ eθx) ≤

∞
∑

n=1

enΛ(θ)−θx, for any θ > 0.

Pick θ > 0 so that Λ(θ) < 0, and then sum the geometric series to get

P (M ≥ x) ≤ e−θx eΛ(θ)

1 − eΛ(θ)
.

The best upper bound is

inf
θ>0,Λ(θ)<0

e−θx eΛ(θ)

1 − eΛ(θ)

which turns out to be e−cx.

Actuarial Mathematics Take what we said and interpret everything in terms of ruin of
a risk process. Then we have the so-called Cramér-Lundberg estimate for a ruin probability.
You see, different people may be working in seemingly different things, but, mathematically,
they are the same.

10This interpretation will be discussed in terms of queues as models of buffers for things like streaming
video on the Internet

11P (∪nAn) ≤
P

n P (An)
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9 Non-i.i.d. sequences

Frequently, we need to deal with situations where the random walk does not have indepen-
dent increments.

H-Fractional Gaussian Walk A Fractional Brownian motion BH = (BH(t), t ≥ 0) is a
zero-mean Gaussian process with correlation function

EBH(t)BH(s) =
1

2

(

|t|2H + |s|2H − |t − s|2H
)

,

where H ∈ (0, 1]. This specifies the finite-dimensional distributions of the process. (It turns
out that there is a version of the process with continuous paths.) If H = 1, then B1(t) ≡ 0,
and this is not an interesting case.

If H = 1/2 then EBH(t)BH(s) = 1
2

(

|t| + |s| − |t − s|
)

= min(t, s), and so B1/2 is a
standard Brownian motion. In this case, the sequence (B1/2(n), n ∈ Z+) is a random walk
with i.i.d. increments which have N (0, 1) distribution.

If H ∈ (0, 1) then the increments of BH are correlated (positively if H > 1/2, negatively
if H < 1/2). We consider the sequence

SH
n := BH(n), n ∈ Z+,

has identically distributed but not independent increments. The correct normalisation for
the obtention of a SLLN is n2H , namely,

SH
n

n2H
→ 0, a.s.

Twisting things around, we let

Zn =
SH

[n1/2H ]

n
,

which also → 0, a.s. If Pn is the law of Zn then it turns out that (Pn) does obey an LDP
with (good) rate function x2/2. Note that, here, the cumulant of Zn (i.e. of Pn) is

ΛZn(θ) = log EeθZn =
1

2
θ2 var(Zn) =

1

2
θ2 [n1/2H ]2H

n2

and so
1

n
ΛZn(nθ) =

1

2
θ2 [n1/2H ]2H

n
−−−→
n→∞

1

2
θ2.

This is the situation that is taken care of by:

Theorem 9 (Gärtner-Ellis). Let (Pn) be a sequence of probability measures on (Rd,B(Rd)),

Λn(θ) := log

∫

Rd

e〈θ,x〉 Pn(dx),

and assume that

1

n
Λn(nθ) −−−→

n→∞
Λ(θ) ∈ R, for all θ ∈ R

d,

Λ is smooth and lower semi-continuous,

0 ∈ Λ−1(R).

Then (Pn) obeys an LDP with good rate function Λ∗.

Proof: See Dembo and Zeitouni (1993).
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10 Discussion; problems

1. Say that xn is logarithmically equivalent to yn if n−1 log xn−n−1 log yn → 0, as n → ∞.
Show that the sum of two sequences is logarithmically equivalent to their maximum.
(Does this remind you of the definition of subexponentiality?)

2. Let Sn be Binomial(n, 1/2). Prove, only using Stirling’s approximation, that

lim
n→∞

1

n
log P (Sn/n ≥ an) = − log 2 − a log a − (1 − a) log(1 − a),

for all a ∈ (1/2, 1).

3. Derive all listed properties of the LF transform.

4. Compute the rate function for Poisson and exponential laws.

5. Use Hölder’s inequality and Fatou’s lemma to show that the cumulant is convex and
lower-semicontinuous.

6. Suppose X takes values 1 and 1.5 with equal probability. Let Sn be a random walk
with increments distributed according to X. Compute

lim
1

n
log E(Sn/n)n.

7. Compare the rough asymptotics for P (M > x) in the light-tailed case with the precise
asymptotics derived in yesterday’s lecture.

8. Starting from Sanov’s theorem and the contraction principle rederive Chernoff’s the-
orem for the special case of simple random variables.

9. I toss a fair coin 1000 times and, amazingly enough, I get strictly more than 990 heads.
What is, approximately, the distribution of heads that I got? (Is it, e.g., uniform on
[991, 1000]?)

10. Consider I(x) =
∫ 1
0 L(ẋ)dt, where x : [0, 1] → R is absolutely continuous (and, there-

fore, ẋ denotes a version of its Radon-Nikodým derivative with respect to the Lebesgue
measure), and L is a convex function. Guess what infx I(x) is and use Jensen’s in-
equality to prove it. (This is an important rate function associated with processes
with independent increments.)
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