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1 LDP in metric spaces

The purpose of these lectures is to introduce you to the basics of large deviation theory. The
emphasis will be on the use of compactness ideas (more extensive results are in Puhalskii [13]).
Other approaches to large deviation theory are considered in Dembo and Zeitouni [3], den Hollander
[4], Deuschel and Stroock [6], Dupuis and Ellis [7], Freidlin and Wentzell [9], Kallenberg [12],
Shwartz and Weiss [14], Varadhan [16].

To give you an idea of what kind of problems we are up against let me consider a simple
but representative example. Consider a standard Brownian motion (B(t), t ∈ R+). Let Xn(t) =
B(t)/

√
n, where n is a large parameter. Since Xn(t)−Xn(s) are Gaussian with mean 0 and variance

(t−s)/n, the sequence of these r.v. obeys the LDP in R+ (for rate n) with rate function x2/
(
2(t−s)

)
.

Let us now consider a vector (Xn(ti), i = 1, 2, . . . , k), where t1 < t2 < . . . < tk. By the property
of independence of increments, the k-dimensional vector (Xn(ti)−Xn(ti−1), i = 1, 2, . . . , k), where
t0 = 0, obeys the LDP (for rate n) with rate function 1/2

∑k
i=1 x2

i /(ti − ti−1). Therefore, by the
continuous mapping (contraction) principle, the vectors (Xn(ti), i = 1, 2, . . . , k) obey the LDP with
1/2

∑k
i=1(xi − xi−1)2/(ti − ti−1). This means that for small enough ε > 0 and large n

1
n

log P
(
|Xn(ti)− xi| ≤ ε, i = 1, 2, . . . , k

)
≈ −1

2

k∑
i=1

(xi − xi−1

ti − ti−1

)2
(ti − ti−1). (1.1)

Therefore, if x = (x(t) , t ∈ [0, 1]) is an absolutely continuous function, then by considering finer
and finer subdivisions of the [0, 1] interval one should expect that

1
n

log P
(

sup
t∈[0,1]

|Xn(t)− x(t)| ≤ ε
)
≈ −1

2

1∫
0

ẋ(t)2 dt,

so that the rate function should be (1/2)
∫ 1
0 ẋ(t)2 dt for absolutely continuous functions starting

at zero. The right-hand side of (1.1) tends to −∞ if x is either not absolutely continuous or if it
doesn’t start at zero rendering the action functional equal infinity at these functions. This is the
kind of problems we will be looking at.

We start with general properties of the LDP. Consideration will be restriced to the setting
of metric spaces as being sufficient for most of the applications. Generalisations, though, can be
obtained along similar lines. Let U be a metric space. A function f : U → [−∞,∞] is said to be
lower semicontinuous if the sets {z : f(z) ≤ x} are closed. If the sets {z : f(z) ≥ x} are closed,
then f is said to be upper semicontinuous.
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Exercise 1.1. 1. Show that the indicator function of an open (respectively, closed) set is a lower
semicontinuous (respectively, upper semicontinuous) function.

2. Show that a function f is lower semicontinuous (respectively, upper semicontinuous) if and
only if lim infn→∞ f(zn) ≥ f(z) (respectively, lim supn→∞ f(zn) ≤ f(z)) whenever zn → z.

3. Show that a function f is lower semicontinuous if and only if for each z we have that
limε→0 infy∈Bε(z) f(y) = f(z), where Bε(z) denotes the ε-ball about z.

4. Show that a function f is lower semicontinuous if and only if for each decreasing sequence Kn

of compact sets we have that limn→∞ infz∈Kn f(z) = infz∈∩nKn f(z). (This property extends
to directed families of sets.)

5. Show that lower semicontinuous functions attain infima on compact sets.

6. Show that if f is lower semicontinuous (respectively, upper semicontinuous) and g : R → R
is continuous and non-decreasing, then g ◦ f is lower semicontinuous (respectively, upper
semicontinuous)

Let us say that f is lower compact if the sets {z : f(z) ≤ x} are compact. It is upper compact
if the sets {z : f(z) ≥ x} are compact.

Exercise 1.2. 1. Show that a function f is lower compact if and only if for each decreasing
sequence Fn of closed sets limn→∞ infz∈Fn f(z) = infz∈∩nFn f(z). (We assume that inf∅ = ∞.)
If f is lower compact, then the latter equality holds for decreasing directed families of closed
sets.

2. Show that lower compact functions attain minima on closed sets.

Let {Pn, n ∈ N} be a sequence of probability measures on (U,B(U)), where B(U) denotes the
Borel σ-algebra on U. Let I : U → [0,∞] be lower compact and rn → ∞ as n → ∞. We will say
that this sequence obeys a large deviation principle (LDP) for rate rn with rate function (or action
functional, or deviation function) I if the following two asymptotic bounds hold

lim sup
n→∞

1
rn

log Pn(F ) ≤ − inf
z∈F

I(z) for all closed sets F (1.2)

and

lim inf
n→∞

1
rn

log Pn(G) ≥ − inf
z∈G

I(z) for all open sets G (1.3)

An equivalent definition: for arbitrary measurable H

lim sup
n→∞

1
rn

log Pn(H) ≤ − inf
z∈cl H

I(z)

and

lim inf
n→∞

1
rn

log Pn(H) ≥ − inf
z∈ int H

I(z)

It can be used to define the LDP for non Borel σ-algebras.
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Exercise 1.3. Show the equivalence.

We will also say that a sequence Xn of random variables with values in U obeys the LDP with
I if so does the sequence of the laws of the Xn.

Remark 1.1. A terminology note.

1. Varadhan [16] uses the name “rate function” to refer to a lower compact function. Now, the
name good rate function seems to be in wider use, while the name “rate function” is reserved
for lower semicontinuous functions. It was Deuschel and Stroock [5] who thought these func-
tions were “good”. A better name, in my opinion, is “a tight rate function” since the definition
implies that given arbitrary A > 0 there exists a compact K such that − infz∈Kc I(z) ≤ −A.

2. If (1.2) holds for compact sets only, one speaks of weak LDP and the definition above is
referred to as full LDP.

3. If (1.2) and (1.3) hold with some function I, then it can always be assumed lower semi-
continuous by considering instead its lower semicontinuous regularisation defined by I(z) =
lim infy→z I(y). Then infz∈F I(z) ≤ infz∈F I(z) and infz∈G I(z) = infz∈G I(z).

4. Another form of the LDP uses a small “continuous” parameter ε which tends to zero in place
of 1/rn, the probability measures being indexed by ε accordingly.

Exercise 1.4. Verify the claim in part 3.

It is convenient to denote I(Γ) = infz∈Γ I(z). Let also Bε(z) denote the closed ε-ball about z.

Lemma 1.1. Let (1.2) and (1.3) hold for some lower semicontinuous I. Then

lim
ε→0

lim sup
n→∞

1
rn

log Pn(Bε(z)) = lim
ε→0

lim inf
n→∞

1
rn

log Pn(Bε(z)) = −I(z)

In particular, I is specified uniquely.

Proof. The assertion follows by the inequalities

lim sup
n→∞

1
rn

log Pn(Bε(z)) ≤ −I(Bε(z)),

lim inf
n→∞

1
rn

log Pn(Bε(z)) ≥ −I(Bε/2(z))

We call a set H ⊂ U I–continuous if I
(
int H

)
= I

(
cl H

)
. If the LDP with I holds, then for

every I-continuous set H

lim
n→∞

1
rn

log Pn(H) = −I(H)

Exercise 1.5. Check the claim. What about the converse assertion ?

Exercise 1.6 (den Hollander). Determine whether the LDP is satisfied for rate n.

1. U = R, the Pn are uniform on [−n, n],

2. U = R, the Pn are uniform on [−1/n, 1/n],
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3. U = [−1, 1], the Pn are uniform on [−1, 1].

Exercise 1.7 (O’Brien). Let Zn be binomially distributed random variables with parameters n and
pn and Pn be the laws of Zn/(npn). Suppose that limn→∞ pn = 0 and limn→∞ npn = ∞. Show that
the Pn satisfy an LDP on R for rate npn and with rate function I(z) = z log z − z + 1, z ≥ 0, and
I(z) = ∞, z < 0.

Here is the first property.

Theorem 1.1 (Contraction (continuous mapping) principle I). Let U′ be a metric space and f :
U → U′ be a continuous function. If the Pn obey the LDP with I, then the image-measures Pn◦f−1

obey the LDP on U′ with I′, where I′(z′) = infz∈f−1(z′) I(z′).

Proof. For Γ ⊂ U′, we have that I′(Γ′) = I(f−1(Γ′)), which implies that I′ is lower compact by
exercise 1.2(1). The bounds in the definition follow immediately.

In what follows, we will denote I′ in the above proof as I ◦ f−1 and call it the image of I under
f .

Exercise 1.8. Fill in the details. What does the assertion look like if stated in terms of random
elements rather than probability distributions ?

Exercise 1.9. Let {ξn(i), n ∈ N}, where i = 1, 2, . . . , k, be independent i.i.d. with finite exponential
moments of some order. Derive the LDP for (Xn(1), . . . , Xn(k)) where

Xn(i) =
i∑

j=1

1
n

n∑
l=1

ξl(j).

Exercise 1.10. (Koffman, Dembo-Zeitouni) Let

Xn =
1
n

(Y 2
1

2
− (

Y2√
2

+
√

cn)
)
,

where Y1 and Y2 are independent standard normal. This is the signal generated by an optimal
receiver for the detection of orthogonal signals in Gaussian white noise. c > 0 is the signal and
the decision “signal is present” is taken if Xn ≤ 0. Show that the Xn obey the LDP with I(x) =
(
√

c−
√
−x)2 if x ≤ −c/4 and I(x) = x + c/2 if x > −c/4.

One can also use the LDP to obtain conditional laws of large numbers. We state it in the form
of convergence of random variables. Let ρ denote the metric on U. For z ∈ U and Γ ⊂ U, ρ(z,Γ)
has the usual meaning: ρ(z, Γ) = infz′∈Γ ρ(z, z′).

Theorem 1.2. Let random variables Xn with values in U obey the LDP with I. Let H be an
I-continuity subset of U with I(H) < ∞ and let F denote the subset of clH where infz∈clH I(z) is
attained. Then for arbitrary ε > 0

lim
n→∞

P
(
ρ(Xn, F ) > ε|Xn ∈ H

)
= 0.

Proof. By the definition of the LDP and continuity of z → ρ(z, F ),

lim
n→∞

P(Xn ∈ H)1/rn = exp
(
−I(H)

)
,

lim sup
n→∞

P
(
ρ(Xn, F ) > ε, Xn ∈ H

)1/rn ≤ exp
(
− inf

z∈cl H: ρ(z,F )≥ε
I(z)

)
< exp

(
−I(H)

)
.
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Therefore,

lim sup
n→∞

P
(
ρ(Xn, F ) > ε|Xn ∈ H

)1/rn =
lim sup

n→∞
P

(
ρ(Xn, F ) > ε, Xn ∈ H

)1/rn

lim
n→∞

P(Xn ∈ H)1/rn
< 1.

The claim follows.

The definition of the LDP is tailored to applications as it is the probability decay rate one is
usually interested in. However, for theoretical developments the exponential form is more convenient
as the above proof shows. The definition of the LDP can be written equivalently as

lim sup
n→∞

Pn(F )1/rn ≤ sup
z∈F

e−I(z) for all closed sets F (1.4)

and

lim inf
n→∞

Pn(G)1/rn ≥ sup
z∈G

e−I(z) for all open sets G. (1.5)

Then the set function
Π(Γ) = exp(−I(Γ)) (1.6)

may be interpreted as a counterpart of a probability measure as it has the following properties.

1. Π(∅) = 0, Π(U) = 1,

2. Π(∪Γα) = supα Π(Γα),

3. Π(Fn) ↓ Π(F ) if Fn ↓ F and Fn are closed.

It is actually characterised by these properties, so we call such a function a deviability.

Exercise 1.11. Check the claim.

Besides, property 3 holds for decreasing directed families of closed sets too. In that form it is
an analogue of the property of τ -smoothness of probability measures, cf., Vakhania, Tarieladze and
Chobanyan [15].

We now want to obtain equivalent characterisations of the LDP. Let C+
b (U), C+

b (U), and C+
b (U)

denote the respective sets of R+-valued bounded continuous functions on U, R+-valued bounded
upper semi-continuous functions on U, and R+-valued bounded lower semi-continuous functions
on U, respectively. For a function f : U → R+, let ‖f‖n =

(∫
U

f(z)rn Pn(dz)
)1/rn . We call a set

H ⊂ U Π–continuous if Π(int H) = Π(cl H), i.e., if it is I-continuous.

Exercise 1.12. Prove that if Π(∂H) = 0, then H is Π-continuous. Show that the converse is not
true.

Lemma 1.2. If fn ↓ f and the fn are upper semicontinuous, then supz∈U fn(z)Π(z) ↓
supz∈U f(z)Π(z).

Theorem 1.3 (Portmanteau theorem). The following conditions are equivalent.

1. The Pn obey the LDP with I
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1′. (i) lim sup
n→∞

Pn(H)1/rn ≤ Π(cl H)

(ii) lim inf
n→∞

Pn(H)1/rn ≥ Π(int H)

for all Borel sets H

2. lim
n→∞

Pn(H)1/rn = Π(H) for all Π–continuous
Borel sets H

3. lim
n→∞

‖h‖n = sup
z∈U

h(z)Π(z) for all h ∈ C+
b (U)

4. (i) lim sup
n→∞

‖f‖n ≤ sup
z∈U

f(z)Π(z) for all f ∈ C+
b (U)

(ii) lim inf
n→∞

‖g‖n ≥ sup
z∈U

g(z)Π(z) for all g ∈ C+
b (U)

5. lim
n→∞

‖h‖n = sup
z∈U

h(z)Π(z) for all bounded uniformly continuous
functions h : U → R+

Proof. Clearly, 1 ⇔ 1′, 1′ ⇒ 2, 3 ⇒ 5, 4 ⇒ 3, 4 ⇒ 1, and 4 ⇒ 5.
We prove the implication 3 ⇒ 1. To prove the lower bound, we note that, since G is open,

1(G) = sup h over h ∈ C+
b (U) such that h ≤ 1(G). Therefore, Π(G) = suph supz∈U h(z)Π(z), so

that if hε ≤ 1(G) is such that Π(G) ≤ supz∈U hε(z)Π(z) + ε, then

lim inf
n→∞

Pn(G)1/rn ≥ lim
n→∞

‖hε‖n = sup
z∈U

hε(z) Π(z) ≥ Π(G)− ε.

The proof of the upper bound is analogous if we note that 1F = inf h over h ∈ C+
b (U) such that

h ≥ 1(F ) so that Π(F ) = infh supz∈U h(z)Π(z) (use Lemma 1.2).
We prove the implication 1 ⇒ 4 by proving that (1.4) ⇒ 4(i) and (1.5) ⇒ 4(ii). For f ∈ C+

b (U)
such that supz∈U f(z) = 1 let

fk(z) = max
i=0,...,k−1

[ i + 1
k

1
(
f(z) ≥ i

k

)]
, k ∈ N.

Since the sets {z : f(z) ≥ x} are closed by the upper semicontinuity of f , (1.4) yields

lim sup
n→∞

‖f‖n ≤ lim sup
n→∞

‖fk‖n ≤ max
i=0,...,k−1

lim sup
n→∞

[ i + 1
k

Pn

(
f(z) ≥ i + 1

k

)1/rn
]

≤ max
i=0,...,k−1

[ i + 1
k

Π
(
f(z) ≥ i + 1

k

)]
= sup

z∈U
fk(z)Π(z) ≤ sup

z∈U
f(z)Π(z) +

1
k
.

The proof of (1.5) ⇒ 4(ii) is similar if we consider gk(z) = maxi=0,...,k−1

[
i/k 1(g(z) > i/k)

]
.

Now we prove 2 ⇒ 1. Let G be open and δ > 0. Let h be a function from C+
b (U) such that

h ≤ 1(G) and supz∈U h(z)Π(z) ≥ Π(G) − δ. Let Hu = {z ∈ U : h(z) ≥ u}, u ∈ [0, 1]. Then
the function Π(Hu) increases as u ↓ 0. Therefore, it has at most countably many jumps. Also
Π(Hu) ≥ supz∈U h(z)Π(z) − u, so Π(Hu) ≥ Π(G) − 2δ for u small enough. Thus, there exists
ε > 0 such that Π(Hε) ≥ Π(G)− 2δ and Π(Hu) is continuous at ε. The latter is equivalent to Hε

being continuous relative to Π, so we conclude that

lim inf
n→∞

Pn(G)1/rn ≥ lim
n→∞

Pn(Hε)1/rn = Π(Hε) ≥ Π(G)− 2δ.

The proof of the upper bound is similar.
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We prove that 5 ⇒ 1. Let us establish the upper bound (1.4). Let F be a closed subset of U.
Then 1(F ) = infε>0(1 − ρ(z, F )/ε)+. The functions (1 − ρ(z, F )/ε)+ are bounded and uniformly
continuous so that

lim sup
n→∞

Pn(F )1/rn ≤ inf
ε>0

lim
n→∞

‖
(
1− ρ(z, F )/ε

)+‖n = inf
ε>0

sup
z∈U

(1− ρ(z, F )/ε)+ Π(z) = Π(F )

Lower bound (1.5) is proved in an analogous manner.

Remark 1.2. As the proof shows, if convergences in part 5 hold for all R+-valued Lipshitz continuous
functions, then the LDP holds.

Corollary 1.1 (Varadhan’s lemma). Let the Pn obey the LDP with I. If a function F : U →
[−∞,∞) is continuous and bounded above, then

lim
n→∞

1
rn

log
∫
U

exp
(
rnF (z)

)
Pn(dz) = sup

z∈U

(
F (z)− I(z)

)
If F is an arbitrary continuous function, then the above convergence holds if and only if

lim
A→∞

lim sup
n→∞

1
rn

log
∫
U

exp
(
rnF (z)

)
1
(
F (z) > A

)
Pn(dz) = −∞.

Exercise 1.13. Prove the corollary

Exercise 1.14 (Dembo and Zeitouni). Let ε log pε → −∞ as ε → 0. Consider a family of r.v. Zε

with P(Zε = 0) = 1− 2pε, P(Zε = −ε log = P(Zε = ε log pε) = pε. Show that the Zε obey the LDP
with I(0) = 0 and I(z) = ∞ for z 6= 0, so that Λ∗(u) = 0. However, limε→ ε log E exp(λZε/ε) equals
0 if |λ| ≤ 1 and equals ∞ otherwise.

Corollary 1.2. Let U be separable. Let Xn and Yn with values in U be such that P(ρ(Xn, Yn) >
ε)1/rn → 0 as n → ∞ for arbitrary ε > 0. Then the Xn obey the LDP with I if and only if the Yn

obey the LDP with I.

For a function h : U → R+, let h and h denote the respective upper semi-continuous and lower
semi-continuous envelopes of h defined by

h = inf
f∈C+

b (U):
f≥h

f and h = sup
g∈C+

b (U):
g≤h

g.

Exercise 1.15. Check that h(z) = lim supy→z h(y) and h(z) = lim infy→z h(y).

We say that h is Π–continuous if supz∈U h(z)Π(z) = supz∈U h(z)Π(z). We say that h
is Π – upper-semi-continuous (respectively, Π – lower-semi-continuous) if supz∈U h(z)Π(z) =
supz∈U h(z)Π(z) (respectively, supz∈U h(z)Π(z) = supz∈U h(z)Π(z)). We also call a set H ⊂ U
Π – closed (respectively, Π – open) if Π(H) = Π(cl H) (respectively, Π(H) = Π(int H)).

Exercise 1.16. A set is Π – continuous (Π – closed or Π – open, respectively) if and only if its
indicator function is Π – continuous (Π – upper-semi-continuous or Π – lower-semi-continuous,
respectively).

The next theorem contains a number of other conditions equivalent to the LDP.
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Theorem 1.4. The Pn obey the LDP with I if and only if any of the following conditions hold.

4′. The inequalities of part 4 hold for all Π – upper-semi-continuous bounded measurable functions
f : U → R+ and all Π – lower-semi-continuous bounded measurable functions g : U → R+,
respectively

3′. The inequalities of part 3 hold for all Π – closed measurable sets F and Π – open measurable
sets G, respectively.

6. lim
n→∞

‖h‖n = sup
z∈U

h(z)Π(z) for all Π – continuous measurable functions h : U → R+

Theorem 1.5 (Contraction (continuous mapping) principle II). The assertion of Theorem 1.1 still
holds if the function f is continuous at each z with I(z) < ∞.

Proof. Let Π′ = exp(−I′) = Π ◦ f−1. We prove Π′ is a deviability. Let Fn be decreasing sequence
of closed sets. For a ∈ (0, 1], let Ka = {z ∈ U : Π(z) ≥ a} and fa : Ka → U′. Then

Π′(Fn) = Π ◦ f−1(Fn) = Π
(
f−1(Fn)

)
≤ Π

(
f−1(Fn) ∩Ka

)
∨ a = Π

(
f−1

a (Fn)
)
∨ a

Since fa is a continuous function, the sets f−1
a (Fn) are closed so that limn→∞Π

(
f−1

a (Fn)
)

=
Π

(
f−1

a (∩nFn)
)
≤ Π

(
f−1(∩nFn)

)
. Hence, limn→∞Π′(Fn) ≤ Π′(∩nFn) ∨ a. Since a is arbitrarily

small, the required property follows.
Let h′ : U′ → R+ be a bounded continuous function. Then the function h′ ◦f , being continuous

Π-a.e., is Π-continuous, so

lim
n→∞

(∫
U′

h′(z′)rn Pn ◦ f−1(dz′)
)1/rn

= lim
n→∞

(∫
U

(h′ ◦ f)(z)rn Pn(dz)
)1/rn

= sup
z∈U

h′ ◦ f(z)Π(z) = sup
z′∈U′

h′(z′)Π ◦ f−1(z′) = sup
z′∈U′

h′(z′)Π′(z′).

We now move on to developing compactness approaches. Let us say that the sequence Pn

is exponentially tight (on order rn) if for arbitrary ε > 0 there exists compact K such that
lim supn→∞Pn(U \Kn)1/rn < ε.

Exercise 1.17. Check that weak LDP and exponential tightness imply full LDP.

Let us say that the sequence Pn is LD relatively compact if every subsequence of Pn contains
a further subsequence that obeys the LDP.

Theorem 1.6 (LD relative compactness criterion). 1. An exponentially tight sequence of prob-
ability measures on a metric space is LD relatively compact.

2. An LD relatively compact sequence on a Polish space is exponentially tight.

Proof. Sufficiency. Let compacts Km be such that lim supn→∞Pn(Kc
m)1/rn < 1/m. The metric

spaces C+
b (Km) being separable, let {fmk, k ∈ N} be countable dense subsets for the uniform norm,

which we denote ‖·‖. Let (n′) be a subsequence such that limn′→∞‖fmk‖n′ exist for all m and k.
Given f ∈ C+

b (U) and ε > 0, let k and m be such that ‖f‖/m < ε and ‖f1Km − fmk‖ < ε. Since

| ‖f‖n − ‖f‖l| ≤ | ‖f‖n − ‖f1Km‖n|+ | ‖f‖l − ‖f1Km‖l|
+ | ‖f1Km‖n − ‖fmk‖n|+ | ‖f1Km‖l − ‖fmk‖l|+ | ‖fmk‖n − ‖fmk‖l|

≤ ‖f‖Pn(Kc
m)1/rn + ‖f‖Pl(Kc

m)1/rl + 2‖f1Km − fmk‖+ | ‖fmk‖n − ‖fmk‖l|,
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it follows that
lim sup
n′,l′→∞

| ‖f‖n′ − ‖f‖l′ | ≤ 4ε,

so the sequence ‖f‖n′ is Cauchy, hence, it converges. We denote Sf = limn′→∞‖f‖n′ .
Let Π(z) = inf Sf , the infimum being taken over f with f(z) = 1. The function Π is upper

compact and Sf = supz∈U f(z)Π(z) . For a proof of the latter, it is easy to see that Sf ≥
supz∈U f(z)Π(z). For the converse, let us note that the above argument also shows existence of
the limits Sf1Km = limn′→∞‖f1Km‖n′ . Compactness considerations can be used to show that
Sf1Km = supz∈Km

f(z)Π(z). Letting m →∞ completes the proof.
Necessity. Since U is separable, it is expressed as a countable union of open balls Oi of radius

δ for arbitrary δ > 0. Let us show that under the hypotheses there exist finitely many open balls
Oi, i = 1, 2, . . . , k of radius δ such that

sup
n∈N

Pn

(
U \

k⋃
i=1

Oi

)1/rn < ε.

Since each probability measure is tight by Ulam’s theorem, the required property is equivalent to
the inequality

lim sup
n→∞

Pn

(
U \

k⋃
i=1

Oi

)1/rn < ε. (1.7)

Choose subsequences nl and ml such that

lim
l→∞

Pnl

(
U \

ml⋃
i=1

Oi

)1/rnl = lim sup
m→∞

lim sup
n→∞

Pn

(
U \

m⋃
i=1

Oi

)1/rn .

Since Pnl
contains a subsequence obeying the LDP with some I′, we may assume, by replacing nl,

if necessary, with this subsequence, that the Pnl
obey the LDP for rate rnl

with I′. Therefore,
introducing Π′ = exp(−I′), for arbitrary k

lim
l→∞

Pnl

(
U \

ml⋃
i=1

Oi

)1/rnl ≤ lim
l→∞

Pnl

(
U \

k⋃
i=1

Oi

)1/rnl ≤ Π′(U \
k⋃

i=1

Oi

)
.

By the facts that ∪∞i=1Oi = U and the sets U \ ∪k
i=1Oi are closed, we deduce that limk→∞Π′(U \

∪k
i=1Oi

)
= 0. Hence,

lim sup
m→∞

lim sup
n→∞

Pn

(
U \

m⋃
i=1

Oi

)1/rn = 0,

which implies (1.7).
Let Ol,1, . . . , Ol,kl

, for l = 1, 2, . . . , be open balls of radius 1/l such that

sup
n∈N

Pn

(
U \

kl⋃
i=1

Ol,i

)1/rn <
ε

2l
.

The set B = ∩∞l=1∪
kl
i=1 Ok,i is totally bounded, hence, relatively compact as U is complete. Besides,

for all n

Pn

(
U \B

)1/rn ≤
∞∑
l=1

Pn

(
U \

kl⋃
i=1

Ol,i

)1/rn < ε. (1.8)
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We will say that Π is an LD accumulation point of Pn if there exists a subsequence that obeys
the LDP with I = − log Π. Let us consider some applications.

Theorem 1.7 (Gärtner et al.). Let Xn be Rk–valued random variables such that for each λ ∈ Rk

lim
n→∞

1
rn

log En exp
(
rnλ ·Xn

)
= G(λ),

where G(λ) is an R-valued lower semicontinuous and essentially smooth convex function such that
0 ∈ int (dom G). Then the Xn obey the LDP for rate rn with I(x) = supλ∈Rk(λ · x−G(λ)

)
.

Proof. We first note that the sequence Xn is exponentially tight. To see this, we write by Cheby-
shev’s inequality, for A > 0 and η > 0, denoting by ei, i = 1, . . . , 2k, the 2k-vector, whose
b(k + 1)/2cth entry is 1 if k is odd, −1 if k is even, and the rest of the entries are equal to 0,

Pn(|Xn| > A)1/rn ≤ max
i=1,...,2k

Pn(ei ·Xn > A/k)1/rn

≤ exp(−ηA/k) max
i=1,...,2k

(
En exp(rnηei ·Xn)

)1/rn .

Exponential tightness follows since by hypotheses

lim
n

(
En exp(rnηei ·Xn)

)1/rn = exp(G(ηei)),

where the right-hand side is finite if η is small enough by the fact that G(λ) is finite in a neigh-
bourhood of the origin.

Therefore, there exists a subsequence {Xn′} that obeys the LDP with some I′. Next, it follows
from exponential Markov’s inequality and Corollary 1.1 that if λ ∈ int(dom G), then

lim
n′

1
rn′

log
(
E exp(rn′λ ·Xn′)

)1/rn′ = sup
x∈Rk

(λ · x− I′(x)) , λ ∈ int(dom G).

Thus,
sup
x∈Rk

(λ · x− I′(x)) = G(λ)

for all λ ∈ int(dom G), which implies by convexity analysis arguments that I = I′.

The following fact holds in greater generality. However, the form we give suffices for applications
below and also nicely illustrates compactness methods.

Corollary 1.3. Let independent sequences Xn and X ′
n with values in Polish spaces U and U′ obey

the LDP with I and I′, respectively. Then the sequence (Xn, X ′
n) obeys the LDP in U × U′ with

Î(z, z′) = I(z) + I′(z′).

Proof. Since U and U′ are separable, the (Xn, X ′
n) are well defined random variables. If K is a

compact in U and K ′ is a compact in U′, then K×K ′ is a compact in U×U′. Since Pn

(
(Xn, X ′

n) 6∈
K × K ′)1/rn ≤ Pn(Xn 6∈ K)1/rn + Pn(X ′

n 6∈ K ′)1/rn and each of the sequences Xn and X ′
n is

exponentially tight, the sequence (Xn, X ′
n) is exponentially tight. Let Π be an LD accumulation

point of the laws of (Xn, X ′
n). Then, given continuous bounded R+-valued functions f and f ′ on

U and U′, respectively, we have that for a suitable subsequence n′

lim
n′→∞

(
Enf(Xn′)rn′f(X ′

n′)
rn′

)1/rn′ = sup
(z,z′)

f(z)f ′(z′)Π(z, z′).

10



On the other hand,

lim
n→∞

(
Enf(Xn)rn

)1/rn = sup
z

f(z) exp(−I(z)),

lim
n→∞

(
Enf(X ′

n)rn
)1/rn = sup

z′
f(z′) exp(−I′(z′)).

Thus,
sup
(z,z′)

f(z)f ′(z′)Π(z, z′) = sup
z

f(z) exp(−I(z)) sup
z′

f(z′) exp(−I′(z′)).

Choosing f(z) = (1 − ρ(z, ẑ)/ε)+ and f(z′) = (1 − ρ(z′, ẑ′)/ε)+, where ẑ and ẑ′ are some fixed
elements of U and U′, respectively, and ρ′ is the metric on U′, we obtain on letting ε → 0 by
Lemma 1.2 that

sup
(z,z′)

1(z = ẑ)1(z′ = ẑ′)Π(z, z′) = sup
z

1(z = ẑ) exp(−I(z)) sup
z′

1(z′ = ẑ′) exp(−I′(z′)),

i.e., Π(ẑ, ẑ′) = exp(−I(ẑ)) exp(−I′(ẑ′)).

Corollary 1.4. If the sequence {Pn, n ∈ N} is exponentially tight and

lim sup
n→∞

lim sup
ε→0

1
rn

log Pn(Bε(z)) = lim inf
n→∞

lim inf
ε→0

1
rn

log Pn(Bε(z)),

then the LDP holds. The rate function is equal to the common value of the above limits taken with
a minus sign.

Note that we do not need to check the lower compactness property in the definition of the rate
function.

Exercise 1.18. Prove the corollary.

Exercise 1.19. Prove that if a lower compact function I is such that any subsequence Pn′ of Pn

contains a further subsequence Pn′′ that obeys the LDP with I for rate rn′′, then Pn obeys the LDP
with I for rate rn.

Let U0 ⊂ U. We will say that the sequence Pn is U0-exponentially tight if it is exponentially
tight and any LD accumulation point Π is such that Π(U \ U0) = 0. Similarly we say that a
function f : U → U′ is U0-continuous if f is continuous at each z ∈ U0. We recall that sets Γα

are said to make up a decreasing directed family if for arbitrary α′ and α′′ there exists α′′′ such
that Γα′ ∩ Γα′′ ⊃ Γα′′′ . The next theorem, which can be loosely referred to as the method of
finite-dimensional distributions, is crucial for the developments below.

Theorem 1.8. Let fα be functions from U into metric spaces Uα such that the sets f−1
α

(
fα(z)

)
make up a decreasing directed family and {z} = ∩αf−1

α

(
fα(z)

)
for z ∈ U0. If the sequence Pn is

U0-exponentially tight, the functions fα are U0-continuous, and the Pn ◦ f−1
α obey the LDP with

Iα, then the Pn obey the LDP with I(z) = supα Iα(fα(z)) if z ∈ U0 and I(z) = ∞ otherwise.

Proof. Suppose that a subsequence Pn′ obeys the LDP for rate rn′ with I′. It suffices to prove
that I′ = I. By the U0-exponential tightness, I′(z) = ∞ if z 6∈ U0. By the continuous mapping
principle (II), the Pn′ ◦ f−1

α obey the LDP for rate rn′ with I′ ◦ f−1
α . Hence, I′ ◦ f−1

α = Iα. Let
z ∈ U0. Since the fα are U0-continuous, these maps are continuous when restricted to U0 with
subspace topology. Therefore, the sets f−1

α

(
fα(z)

)
∩ U0 are closed in U0, so they can be written

11



as Fα ∩ U0, where the Fα are closed in U and form a decreasing directed family (check). Since
{z} = ∩α

(
f−1

α

(
fα(z)

)
∩ U0

)
, it follows that

I′(z) = I′
(
∩α

(
f−1

α

(
fα(z)

)
∩ U0

))
= I′

(
∩α

(
Fα ∩ U0

))
= sup

α
I′

(
Fα ∩ U0

)
= sup

α
I′

(
f−1

α

(
fα(z)

)
∩ U0

)
= sup

α
I′

(
f−1

α

(
fα(z)

))
= sup

α
I′ ◦ f−1

α

(
fα(z)

)
= sup

α
Iα(fα(z)).

Remark 1.3. For the metric space case, the above theorem encompasses both the inverse contraction
principle and the projection limit theorem, see, e.g., Dembo and Zeitouni [3].

2 LDP for stochastic processes

2.1 Empirical measure

In this part we will consider results in the theme of Sanov’s theorem. Let consider i.i.d. Rd-valued
r.v. ξ1, ξ2, . . .. We introduce the empirical measure

νn =
1
n

n∑
i=1

δξi
, (2.1)

where δx is the Dirac measure at x. Equivalently, for Γ ⊂ Rd,

νn(Γ) =
1
n

n∑
i=1

1(ξi ∈ Γ).

νn is considered as a random element of space M(Rd) of probability measures on Rd. The latter
space is endowed with the topology of weak convergence, so it is a metric space (a Polish space, in
fact). Recall that by Prohorov’s theorem a subset of M is relatively compact if and only if it is
tight. We develop an exponential tightness criterion.

Theorem 2.1. Let µn be a sequence of random elements of M(Rd) defined on a probability space
(Ω,F ,P). This sequence is exponentially tight on order rn if and only if for arbitrary ε > 0 and
δ > 0 there exists M > 0 such that

lim sup
n→∞

P
(
µn(x ∈ Rd : |x| > M) > δ

)1/rn < ε.

Proof. Sufficiency. Since M(Rd) is a Polish space, the distributions of the µn are tight, so we may
assume that M is such that

sup
n

P
(
µn(x ∈ Rd : |x| > M) > δ

)1/rn < ε.

Given arbitrary ε > 0, let Mk, where k = 1, 2, . . ., be such that

sup
n

P
(
µn(x ∈ Rd : |x| > Mk) >

1
k

)1/rn <
ε

2k
.

Introduce the set K = ∩∞k=1{µ : µ(|x| > Mk) ≤ 1/k}. This set is weakly relatively compact by
Prohorov’s theorem and

P(µn 6∈ K)1/rn ≤
∞∑

k=1

P
(
µn(|x| > Mk) >

1
k

)1/rn ≤ ε,
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so the laws of the µn are exponentially tight.
Necessity. Suppose the laws of the µn are exponentially tight, i.e., for arbitrary ε > 0 there

exists a compact K ⊂ M(Rd) with lim supn→∞P(µn 6∈ K)1/rn < ε. Since by Prohorov’s theorem
for arbitrary δ there exists M such that supµ∈K µ

(
x : |x| > M

)
≤ δ, for this M

lim sup
n→∞

P
(
µn(x : |x| > M

)
> δ

)1/rn ≤ lim sup
n→∞

P(µn 6∈ K)1/rn < ε.

We are now ready to state and prove Sanov’s theorem. For µ ∈M(Rd) and ν ∈M(Rd), let the
relative entropy H(ν||µ) be defined by

H(ν||µ) =
∫
Rd

dν

dµ
(x) log

dν

dµ
(x) µ(dx)

if ν is absolutely continuous with respect to µ, and H(ν||µ) = ∞ otherwise.

Exercise 2.1. 1. Check that H(ν||µ) is nonnegative and lower compact in ν.

2. Show that
H(ν||µ) = sup

λ(·)

(∫
Rd

λ(x) ν(dx)− log
∫
Rd

eλ(x) µ(dx)
)
,

where the supremum is taken over all Borel functions (λ(x), x ∈ Rd) such that the integrals
exist.

Theorem 2.2. Let ξi be i.i.d. with law µ. Then the νn defined by (2.1) obey the LDP in M(Rd)
with H(·||µ).

Proof. Check exponential tightness first. For λ > 0, δ > 0 and M > 0, by the exponential Markov
inequality

P
(
µn(|x| > M) > δ

)
= P

( 1
n

n∑
i=1

1(|ξi| > M) > δ
)
≤ exp(−λnδ)

(
E exp(λ1(|ξi| > M))

)n

Hence,
lim sup

n→∞
P

(
µn(|x| > M) > δ

)1/n ≤ exp(−λδ)E exp(λ1(|ξi| > M)),

so by dominated convergence

lim
M→∞

lim sup
n→∞

P
(
µn(|x| > M) > δ

)1/n ≤ exp(−λδ),

which implies that the latter left-hand side is zero by λ being arbitrary. Exponential tightness
follows by Theorem 2.1.

An application of Cramér’s theorem shows that if Γ1, . . . ,Γk are disjoint subsets of Rd, then
the sequence (µn(Γ1), . . . , µn(Γk)) obeys the LDP with IΓ1,...,Γk

given by

IΓ1,...,Γk
(x1, . . . , xk) = sup

λ1,...,λk

( k∑
i=1

λixi − log E exp
( k∑

i=1

λi1(ξ1 ∈ Γi)
)

= sup
λ1,...,λk

( k∑
i=1

λixi − log
k∑

i=1

eλiP(ξ1 ∈ Γi)
)
,
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where xi ∈ [0, 1] and
∑k

i=1 xi ≤ 1. Calculations show that

IΓ1,...,Γk
(x1, . . . , xk) =

k∑
i=1

xi

P(ξ1 ∈ Γi)
log

xi

P(ξ1 ∈ Γi)
P(ξ1 ∈ Γi)

+
1−

∑k
i=1 xi

P(ξ1 6∈ ∪k
i=1Γi)

log
xi

P
(
ξ1 6∈ ∪k

i=1Γi

) P
( k∑

i=1

ξ1 6∈ ∪k
i=1Γi

)
,

where 0/0 = 0 and 0 log 0 = 0. Since

sup
Γ1,...,Γk

IΓ1,...,Γk
(ν(Γ1), . . . , ν(Γk)) = H(ν||µ),

the proof is over by Theorem 1.8.

Exercise 2.2. Fill in the details.

Exercise 2.3. Consider a queueing network of K nodes in which routing decisions at the nodes are
independent and identically distributed for a given node, i.e., a customer that has completed service
in node i is routed to node j with probability pij and leaves the network with probability 1−

∑K
j=1 pij.

Let Rij(n) denote the number of customers routed from node i to node j out of the first n customers
served at node i. Derive the LDP for the process R(n)/n, where R(n) = (Rij(n), i, j = 1, 2, . . . ,K).

2.2 Space C

We start by recalling basic properties of the space of continuous functions, for more detail see
Billingsley [1], Jacod and Shiryaev [11], Ethier and Kurtz [8]. Space C(Rd) is the space of all
continuous functions from R+ to Rd. The metric is given by

ρC(x,y) =
∞∑

k=1

2−k sup
t∈[0,k]

|x(t)− y(t)| ∧ 1.

Exercise 2.4. Check that ρC is a metric and that xn → x in C if and only if limn→∞ supt≤T |xn(t)−
x(t)| = 0 for all T > 0.

Remark 2.1. Equivalent metrics are given by the equalities

ρ′C(x,y) =
∞∑

k=1

2−k
supt∈[0,k]|x(t)− y(t)|

1 + supt∈[0,k]|x(t)− y(t)|
,

ρ′′C(x,y) = sup
t∈R+

|x(t)− y(t)| ∧ 1
1 + t

,

ρ′′′C (x,y) =

∞∫
0

e−u sup
t∈[0,u]

|x(t)− y(t)| ∧ 1 du.

C(Rd) is complete and separable (Polish). Modulus of continuity

wT (x, δ) = sup
s,t∈[0,T ]:
|s−t|≤δ

|x(t)− x(s)|.
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Exercise 2.5. Prove that if x ∈ C(Rd), then wT (x, δ) → 0 as δ → 0.

Theorem 2.3. Set K ⊂ C(Rd) is relatively compact if and only if the following hold:

(i) supx∈K |x(0)| < ∞,

(ii) limδ→0 supx∈K wT (x, δ) = 0 for all T > 0.

Theorem 2.4. A sequence Pn of distributions on C(Rd) is exponentially tight if and only if the
following conditions hold

(i) limA→∞Pn(x : |x(0)| > A)1/rn = 0,

(ii) limδ→0 Pn

(
x : wT (x, δ) > ε

)1/rn = 0 for all T > 0 and ε > 0.

Exercise 2.6. Deduce Theorem 2.4 from Theorem 2.3.

Theorem 2.5. A sequence Pn of distributions on C(Rd) is exponentially tight if and only if the
following conditions hold

(i) limA→∞Pn(x : |x(0)| > A)1/rn = 0,

(ii) limδ→0 supt∈[0,T ] Pn

(
x : sups∈[t,t+δ]|x(s)− x(t)| > ε

)1/rn = 0 for all T > 0 and ε > 0.

Proof. It suffices to check that condition (ii) implies condition (ii) of Theorem 2.4. We have that

Pn

(
x : wT (x, δ) > ε

)
≤ Pn

(bT/δc+1⋃
i=1

{x : 3 sup
s∈[iδ,(i+1)δ]

|x(s)− x(iδ)| > ε}
)

≤
bT/δc+1∑

i=1

Pn

(
x : 3 sup

s∈[iδ,(i+1)δ]
|x(s)−x(iδ)| > ε

)
≤

(T

δ
+1

)
sup

t∈[0,T ]
Pn

(
x : sup

s∈[t,t+δ]
|x(s)−x(t)| > ε/3

)
.

The claim follows

Exercise 2.7. Finish the proof.

By Theorem 1.8 we obtain the following result.

Theorem 2.6. Let Xn = (Xn(t), t ∈ R+) be a sequence of stochastic processes with trajectories in
C(Rd). Suppose the following conditions hold:

1. finite-dimensional projections (Xn(t1), . . . , Xn(tk)) obey LDPs in (Rd)k with It1,...,tk ,

2. the sequence Xn is exponentially tight.

Then the sequence Xn obeys the LDP in C(Rd) with I(x) = supt1,...,tk
It1,...,tk(x(t1), . . . ,x(tk)).

Exercise 2.8. 1. Fill in the details.

2. Prove that the function I in the statement is lower compact.

3. Deduce the statement of Theorem 2.6.

15



Theorem 2.7 (Shilder). Let B = (B(t), t ∈ R+) be a Brownian motion in Rd. Then the sequence√
εB obeys the LDP for rate ε with

I(x) =
1
2

∞∫
0

|ẋ(t)|2 dt

if x is absolutely continuous and x(0) = 0, and I(x) = ∞, otherwise.

Let us precede the proof with a simple but useful bound: if ξ = (ξ(1), . . . , ξ(d)) is a d-dimensional
random variable on a probability space (Ω,F ,P), then for c > 0

P(|ξ| > c) ≤ 2d max
i=1,2...,2d

P
(
ei · ξ >

c√
d

)
, (2.2)

where ei for i = 1, 2, . . . , d is the i-th unit coordinate vector and ei = −ei−d for i = d + 1, . . . , 2d.
This bound follows by the inequalities

P(|ξ| > c) ≤ P(
√

d max
i=1,2,...,d

|ξ(i)| > c
)
≤

d∑
i=1

P
(
|ξ(i)| > c√

d

)
≤ 2d max

i=1,2...,2d
P

(
ei · ξ >

c√
d

)
.

Proof of Theorem 2.7. We check exponential tightness. Using Doob’s maximal inequality in view
of (2.2) for µ > 0

Pε

(
sup

s∈[t,t+δ]
|
√

εB(s)−
√

εB(t)| > η
)
≤ 2d max

i=1,...,2d
Pε

(√
ε sup

s∈[t,t+δ]
ei · (B(s)−B(t)) >

η√
d

)
= 2d max

i=1,...,2d
Pε

(
sup

s∈[t,t+δ]
exp

( µ√
ε

ei · (B(s)−B(t))
)

> exp
( µη

ε
√

d

))
≤ exp

(
− µη

ε
√

d

)
2d max

i=1,...,2d
Eε exp

( µ√
ε

ei · (B(t + δ)−B(t))
)

= 2d exp
(
− µη

ε
√

d

)
exp

(µ2δ

2ε

)
. (2.3)

Hence,
lim sup

δ→0
lim sup

ε→0
Pε

(
sup

s∈[t,t+δ]
|
√

εBs −
√

εBt| > η
)ε≤ exp

(
− µη√

d

)
.

Since µ is arbitrary, condition (ii) of Theorem 2.5 is proved. Condition (i) is obvious.
We now evaluate the rate function. We have that

It1,...,tk(x1, . . . , xk) =
1
2

k∑
i=1

|xi − xi−1|2

ti − ti−1
.

Let x be absolutely continuous and x(0) = 0. By Cauchy-Schwarz

It1,...,tk(x(t1), . . . ,x(tk)) =
1
2

k∑
i=1

|x(ti)− x(ti−1)|2

ti − ti−1
=

1
2

k∑
i=1

1
ti − ti−1

|
ti∫

ti−1

ẋ(t) dt|2

≤ 1
2

k∑
i=1

ti∫
ti−1

|ẋ(t)|2 dt ≤ 1
2

∞∫
0

|ẋ(t)|2 dt
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On the other hand,

It1,...,tk(x(t1), . . . ,x(tk)) =
1
2

k∑
i=1

( |x(ti)− x(ti−1)|
ti − ti−1

)2
(ti − ti−1),

so by Fatou, as supi(ti − ti−1) → 0,

lim inf It1,...,tk(x(t1), . . . ,x(tk)) ≥
1
2

∞∫
0

|ẋ(t)|2 dt .

Thus,

sup
t1,...,tk

It1,...,tk(x(t1), . . . ,x(tk)) =
1
2

∞∫
0

|ẋ(t)|2 dt .

Suppose, x is not absolutely continuous on an interval [0, T ]. It means that there exists ε > 0 such
that for any δ > 0 there exist nonoverlapping intervals (si, ui) ∈ [0, T ] with

∑
(ui − si) < δ and∑

|x(ui)− x(si)| > ε. By Cauchy-Schwarz,

sup
t1,...,tk

It1,...,tk(x(t1), . . . ,x(tk)) ≥
k∑

i=1

( |x(ui)− x(si)|
ui − si

)2
(ui − si) ≥

(∑k
i=1|x(ui)− x(si)|

)2∑
(ui − si)

≥ ε2

δ
.

Since δ is arbitrarily small, we obtain the required conclusion. The case x(0) 6= 0 is considered
similarly.

Exercise 2.9. 1. Prove that I in the hypotheses is lower compact.

2. What about the LDP in C[0, 1] alluded to in the introductory example ?

Exercise 2.10. Find a function x such that, given ` > 0, limε→0 P(supt∈[0,1]|
√

εB(t) − x(t)| >
δ| supt∈[0,1]|

√
εB(t)| > `) = 0 for any δ > 0.

Exercise 2.11. Let B0 be the Brownian bridge. Establish an LDP for εB0. (Hint. Use the
representation B0(t) = B(t)− tB(1), where B is a Brownian motion.)

Theorem 2.8. Let Xε solve the equation

Xε(t) = x +

t∫
0

b(Xε(s)) ds +
√

εB(t),

where b : Rd → Rd is a Lipshitz-continuous function. Then the Xε obey the LDP for rate ε with

I(x) =
1
2

∞∫
0

|ẋ(s)− b(x(s))|2 ds

if x is absolutely continuous and x(0) = x, and I(x) = ∞ otherwise.
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Proof. Let us consider the mapping from C(Rd) to C(Rd) that associates with x the solution y of
the equation

y(t) = x + x(t) +

t∫
0

b(y(s)) ds.

Since b is Lipshitz, this equation has a unique solution. Moreover, if y′ and y′′ are solutions
associated with x′ and x′′, respectively, then

|y′(t)− y′′(t)| ≤ |x′(t)− x′′(t)|+ L

t∫
0

|y′(s)− y′′(s)| ds,

where L is a Lipshitz constant. Gronwall’s inequality yields the bound

sup
t∈[0,T ]

|y′(t)− y′′(t)| ≤ sup
t∈[0,T ]

|x′(t)− x′′(t)|eLT .

Hence, the mapping is continuous. An application of the continuous mapping principle completes
the proof.

Exercise 2.12. Do the assignment in exercise 2.7 for the solution of

Xε(t) = −
t∫

0

Xε(s) ds +
√

ε B(t).

Let us now consider the case of a variable diffusion.

Theorem 2.9. Let Xε be a weak solution of the equation

Xε(t) = x +

t∫
0

b(Xε(s)) ds +
√

ε

t∫
0

σ(Xε(s)) dBε(s),

where Bε is a standard Brownian motion, b(·) : Rd → Rd is a bounded continuous function, σ(·) is
a bounded continuous function with values in the set of symmetric nonnegative definite matrices,
and the matrix c(x) = σ(x)σ(x)T is uniformly elliptic. Then the Xε obey the LDP in C(Rd) with

I(x) =
1
2

∞∫
0

(ẋ(t)− b(x(t)))T c(x(t))−1(ẋ(t)− b(x(t))) dt

if x is absolutely continuous and x(0) = x, and I(x) = ∞ otherwise.

The following lemma will be useful both in the proof of this theorem, and below. Let Λ0 denot
the set of all Rd–valued piecewise constant functions (λ(t), t ∈ R+) of the form

λ(t) =
k∑

i=1

λi1(t ∈ (ti−1, ti]),

where 0 ≤ t0 < t1 < . . . < tk, λi ∈ Rd, i = 1, . . . , k, k ∈ N.
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Lemma 2.1. Let f(t, λ), t ∈ R+, λ ∈ Rd, be an R-valued function, which is Lebesgue measurable
in t, continuous in λ, and is such that f(t, 0) = 0 and

∫ T
0 f(t, λ)dt is well defined for T ∈ R+ and

λ ∈ Rd. Then for T ∈ R+

T∫
0

sup
λ∈Rd

f(t, λ) dt = sup
(λ(t))∈Λ0

T∫
0

f(t, λ(t)) dt.

Proof. We denote F (t) = supλ∈Rd f(t, λ). Since the supremum may be taken over the rational λ in
view of continuity of f(t, λ) in λ, the function F (t) is Lebesgue measurable and non-negative, so
that the integral on the left-hand side of the equality in the statement of the lemma is well defined.

Given arbitrary ε > 0, we introduce the set

Aε = {(t, λ) ∈ [0, T ]× Rd :
1
ε
≥ f(t, λ) ≥ (F (t)− ε)+ ∧ 1

ε
}.

By a measurable selection theorem, see, e.g., Clarke [2], Ethier and Kurtz [8], there exists an
Rd–valued Lebesgue measurable function λ̃ε(t) such that

1
ε
≥ f(t, λ̃ε(t)) ≥ (F (t)− ε)+ ∧ 1

ε
, t ∈ [0, T ].

By Luzin’s theorem there exists a continuous function λε(t) such that
∫ T
0 1

(
λ̃ε(t) 6= λε(t)

)
dt < ε2.

Then

T∫
0

f(t, λε(t)) ∨ 0 dt ≥
T∫

0

f(t, λ̃ε(t)) dt− ε ≥
T∫

0

(F (t)− ε)+ ∧ 1
ε

dt− ε.

Since (λε(t)) is continuous, it can be approximated by functions from Λ0. Since f(t, λ) is continuous
in λ and f(t, 0) = 0, by Fatou’s lemma there exists a function λ0 ∈ Λ0 such that

T∫
0

f(t, λ0(t)) dt ≥
T∫

0

f(t, λε(t)) ∨ 0 dt− ε.

Thus, since ε > 0 is arbitrary,

T∫
0

sup
λ∈Rd

f(t, λ) dt ≤ sup
(λ(t))∈Λ0

T∫
0

f(t, λ(t)) dt.

The reverse inequality is obvious.

Proof of Theorem 2.9. We apply Corollary 1.4 and start by checking exponential tightness. We as-
sume that Xε and Bε are defined on a filtered probability space (Pε,Fε,Fε), where Fε = (Fε(t), t ∈
R+) is a filtration. We have for s < t

Xε(t)−Xε(s) =

t∫
s

b(Xε(u)) du +
√

ε

t∫
s

σ(Xε(u)) dBε(u).
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Therefore, for µ > 0 and η > 0,

Pε

(
sup

t∈[s,s+δ]
|Xε(t)−Xε(s)| > η

)
≤ Pε

( s+δ∫
s

|b(Xε(u))| du >
η

2
)

+ Pε

(√
ε sup

t∈[s,s+δ]

∣∣∣ t∫
s

σ(Xε(u)) dBε(u)
∣∣∣ >

η

2
)
.

Since the function |b(·)| is bounded, the first probability on the right side is equal to zero for δ
small enough. The second probability is bounded in analogy with the proof of Theorem 2.7: by
(2.2)

Pε

(√
ε sup

t∈[s,s+δ]

∣∣∣ t∫
s

σ(Xε(u)) dBε(u)
∣∣∣ >

η

2
)

≤ exp
(
− µη

2ε
√

d

)
2d max

i=1,...,2d
Eε exp

( µ√
ε

ei ·
t+δ∫
t

σ(Xε(u)) dBε(u)
)

= exp
(
− µη

2ε
√

d

)
2d max

i=1,...,d
Eε exp

(µ2

2ε

t+δ∫
t

|σ(Xε(u))ei|2 du
)
,

where the latter equality holds as σ(·) is bounded. Using boundedness of σ once again, we conclude
that

lim sup
δ→0

lim sup
ε→0

Pε

(√
ε sup

t∈[s,s+δ]

∣∣∣ t∫
s

σ(Xε(u)) dBε(u)
∣∣∣ >

η

2
)ε ≤ exp

(
− µη

2
√

d

)
Since µ is arbitrary, the left-hand side is equal to zero. The proof of exponential tightness is over.

We prove the upper bound in Corollary 1.4. Let λ(t) be a function from Λ0. We define for
x ∈ C(Rd)

t∫
0

λ(s) · dXε(s) =
k∑

i=1

λi · (Xε(t ∧ ti)−Xε(t ∧ ti−1)). (2.4)

Since the functions b and σ are bounded, the stochastic process Yε = (Yε(t), t ∈ R+) defined by

Yε(t) = exp
( t∫

0

λ(s)
ε

· dXε(s)−
t∫

0

λ(s)
ε

· b(Xε(s)) ds− ε

2

t∫
0

|σ(Xε(s))
λ(s)

ε
|2 ds

)
is a martingale on (Pε,Fε,Fε). By the equality EεYε(t) = 1, it follows that for δ > 0

EεYε(t)1(ρC(Xε,x) < δ) ≤ 1. (2.5)

Let γ > 0 be arbitrary. By (2.4)

|
t∫

0

λ(s) · dXε(s)−
t∫

0

λ(s) · dx(s)| ≤ 2 sup
s∈[0,t]

|Xε(s)− x(s)|
k∑

i=1

|λi|
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Therefore, if δ > 0 is small enough then

|
t∫

0

λ(s) · dXε(s)−
t∫

0

λ(s) · dx(s)| ≤ γ

on the set where ρC(Xε,x) < δ. Similarly, by continuity of b(·) and σ(·) we may assume that

|
t∫

0

λ(s) · b(Xε(s)) ds−
t∫

0

λ(s) · b(x(s)) ds| < γ,

|1
2

t∫
0

|σ(Xε(s))λ(s)|2 ds− 1
2

t∫
0

|σ(x(s))λ(s)|2 ds| < γ

on the set where ρC(Xε,x) < δ. Hence, by (2.5) for δ small enough

e−3γ/ε exp
1
ε

( t∫
0

λ(s) · dx(s)−
t∫

0

λ(s) · b(x(s)) ds− 1
2

t∫
0

|σ(x(s))λ(s)|2 ds
)
Pε

(
ρC(Xε,x) < δ

)
≤ 1.

Hence,

lim sup
δ→0

lim sup
ε→0

Pε

(
ρC(Xε,x) < δ

)ε

≤ e3γ exp−
( t∫

0

λ(s) · dx(s)−
t∫

0

λ(s) · b(x(s)) ds− 1
2

t∫
0

|σ(x(s))λ(s)|2 ds
)

Since γ, λ(·) and t are arbitrary, we obtain that

lim sup
δ→0

lim sup
ε→0

ε log Pε

(
ρC(Xε,x) < δ

)
≤ − sup

λ(·)∈Λ0

( ∞∫
0

λ(s) · dx(s)−
∞∫
0

λ(s) · b(x(s)) ds− 1
2

∞∫
0

|σ(x(s))λ(s)|2 ds
)

By Lemma 2.1, if x(·) is absolutely continuous and starts at zero, the latter supremum equals

∞∫
0

sup
λ∈Rd

(
λ · ẋ(s)− λ · b(x(s))− 1

2
|σ(x(s))λ|2

)
ds = I(x).

If x either is not absolutely continuous or does not start at zero, then the supremum is equal to
infinity (check). Thus,

lim sup
δ→0

lim sup
ε→0

ε log Pε

(
ρC(Xε,x) < δ

)
≤ −I(x).

We now check that
lim inf

δ→0
lim inf

ε→0
ε log Pε

(
ρC(Xε,x) < δ

)
≥ −I(x). (2.6)
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Since the inequality is clearly true if I(x) = ∞, we assume that x(0) = 0 and x is absolutely
continuous. Let us introduce the stochastic process

λε(t) = c(Xε(t))−1(ẋ(t)− b(Xε(t))). (2.7)

By the ellipticity condition on c(·), boundedness of b(·) and the fact that I(x) < ∞, we obtain that∫ t
0 |λε(s)|2 ds < ∞ a.s. Hence, the stochastic integral

∫ t
0 σ(Xε(s))λε(s) dBε(s) and the Lebesgue

integral
∫ t
0 |σ(Xε(s))λε(s)|2 ds are well defined. Let

Zε(t) = exp
( 1√

ε

t∫
0

σ(Xε(s))λε(s) dBε(s)−
1
2ε

t∫
0

|σ(Xε(s))λε(s)|2 ds
)
. (2.8)

It is a martingale (since b(·) and σ(·) are bounded, so we define a new probability measure Qε

by dQε|Ft = Zε(t)dPε|Ft . By Girsanov’s theorem, see, e.g., Ikeda and Watanabe [10], Bε(t) −
(1/

√
ε)

∫ t
0 σ(Xε(s))λε(s) ds is a Brownian motion under measure Qε. We denote it B̃ε. Hence,

under this measure

Xε(t) = x + x(t) +
√

ε

t∫
0

σ(Xε(s)) dB̃ε(s). (2.9)

We also note that

Zε(t) = exp
( 1√

ε

t∫
0

σ(Xε(s))λε(s) dB̃ε(s) +
1
2ε

t∫
0

|σ(Xε(s))λε(s)|2 ds
)
. (2.10)

In addition, by the continuity and ellipticity assumptions and (2.7) given arbitrary γ > 0 there
exists δ > 0 such that on the set where supt∈[0,T ]|Xε(t)− x(t)| < δ the bound holds

|
t∫

0

|σ(Xε(s))λε(s)|2 ds−
t∫

0

(ẋ(s)− b(x(s)))T c(x(t))−1(ẋ(s)− b(x(s))) ds| < γ.

We therefore have

Pε

(
sup

t∈[0,T ]
|Xε(t)− x(t)| < δ

)
=

∫
Ωε

1
(

sup
t∈[0,T ]

|Xε(t)− x(t)| < δ
)
Zε(t)−1 dQε

≥ exp
(
− 1

2ε

t∫
0

(ẋ(s)− b(x(s)))T c(x(t))−1(ẋ(s)− b(x(s))) ds
)
exp(− γ

2ε
)

∫
Ωε

1
(

sup
t∈[0,T ]

|Xε(t)− x(t)| < δ
)
exp

(
− 1√

ε

t∫
0

σ(Xε(s))λε(s) dB̃ε(s)
)
dQε.

Next, ∫
Ωε

1
(

sup
t∈[0,T ]

|Xε(t)− x(t)| < δ
)
exp

(
− 1√

ε

t∫
0

σ(Xε(s))λε(s) dB̃ε(s)
)
dQε

≥ exp
(
−γ

ε

)
Qε

(
sup

t∈[0,T ]
|Xε(t)− x(t)| < δ,

t∫
0

σ(Xε(s))λε(s) dB̃ε(s) <
γ√
ε

)
.

22



Putting everything together yields for all δ small enough

lim inf
ε→0

ε log Pε

(
sup

t∈[0,T ]
|Xε(t)− x(t)| < δ

)
≥ −I(x)− 3γ

− lim sup
ε→0

ε log Qε

(
sup

t∈[0,T ]
|Xε(t)− x(t)| < δ,

t∫
0

σ(Xε(s))λε(s) dB̃ε(s) <
γ√
ε

)
(2.11)

By Chebyshev,

Qε

( t∫
0

σ(Xε(s))λε(s) dB̃ε(s) ≥
γ√
ε

)
≤ ε

γ2

∫
Ωε

|
t∫

0

σ(Xε(s))λε(s) dB̃ε(s)|2 dQε

≤ ε

γ2

∫
Ωε

t∫
0

‖σ(Xε(s))‖2|λε(s)|2 ds dQε,

which tends to zero as ε → 0 by the boundedness of σ(·) and integrability of |λε(s)|2. Also, (2.9)
obviously implies that limε→0 Qε

(
supt∈[0,T ]|Xε(t)− x(t)| < δ

)
= 1. Hence,

lim
ε→0

Qε

(
sup

t∈[0,T ]
|Xε(t)− x(t)| < δ,

t∫
0

σ(Xε(s))λε(s) dB̃ε(s) <
γ√
ε

)
= 1,

so

lim
ε→0

ε log Qε

(
sup

t∈[0,T ]
|Xε(t)− x(t)| < δ,

t∫
0

σ(Xε(s))λε(s) dB̃ε(s) <
γ√
ε

)
= 0,

which implies by (2.11) the bound (2.6).

Exercise 2.13. Finish the proof.

2.3 Space D

Let D(Rd) denote the space of Rd-valued right-continuous functions on R+ that possess left-hand
limits. We recall its basic properties, see Billingsley [1], Jacod and Shiryaev [11], Ethier and Kurtz
[8] for more detail. Space D(Rd) is turned into a metric space as follows. Let Λ denote the set of
strictly increasing continuous functions λ(t), t ∈ R+, with λ(0) = 0 and λ(t) →∞ as t →∞ such
that

γ(λ) = sup
0≤s<t

log
∣∣λ(t)− λ(s)

t− s

∣∣ < ∞.

We define

ρD(x,y) = inf
λ∈Λ

(
γ(λ) ∨

∞∫
0

e−u sup
t∈[0,u]

|x(t)− y(λ(t))| ∧ 1 du
)
.

Space D(Rd) equipped with metric ρD is complete and separable. It is also known that xn → x in
(D, ρD) if and only if there exists a sequence λn ∈ Λ such that limn→∞ supt∈R+

|λn(t)− t| = 0 and
limn→∞ supt∈[0,T ]|x(t)− xn(λn(t))| = 0 for all T .

23



Compact sets in D(Rd) are described as follows. For x ∈ D, T > 0 and δ > 0, we define the
modulus of continuity

w′
T (x, δ) = inf

(tj)
max

j=1,...,k
wx

(
[tj−1, tj)

)
,

where wx

(
[s, t)

)
= supu,v∈[s,t) |xu − xv|, s < t, and the infimum is taken over all collections (tj)

such that 0 = t0 < t1 < . . . < tk = T and tj − tj−1 > δ for j < k. Note that w′
T (x, δ) ≤ wT (x, 2δ)

for δ small enough.

Theorem 2.10. Set K ⊂ D(Rd) is relatively compact if and only if the following hold:

(i) supx∈K supt∈[0,T ]|x(t)| < ∞,

(ii) limδ→0 supx∈K w′
T (x, δ) = 0 for all T > 0.

Theorem 2.11. A sequence Pn of distributions on D(Rd) is exponentially tight if and only if the
following conditions hold

(i) limA→∞Pn(x : supt∈[0,T ]|x(t)| > A)1/rn = 0,

(ii) limδ→0 Pn

(
x : w′

T (x, δ) > ε
)1/rn = 0 for all T > 0 and ε > 0.

In many cases, the limit rate functions are equal to infinity at discontinuous functions, so we
introduce the following definition which adapts the definition of a U0-exponentially tight sequence
to this particular setting. A sequence Pn of probability measures on D(Rd) is said to be C-
exponentially tight if Π(D(Rd) \ C(Rd)) = 0 for every LD accumulation point Π of Pn.

Theorem 2.12. A sequence Pn of distributions on D(Rd) is C-exponentially tight if and only if
the following conditions hold

(i) limA→∞Pn(x : supt∈[0,T ]|x(t)| > A)1/rn = 0,

(ii) limδ→0 Pn

(
x : wT (x, δ) > ε

)1/rn = 0 for all T > 0 and ε > 0.

Theorem 2.13. A sequence Pn of distributions on D(Rd) is C-exponentially tight if and only if
the following conditions hold

(i) limA→∞Pn(x : supt∈[0,T ]|x(t)| > A)1/rn = 0,

(ii) limδ→0 supt∈[0,T ] Pn

(
x : sups∈[t,t+δ]|x(s)− x(t)| > ε

)1/rn = 0 for all T > 0 and ε > 0.

Let us say that a sequence of stochastic processes is C-exponentially tight if the sequence of
their distributions is C-exponentially tight.

Theorem 2.14. Let Xn = (Xn(t), t ∈ R+) be a sequence of stochastic processes with trajectories
in D(Rd). Suppose the following conditions hold:

1. finite-dimensional projections (Xn(t1), . . . , Xn(tk)) obey the LDP in (Rd)k with It1,...,tk ,

2. the sequence Xn is C-exponentially tight.

Then the sequence Xn obeys the LDP in D(Rd) with I(x) = supt1,...,tk
It1,...,tk(x(t1), . . . ,x(tk)) if

x ∈ C and I(x) = ∞ otherwise.
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Exercise 2.14. Prove the stated theorems.

We give applications to concrete stochastic processes.

Theorem 2.15 (Mogulskii). Let ξi be i.i.d. Rd-valued r.v. with E exp(λ · ξ1) < ∞ for all λ ∈ Rd.
Let

Xn(t) =
1
n

bntc∑
i=1

ξi.

Then the processes Xn obey the LDP in D(Rd) with

I(x) =

∞∫
0

sup
λ∈Rd

(
λ · ẋ(t)− log E exp(λ · ξ1)

)
dt

if x is absolutely continuous and x(0) = 0, and I(x) = ∞ otherwise.

Proof. We start the proof by checking C-exponential tightness as stipulated by Theorem 2.13. We
have for T > 0 and A > 0 by Markov’s inequality

P
(

sup
t∈[0,T ]

|Xn(t)| > A
)
≤ P

(bnT c∑
i=1

|ξi| > nA
)
≤ exp(−nA)

(
E exp(|ξ1|)

)nT
.

Hence,
lim sup

n→∞
P

(
sup

t∈[0,T ]
|Xn(t)| > A

)1/n ≤ exp(−A)
(
E exp(|ξ1|)

)T
,

which tends to zero as A →∞. Similarly, for µ > 0, t > 0 and δ > 0,

P
(

sup
s∈[t,t+δ]

|Xn(s)−Xn(t)| > ε
)
≤ P

( bn(t+δ)c∑
i=bntc+1

µ|ξi| > µnε
)
≤ exp(−µnε)

(
E exp(µ|ξ1|)

)nδ
.

Hence,
lim sup

δ→0
lim sup

n→∞
sup

t∈[0,T ]
P

(
sup

s∈[t,t+δ]
|Xn(s)−Xn(t)| > ε

)1/n ≤ exp(−µε).

Since µ is arbitrarily large, the left-hand side is equal to zero. The proof of C-exponential tightness
is over.

Let 0 ≤ t1 ≤ . . . ≤ tk. By Cramér’s theorem and independence of increments the
(Xn(t1), . . . , Xn(tk)) obey the LDP in (Rd)k with

It1,...,tk(x1, . . . , xk) =
k∑

i=1

sup
λ∈Rd

(λ · (xi − xi−1)− (ti − ti−1) log E exp(λ · ξ1)),

where t0 = 0. Hence, supt1,...,tk
It1,...,tk(x(t1), . . . ,x(tk)) coincides with I(x) in the statement of the

theorem (use Lemma 2.1).

Exercise 2.15. Fill in the details.
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Exercise 2.16. Let Xn(t) = N(nt)/n, where N(t) is a Poisson process of rate λ. Show that the
sequence Xn obeys the LDP for rate n with

I(x) =

∞∫
0

(
ẋ(t) log ẋ(t)− ẋ(t) + 1

)
dt

if x is absolutely continuous, nondecreasing and x(0) = 0, and I(x) = ∞ otherwise.

Exercise 2.17. (Compound Poisson) Let N(·) be a Poisson process of rate γ and ξi be R-valued
i.i.d., independent of N(·), with E expλξ1 < ∞ for all λ ∈ R. Derive the LDP for

Xn(t) =
1
n

N(nt)∑
i=1

ξi.

References

[1] P. Billingsley. Convergence of Probability Measures. Wiley, 1968.

[2] F.H. Clarke. Optimization and Nonsmooth Analysis. Wiley, 1983.

[3] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Springer, 2nd
edition, 1998.

[4] F. den Hollander. Large deviations, volume 14 of Fields Institute Monographs. American
Mathematical Society, Providence, RI, 2000.

[5] J. D. Deuschel and D. W. Stroock. Large Deviations. Academic Press, 1989.

[6] J. D. Deuschel and D. W. Stroock. Large Deviations. American Mathematical Society, second
edition, 2001.

[7] P. Dupuis and R. Ellis. A Weak Convergence Approach to the Theory of Large Deviations.
Wiley, 1997.

[8] S. N. Ethier and T. G. Kurtz. Markov Processes. Characterization and Convergence. Wiley,
1986.

[9] M.I. Freidlin and A.D. Wentzell. Random Perturbations of Dynamical Systems. Springer, 2nd
edition, 1998.

[10] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes. North
Holland, 2nd edition, 1989.

[11] J. Jacod and A.N. Shiryaev. Limit theorems for stochastic processes, volume 288 of Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer-Verlag, Berlin, second edition, 2003.

[12] O. Kallenberg. Foundations of modern probability. Probability and its Applications (New
York). Springer-Verlag, New York, second edition, 2002.

[13] A. Puhalskii. Large Deviations and Idempotent Probability. Chapman & Hall/CRC, 2001.

26



[14] A. Shwartz and A. Weiss. Large Deviations for Performance Analysis. Chapman & Hall, 1995.

[15] N.N. Vakhania, V.I. Tarieladze, and S.A. Chobanyan. Probability Distributions on Banach
Spaces. Nauka, 1985. (in Russian, English translation: Reidel, 1987).

[16] S. R. S. Varadhan. Large Deviations and Applications. SIAM, 1984.

27


