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1 Introduction

The paper of Loynes [8] was the first to consider a system (single server queue, and, later,
queues in tandem) with stationary-ergodic driver. The classical recursion Xn+1 = (Xn +
ξn)+ studied by Loynes is monotone. There is a variety of monotone models (including
queues in tandem, multi-server queues, Jackson-type networks, etc.) for which one can
develop a unified approach for stability study. Here we provide a short survey, see the
references for more details.

2 Single-server queue revisited

Consider a single server queue with interarrival times σn and service times tn. Assume that
a sequence {(σn, tn)} is stationary with finite means b = Eσ1 and a = Et1 and satisfies the
SLLN, i.e.

1
n

−1∑
−n

σi = b and
1
n

−1∑
−n

ti = a a.s. (1)

A sufficient condition for (1) to hold (but not necessary in general – see, e.g., a discussion
in [6]) is that a sequence {(σn, tn)} is ergodic.

Assume further that b < a. Assume also, for simplicity, that customer 1 arrives in an
empty queue. Let Wn be a waiting time of customer n. Then W1 = 0 and

Wn = max
1≤j≤n

n−1∑
i=j

(σi − ti).

Also, {Wn} satisfy the following recursion

Wn+1 = max(0,Wn + σn − tn). (2)
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Note that Wn coincides in distribution with

Wn ◦ θ−n = max
−n+1≤j≤0

−1∑
i=j

(σi − ti).

The latter sequence increases a.s. and “couples” with an a.s. finite limit

W 0 = sup
j≤0

−1∑
i=j

(σi − ti)

due to the SLLN (1). One can also define, for any m,

Wm = sup
j≤m

−1∑
i=j

(σi − ti).

Then {Wm} is a stationary sequence and

Wm+1 = max(0,Wm + σm − tm).

Thus, this is a stationary solution to recursive equation (2).

Exercise 1. Show that this is the only stationary solution.

3 Tandem of two single-server queues

Tandem queue will be our toy example.

Consider an open network with two single-server stations in tandem. Customers arrive
to the first station with interarrival times {tn} and form a queue there. In this example, it
is convenient to assume that tn is an interarrival time between customers n − 1 and n. A
server serves them in order of arrival with service times {σ(1)

n }. Upon service completion,
customers go to the second station where are served also in order of arrival with service
times {σ(2)

n }. Assume that customer 1 arrives in an empty system. Denote by Zn a sojourn
time of customer n. Then

Z1 = σ
(1)
1 + σ

(2)
1

and, more generally, for any n ≥ 1,

Zn = max
1≤k≤m≤n

(
m∑
k

σ
(1)
j +

n∑
m

σ
(2)
j −

n∑
k+1

tj

)
(3)

Exercise 2. Prove formula (3).

It is known that if a sequence {(σ(1)
n , σ

(2)
n , tn)} is stationary ergodic and if

max(b(1), b(2))
a

< 1 (4)

where b(i) = Eσ
(i)
1 and a = Et1, then a distribution of Zn converges to a limiting stationary

distrribuion in the total variation norm.
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Exercise 3. Show that if there is the opposite strict inequality in (4), then a sequence
{Zn} tends to infinity a.s.

In order to introduce a recursive scheme, let Z
(1)
n be a sojourn time of customer n in

the first system (i.e. a sum of a waiting time and of service time σ
(1)
n ). Then Z

(1)
1 = σ

(1)
1

and we get the following recursive relations:

Z
(1)
n+1 = max(0, Z(1)

n − tn+1) + σ
(1)
n+1,

Zn+1 = max(Z(1)
n+1, Zn − tn+1) + σ

(2)
n+1.

In other words, introduce a function f : R5 → R2 as follows:

f(x1, x2, y1, y2, y3) = (max(0, x1 − y3) + y1,max(max(0, x1 − y3) + y1, x2 − y3) + y2).

Then f is monotone non-decreasing in (x1, x2), and we get a recursion

(Z(1)
n+1, Zn+1) = f((Z(1)

n , Zn), ξn+1)

where ξn+1 = (σ(1)
n+1, σ

(2)
n+1, tn+1).

4 General statements on monotone and homogeneous recur-
sions

There are many applications, especially in queueing networks, where monotonicity in the
dynamics can be exploited to prove existence and uniqueness of stationary solutions. Al-
though the theory can be presented in the very general setup of a partially ordered state
space (see Brandt et al. [6]) we will only focus on the case where the state is Rd. Consider
then the SRS

Xn+1 = f(Xn, ξn+1) =: ϕn+1(Xn)

and assume that ϕ0 : Rd
+ → Rd

+ is increasing and right-continuous, where the ordering
is the standard component-wise ordering on Rd

+. Let θ be stationary and ergodic flow on
(Ω,F , P ) and assume that ϕn = ϕ0◦θ

n, n ∈ Z. In other words, {ϕn} is a stationary-ergodic
sequence of random elements of the space of right-continuous increasing functions on Rd

+.
We first explain Loynes’ method. Define

Φn := ϕn · · ·ϕ1.

Thus, Φn(Y ) is the solution of the SRS at n ≥ 0 when X0 = Y , a.s. Since 0 is the least
element of (Rd

+,≤), we have Φn(0) ≤ Φn(Y ), a.s., for any Rd
+–valued r.v. Y . Next consider

Φm+n(0)◦θ−m = ϕn · · ·ϕ−m+1(0), n ≥ −m,

and interpret Φm+n(0) as the solution of the SRS at time n ≥ −m, starting with 0 at time
−m. Clearly, Φm+n(0) increases as m increases, because:

Φ(m+1)+n(0)◦θ−(m+1) = ϕn · · ·ϕ−m+1ϕ−(m+1)(0)
= ϕn · · ·ϕ−m+1(ϕ−(m+1)(0))
≥ ϕn · · ·ϕ−m+1(0) = Φm+n(0)◦θ−m.
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Finally define
X̃n := lim

m→∞
Φm+n(0)◦θ−m, n ∈ Z.

The r.v. Xn is either finite a.s., or is infinite a.s., by ergodicity. Assuming that the first case
holds, we further have

X̃n+1 = lim
m→∞

Φm+(n+1)(0)◦θ−m

= lim
m→∞

ϕm+n+1ϕm+n · · ·ϕ1(0)◦θ−m

= lim
m→∞

ϕn+1ϕn · · ·ϕ−m+1(0)

= lim
m→∞

ϕn+1(ϕn · · ·ϕ−m+1(0))

= lim
m→∞

ϕn+1(Φm+n(0)◦θ−m+1)

= ϕn+1(X̃n).

Provides then that we have a method for proving P(X0 < ∞) > 0, Loynes’ technique results
in the construction of a stationary-ergodic solution {X̃n} of the SRS.

For a tandem queue, we get

X̃n = (Z(1)
n , Zn) ◦ θ−n

=

σ
(1)
0 + max

−n+1≤i≤0

−1∑
j=i

(σ(1)
j − tj), max

−n+1≤i≤k≤0

(
k∑
i

σ
(1)
j +

0∑
k

σ
(2)
j −

0∑
i+1

tj

)
and clearly this sequence increases a.s. Here, by convention,

∑r
i . . . = 0 is i > r.

Consider another example of a multiserver queue.

Example. A multiserver queue G/G/s with s servers and FCFS service discipline.

Customers arrive with interarrival times {tn} and have service times {σn} (service times
are associated with customers, not with servers. Upon arrival to the system, a customer
is immediately sent to a server (one of servers) with a minimal workload. At each server,
customers are served in order of arrival. Denote by Vn,i a workload of server i just before
arrival of nth customer. Let R be an operator that orders coordinates of a vector in the
non-decreasing order. Let

Wn = R(Vn,1, . . . Vn,s).

Then vectors {Wn} satisfy the following recursive equation (“Kiefer-WOlfowitz”):

Wn+1 = R(Wn + e1σn − itn+1)+

Here x+ = max(x, 0) (coordinatewise), and e1 = (1, 0, . . . , 0) and i = (1, 1, . . . , 1).

Exercise 4. Show the monotonicity of the latter recursion.

Return to the general setting. Without further assumptions and structure, not much
can be said. Assume next that, in addition, ϕ0 is homogeneous, i.e.,

ϕ0(x + c1) = ϕ0(x) + c1,
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for all x ∈ Rd
+ and all c ∈ R. Such is the case, e.g., with the usual Lindley function

ϕ0 : R+ → R+, with ϕ0(x) = max(x+ξ0, 0). The homogeneity assumption is quite frequent
in queueing theory. It is easy to see that

|ϕ0(x)− ϕ0(y)| ≤ |x− y|,

where |x| := max(|x1|, . . . , |xd|). Suppose then that {Xn}, {Yn} are two stationary solutions
of the SRS. Then |Xn+1 − Yn+1| = |ϕn+1(Xn)− ϕn+1(Yn)| ≤ |Xn − Yn|, for all n, a.s., and
since {|Xn − Yn|, n ∈ Z} is stationary and ergodic, this a.s. monotonicity may only hold if
|Xn − Yn| = r, for some constant r ≥ 0. Thus, a necessary and sufficient condition for the
two solutions to coincide is that,

P(|ϕ1(X0)− ϕ1(Y0)| < |X0 − Y0|) > 0. (5)

A classical example where, in general, this is not the case is the G/G/s queue, that is,
the s-server queue with stationary-ergodic data. Let λ, µ be the arrival and service rates,
respectively. Here, there is a minimal and a maximal stationary solution which, provided
that λ < sµ, may not coincide. For details see Brandt et al [6].

But for tandem queue condition (5) holds ! This is Exercise 5 for you.

5 The Monotone-Homogeneous-Separable (MHS) framework

Consider a recursion of the form

Wn+1 = f(Wn, ξn+1, τn+1),

where ξn are general marks, and τn ≥ 0. The interpretation is that τn is the interarrival
time between the n− 1-th and n-th customer, and Wn is the state just after the arrival of
the n-th customer. We consider arrival epochs {Tn} such that Tn+1 − Tn = τn. We write
Wm,n for the solution of the recursion at index n when we start with a specific state, say 0,
at m ≤ n. Finally we consider a functions of the form

X[m,n] = fm+n−1(Wm,n;Tm, . . . , Tn; ξm+1, . . . , ξn),

which will be thought of as epochs of last activity in the system. For instance, when we
have an s-server queue, X[m,n] represents the departure time of the last customer when
the queue is fed only by customers with indices from m to n. Correspondingly, we define
the quantity

Z[m,n] := X[m,n] − Tn,

the time elapsed between the arrival of the last customer and the departure of the last
customer. The framework is formulated in terms of the X[m,n], Z[m,n] and their dependence
on the {Tn}. For c ∈ R, let {Tn} + c = {Tn + c}. For c > 0, let c{Tn} = {cTn}. Define
{Tn} ≤ {T ′n} if Tn ≤ T ′n for all n. We require a set of four assumptions:

(A1) Z[m,n] ≥ 0

(A2) {Tn} ≤ {T ′n} ⇒ X[m,n] ≤ X ′
[m,n].
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The first assumption is natural. In the second one, X ′
[m,n] are the variables obtained by

replacing each Tn by T ′n; it says that delaying the arrival epochs results in delaying of the
last activity epochs.

(A3) {T ′n} = {Tn}+ c ⇒ X ′
[m,n] = X[m,n] + c.

This is a time-homogeneity assumption.

(A4) For m ≤ ` < ` + 1 ≤ n, X[m,`] ≤ T`+1 ⇒ X[m,n] = X[`+1,n].

If the premise X[m,`] ≤ T`+1 of the last assumption holds, we say that we have separability
at index `. It means that the last activity due to customers with indices in [m, `] happens
prior to the arrival of the ` + 1-th customer, and so the last activity due to customers
with indices in [m,n] is not influenced by those customers with indices in [m, `]. Basic
consequences of the above assumptions are summarized in:

Lemma 1. (i) The response Z[m,n] depends on Tm, . . . , Tn only through the differences
τm, . . . , τn−1.
(ii) Let a ≤ b be integers. Let T ′n = Tn + Z[a,b]1(n > b), T ′′n = Tn − Z[a,b]1(n ≤ b).
And let X ′

[m,n], X ′′
[m,n] be the corresponding last activity epochs. Then both of them exhibit

separability at index b.
(iii) The variables X[m,n], Z[m,n] increase when m decreases.
(iv) For a ≤ b < b + 1 ≤ c, Z[a,c] ≤ Z[a,b] + Z[b+1,c].

Proof. (i) Follows from the definition Z[m,n] = X[m,n]−Tn and the homogeneity assumption
(A3).
(ii) Obviously, Z[a,b] ≤ τb + Z[a,b], and so X[a,b] − Tb ≤ τb + Z[a,b], which implies X[a,b] ≤
Tb+1 +Z[a,b]. The right-hand side is T ′b+1, by definition. The left-hand side is equal to X ′

[a,b]

because T ′n = Tn for n ≤ b. So X ′
[a,b] ≤ T ′b+1 and this is separability at index b. Similarly

for the other variable.
(iii) Let a = b = m in (ii). Since we have separability at index m, we conclude that
X ′′

[m,n] = X ′′
[m+1,n]. But T ′′k = Tk for k ∈ [m + 1, n] and so X ′′

[m+1,n] = X[m+1,n]. On the
other hand, {T ′′k } ≤ {Tk} and so, by (A2), X ′′

[m,n] ≤ X[m,n]. Thus X[m,n] ≥ X[m+1,n]. And
so Z[m,n] ≥ Z[m+1,n] also.
(iv) Apply (ii) again. Since {Tk} ≤ {T ′k}, (A2) gives X[a,c] ≤ X ′

[a,c]. By separability at index
b, as proved in (ii), we have X ′

[a,c] = X ′
[b+1,c]. Because T ′k = Tk + Z[a,b] for all k ∈ [b + 1, c],

we have, by (A3), X ′
[b+1,c] = X[b+1,c] + Z[a,b]. Thus, X[a,c] ≤ X[b+1,c] + Z[a,b]. Subtracting Tc

from both sides gives the desired.

Introduce next the usual stationary-ergodic assumptions. Namely, consider (Ω,F ,P)
and a stationary-ergodic flow θ. Let ξn = ξ0◦θ

n, τn = τ0◦θ
n, set T0 = 0, and suppose

Eτ0 = λ−1 ∈ (0,∞), EZ0,0 < ∞. Stability of the original system can, in specific but
important cases, be translated in a stability statement for Z[m,n]. Hence we shall focus on
it. Note that Z[m,n]◦θ

k = Z[m+k,n+k] for all k ∈ Z. For any c ≥ 0, introduce the epochs
c{Tn} = {cTn} and let X[m,n](c), Z[m,n](c) be the quantities of interest. The subadditive
ergodic theorem gives that

γ(c) := lim
n→∞

1
n

Z[−n,−1](c) = lim
n→∞

1
n
EZ[−n,−1](c)
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is a nonnegative, finite constant. The previous lemma implies that γ(c) ≥ γ(c′) when c > c′.
Similarly, lim n−1X[1,n](c) = γ(c) + λ−1c, and the latter quantity increases as c increases.
Monotonicity implies that Z[−n,−1](c) increases as n increases, and let Z̃(c) be the limit.
Ergodicity implies that P(Z̃(c) < ∞) ∈ {0, 1}. Put Z̃ = Z̃(1). The stability theorem1 is:

Theorem 1. If λγ(0) < 1 then P(Z̃ < ∞) = 1. If λγ(0) > 1 then P(Z̃ < ∞) = 0.

Proof. Assume first that λγ(0) > 1. Fix n ≥ 1. Define T ′k = T−n for all k ∈ Z. Hence
X ′

[−n,0](1) ≤ X[−n,0](1) = Z[−n,0](1), by (A2). On the other hand, by (A3), X ′
[−n,0](1) =

X[−n,0](0) + T−n = Z[−n,0](0) + T−n. Thus, n−1Z[−n,0](1) ≥ n−1Z[−n,0](0) + n−1T−n, and,
taking limits as n →∞, we conclude lim inf n−1Z[−n,0](1) ≥ γ(0)− λ−1 > 0, a.s.

Assume next that λγ(0) < 1. Let γn(0) := EZ[−n+1,0](0)/n. Since γ(0) = limn→∞ γn(0) =
infn γn(0), we can find an integer K such that λγK(0) < 1. Consider next an auxiliary
single server queue with service times σ∗n := Z[−Kn+1,−K(n−1)](0) and interarrival times

t∗n :=
∑−K(n−1)

i=−Kn+1 ti. Notice that {(t∗n, s∗n), n ∈ Z} is a stationary sequence which satisfies
the SLLN. Consider the waiting time Wn of this auxiliary system: Wn+1 = (Wn +s∗n− t∗n)+.
Since Es∗n = γK < λ−1 = Et∗n, the auxiliary queue is stable. Since the separability property
holds, we have the following domination:

Z[−nK+1,0](1) ≤ Wn◦θ
−n + s∗0, a.s.,

where Wn here is the waiting time of the n-th customer if the queue starts empty. By
the Loynes’ scheme, Wn◦θ

−n converges (increases) to an a.s. finite random variable. Hence
Z̃ = limn Z[−nK+1,0](1) is also a.s. finite.

Example Consider a tandem queue and find γ(0). Let b = max(b(1), b(2)). Then

γ(0) = lim
n→∞

1
n

max
0≤m≤n

(−m∑
−n

σ
(1)
j +

0∑
−m

σ
(2)
j

)

≥ lim
1
n

max

(
0∑
−n

σ
(1)
i ,

0∑
−n

σ
(2)
i

)
= b.

¿From the other side, assume that, say, b = b(1) > b(2). Then

γ(0) = lim
1
n

(
0∑
−n

σ
(1)
i + max

0≤m≤n

0∑
−m

(σ(2)
i − σ

(1)
i )

)

≤ lim
1
n

0∑
−n

σ
(1)
i +

1
n

sup
m≥0

0∑
−m

(σ(2)
i − σ

(1)
i )

where the supremum in the RHS is finite a.s. and does not depend on n. Therefore, the
second term tends to 0 a.s. Thus, γ(0) = b. The same conclusion holds if b(1) < b(2) (by the
symmetry) and if b(1) = b(2) (Why ?? – this is Exercise 6 for you !)

Exercise 7. Using Theorem 1, find stability conditions for G/G/s queue.
1This is known as the “saturation rule”
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6 Saturation rule for large deviations

The proposed construction of an upper single-server queue may be of use not only for
staibility study, but also for study of large deviations.

We consider here only an example of a tandem queue. In this section, we assume that
three driving sequences {σ(1)

n }, {σ(2)
n }, and {tn} are mutually independent and each of them

consists of i.i.d.r.v.’s. We assume also that the stability condition a > b holds. We are
interested in the asymptotics for P(Z > x) as x →∞. For the simplicity,
– we consider only the case when both distributions of random variables σ(1) and σ(2) are
light-tailed, and
– we study only the logarithmic asymptotics: log P(Z > x) ∼ . . ..

For i = 1, 2, let ϕ(i)(u) = E exp(uσ
(i)
1 ) and ϕτ (u) = E exp(ut1). Let

γ(i) = sup{u : ϕ(i)(u)ϕτ (−u) ≤ 1}.

Theorem 2. If both γ(1) and γ(2) are positive, then

− log P(Z > x) ∼ γx

where γ = min(γ(1), γ(2)).

Sketch of Proof. Since Z ≥ Z(1),

lim sup
x→∞

− log P(Z > x)
x

≤ γ(1).

Similarly, consider an auxiliary system where service times in the first queue are replaced
by zeros. Then we get a single server queue with service times {σ(2)

n } and interarrival times
{tn}. If we denote by Z(2) a stationary service time in this system, then Z(2) ≤ Z and,
therefore,

lim sup
x→∞

− log P(Z > x)
x

≤ γ(2).

Thus,

lim sup
− log P(Z > x)

x
≤ γ.

TO get the lower bound, we take a sufficiently large K (see the proof of Theorem 1) and
an auxiliary upper single server queue. If we let

γ∗ = sup{u : ϕσ∗(u)ϕt∗(−u) ≤ 1},

then one can show that
(a)lim inf − log P(Z>x)

x ≥ γ∗,
(b) one can choose γ∗ as close to γ as possible.

Exercise 8. Complete the proof of Theorem 2.

Remark. The exact asymptotics for P(Z > x) in the heavy tail case have been found
in [3].
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