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Motivation: The Central Limit Theorem

Recall

N(0,0%) has maximum entropy among all distributions with variance < o
where the entropy of a RV Z with density f is

WZ):=h(f) =~ [flogf
The Central Limit Theorem

For IID RVs X, ..., X, with zero mean, variance ¢, and a ‘nice’ density,

mWW&:%Z&%MM%MMwM@MH o2))
i=1
~> Accumulation of many, small, independent random effects
is maximally random (cf. second law of thermodynamics)
~> Monotonicity in n indicates that the entropy is a natural measure
for the convergence of the CLT
~> This powerful intuition comes with powerful new techniques
[Linnik (1959), Brown (1982), Barron (1985), Ball-Barthe-Naor (2003),...]




Poisson Approximation: Generalities

Binomial convergence to the Poisson
If X1, Xo,..., X, are lID Bern(A/n) [Bernoulli with parameter /x]
n
then, for large n, the distr'n of S, := > X, is &~ Po(\) [Poisson with param )]
i=1

General Poisson approximation

If the X are (possibly dependent) Bern(p;) random variables,
then the distribution of their sum S, is &= Po(\) as long as:

(a) Each E(X;) = p; is small
(b) The overall mean E(S,) =>_" p;i ~ A
(c) The X; are weakly dependent

~» Information-theoretic interpretation of this phenomenon?




The Poisson Distribution and Entropy

Recall: the entropy of a discrete random variable X with distribution P is

H(X) = H(P) = = X P(x)log P(a)

Theorem 0: Maximum Entropy

The Po(\) distribution has maximum entropy
among all distributions that can be obtained as sums of Bernoulli RVs:

k k
H(Po()\)) zsup{H(Sk) 5= 30X, X~ indep Bern(p.), 3 pi =\ kzl}

Proof. Messy but straightforward convexity arguments a /a
[Mateev 1978] [Shepp & Olkin 1978] [Harremoés 2001] [Topsge 2002] O




Measuring Distance Between Probability Distributions

Recall

The total variation distance between two distributions P and ()
on the same discrete set S is

IP = Qllrv =5 3 |P(z) — Q)]

reS

The entropy of a discrete random variable X with distribution P is

H(X) = H(P) = = X P(x)log P(a)

The relative entropy (or Kullback-Leibler divergence) is

D(P||Q) = Y P(x)log o™

reS

Pinsker’s ineq: P —Ql7v < D(P|Q)




A Simple Poisson Approximation Bound

Theorem 1: Poisson Approximation [KHJ 05]

Suppose the X; are (possibly dependent) Bern(p;) random variables
such that the mean of S, =>_" | X is E(S,) =>_" pi = A. Then:

The distribution Pg of .S, satisfies
D(PSHHPO()\)) <> p? + D(Px,,.x,|Px, X --- x Px,)

Note
x, || Px, X -+ x Px, ) > 0 with “=" iff the X are independent

.....

~~ More generally, the bound is “small” iff (a)—(c) are satisfied!

~~ Alternatively,

n

XﬂHle Xoeee ><PXn):ZH<X¢)—H<X1,...,Xn>
=1

.....




Elementary Properties of D(P||Q)

Properties

i. Data processing inequality:  D(FPyx)||Pyv)) < D(Px||FPy)

Proof. By Jensen's inequality:

Pyx)(2)
D(Pyx)[|Pyry) = 32 Pyixy(2)log o
s lFan) = 2 Fo (@) los T
Zx.g(m)—z PX(x)
- Y| X Pxla)|loe
z txg(r)=z Zx g(z)=2 Py<$>

< ZZ: .(Z;_ Px(z)log B,
= D(Px||Fy)
ii. D(Bern(p)|Po(p)) < p’

Proof. Elementary calculus




Proof of Theorem 1

Letting Z1, Zs, ..., Z, be independent Po(p;) and T,, = >\ | Z;:

D(Pgn Po(A))
= D(Fs,||Pr,)
< D(PX1 77777 XnHPZl ..... Zn> (data processing, i.)
= 2 D(Px|[Pz) + D(Px,..x,|[Px, %X Px,)
1=1

(“chain rule”: log(ab) = log a + log b)
n
< Zp? + D(PX1 XnHPXl X« X Px ) (calculus, ii.)

.....




Example: Independent Bernoullis

If X1, Xs,..., X, are indep Bern(p;), Theorem 1 gives

D(Ps,||Po(A) < zp

Convergence: In view of Barbour-Hall (1984) this is
necessary and sufficient for convergence

1/2
Rate: Pinsker’s ineq gives || Ps, — Po(A)||7y < \/5[2?21]?@2}

but Le Cam (1960) gives the optimal TV rate as O(Z?ﬂ p?)

Question: Can we get the optimal TV rate with IT methods??

10



Two Examples

The classical Binomial /Poisson example
If X1, Xo,..., X, are IID Bern(A/n), Theorem 1 gives

D(Ps,|[Po())) < éu/nﬁ — A%/n

Sufficient for convergence, but the actual rate is O(1/n?)

A Markov chain example

Suppose X1, Xo, ..., X, is a stationary Markov chain with transition matrix
and each X, having (the stationary) Bern(%) distribution
31 1
Theorem 1 =  D(Ps ||Po(1)) < 22" 4
n
_ log n1/2 _ _
Pinsker = | Ps, — Po(1)||ry < 4{ } but optimal rate is O(1/n)
n

11



Elementary Properties of Total Variation

TV Properties

i. TV and relative entropy are both “f-divergences”

D/(PIQ) = £ ) /(g)

ii. Data processing ineq holds for both, same proof as before
iii. Chain rule for TV:

|Px P'—=QxQlry < [|P = Qllrv + |1P' = Qv
Proof. Triangle inequality
iv. [[Bern(p) — Po(p)llrv < p°

Proof. Simple calculus

v. [V is an actual norm

12



A Simple Poisson Approximation Bound in TV

Theorem 2: Poisson Approximation in TV [K-Madiman 06]

Suppose the X; are independent Bern(p;) random variables
such that the mean of S, =>" | X, is E(S,) =>_" 1 pi= A\

Then the distribution Ps of S, satisfies
| Ps, — Po(M)[lrv < X2 pf
i=1

Proof. Letting Z1, Zs, ..., Z, be independent Po(p;) and T, =>_"", Z;:
| Ps, = Po(A)||zv
|Ps, — Pr,|lrv

.....

n
Z ”PX@' - PZZ'HTV (chain rule)
1=1

IA
=
2

|
W

,,,,, Zn HTV (data processing)

IA

INA

n
> p? (calculus)
1=1

13



Example Revisited: Independent Bernoullis

Recall: If Xi,...,X,, are indep Bern(p;) with A =>""" | p; then Thm 2 says
1Ps, — Po(N)lrv < 3o p;
i=1

& from Barbour-Hall (1984): C; > " p? < ||Ps, — Po(\)||ry < Cy >0, p?

7 [

so we have the right convergence rate!

For finite n: Stein's method actually yields

. Iy &
s, = Po(N)llrv < min {1, } 37
1=1

which is much better for large A

E.g. ifallp = % then A = y/n and our bound =1
whereas Stein’s method yields the bound 1/1/n

14



Corollary: Generalization to Dependent RVs

Corollary: General Poisson Approximation in TV [K-Madiman 06]
Suppose the X; are (possibly dependent) Z . -valued random variables
with p; = Pr{X; =1}, and let A =>_"" | p;. Then the distribution Pg,
of S, = > " X, satisfies

|1 Ps, = Po(N)llrv < 22pi + 32 Elpi — qif + 32 Pr{X; > 2}
i=1 i=1 i=1

where q; = PI‘{XZ — 1|X1, ce 7Xz'—1}

15



Proof of Corollary

To show: [|[Ps, — Po(\)|lry < S pi+ S Elps — ¢ + > Pr{X; > 2}
= i=1 i=1

1=1

As before (data processing+chain rule):

| Ps, — Po(M||lrv < || Pxy..x, — Pz..z.|lTv

Letting I; = [ x,—1y, by the triangle ineq:
1P, = Po(A)|lrv < > ||Pz, — Prllzv
i=1

.
+ 32 B{IPL = Py, v
=1~

P
+Z1E | Prix,..x — Pxjx;... Xz-_lHTV} N
—

16



Compound Poisson Approximation

Can IT methods actually yield optimal bounds?
We turn to a more general problem:

Compound Binomial convergence to the compound Poisson

If X1, Xs,..., X, arelID ~ Q@ and I, 5, ..., I, are lID Bern(\/n)

then, for large n, the distr'n of
Bin(n,A/n) Po(\)

1=1

i—1
which is the compound Poisson dlstr CP(\, Q)

General Compound Poisson approximation
For a general sum S, = >_"" | Y; of (possibly dependent) R%valued RVs Y;
we may hope that the distribution of .S, is =& CP()\, @) as long as:
(a) Each p; := Pr{Y; # 0} is small
(b) The Y; are weakly dependent
(c) The distr @) is chosen appropriately

17



A General Compound Poisson Approximation Result

Notes
~> Interpretation: Events occurring at random and in clusters
~» The class of dist's CP(\, @) is much richer that the Poisson
~> Depending on the choice of (), MUCH wider class of tails, etc
~» CP approximation a harder problem, especially in R?
~» Same method yields a general bound in relative entropy
~> In search of optimality, look directly at TV bounds

Theorem 3: Compound Poisson Approximation [K-Madiman 06]
Suppose the Y; are independent R%valued RVs
Write p; = Pr{Y; # 0} and Q; for the distr of Y;|{Y; # 0}
Then the distribution Pg, of S, = > | Y; satisfies

s, = CPX, Q)llrv < 3]
where \ = ZZ 1 Pi and Q Zz 1 )\

18



Proof of Theorem 3

Let Z1, 75, ..., Z, be indep CP(p;, Q;), so that T, = > | Z; ~ CP()\, Q)

19



Proof of Theorem 3

Let Z1, 75, ..., Z, be indep CP(p;, Q;), so that T, = > | Z; ~ CP()\, Q)
By the CP defn, each Z; can be expressed as Z; = Zﬁl Xi
where W; ~ Po(p;) and X, ; ~ (); are all indep.

20



Proof of Theorem 3

Let Z1, 75, ..., Z, be indep CP(p;, Q;), so that T, = > | Z; ~ CP()\, Q)
By the CP defn, each Z; can be expressed as Z; = Zﬁl Xi
where W; ~ Po(p;) and X, ; ~ (); are all indep. Hence:

n n W
T SR 9 92
1=1

i=1 j=1

21



Proof of Theorem 3

Let Zy,Z5,...,Z, be indep CP(p;, Q;), so that T}, = ZZ \ Zi ~ CP(\, Q)
By the CP defn each Z; can be expressed as Z; = Z .
where W; ~ Po(p;) and X, ; ~ (); are all indep. Hence:

n n W,
L= Zi=) > X
1=1

i=1 j=1

Similarly let Iy, I5, ..., I, be mdep Bern(pz) and write Y; = [, X, ;. Hence:

S, _ZY ZZX”

1=1 j=1

22



Proof of Theorem 3

Let 71, Z5,...,Z, be indep CP(p;, Q;), so that T}, = ZZ . Z; ~ CP(\, Q)
By the CP defn each Z; can be expressed as Z; = Z .
where W; ~ Po(p;) and X;; ~ @Q; are all indep. Hence:

n n W;
L= 2=2.2 %,
1=1

i=1 j=1
Similarly let Iy, I5, ..., I, be mdep Bern(pz) and write Y; = [, X, ;. Hence:

S —ZY ZZX”

1=1 j7=1
HPSn — Pr|lzv
HP{]} (Xi;} — P{W} {Xi,j}HTV (data processing)

Z HPI — PW ||TV (chain rule)

Then: ||P5n — CP<>\7Q>HTV

IA

IA

"
Z (calculus) O

23



Comments

~+ In general, the bound of Theorem 3 ||Ps, — CP(\, Q)|l7v < o o

?

cannot be improved
~> Here, the IT method gives the optimal rate and optimal constants

~> Can we refine our IT methods to recover the optimal 1/\ factor
in the simple Poisson case?

~» Recall the earlier example: If Xi,..., X, are i.i.d. Bern(ﬁ)
with A = y/n, Stein’s method gives

1
Ps — Po(A < —
|Ps, —PoVllrv < —

whereas we got
|Ps, —Po(A)[[rv <1

~> To obtain tighter bounds, take a hint from corresponding work for the
CLT [Barron, Johnson, Ball-Barthe-Naor, ...] and turn to Fisher information

24



A Discrete Version of Fisher Information

By analogy to the continuous case, the Fisher information
of a Z-valued random variable X ~ P is usually defined as

60 = H[ ("R a2l )

Problem: J(X) = +o00 whenever X has finite support

Recall: (k+1)P(k+1) =AP(k) iff P = Po(\)
Define: the Fisher information of X ~ P via
B (X +1DP(X +1) 2
J(X) = AE[( P (X) - 1) }

and note that J(X) > 0 with equality iff X ~ Poisson

25



A New Bound in Terms of Relative Entropy

Theorem 4: Poisson Approximation via Fisher Information [KHJ 05]

If the X; are independent Bern(p;) with E(S,) = > p; = A, then

D(Ps,|[Po(V) < > Ui

Note. This bound is of order =~ _ p? compared to the earlier > p?

26



A New Bound in Terms of Relative Entropy

Theorem 4: Poisson Approximation via Fisher Information [KHJ 05]

If the X; are independent Bern(p;) with E(S,) = > p; = A, then

D(Ps,|[Po(V) < > Ui

Note. This bound is of order =~ _ p? compared to the earlier > p?
Proof.

Three steps:

(@)

D(Pgn Po(A)) < J(S)

(a) follows from an application of a recent log-Sobolev inequality
due to Bobkov and Ledoux (more later)

27



A New Bound in Terms of Relative Entorpy

Theorem 4: Poisson Approximation via Fisher Information [KHJ 05]

If the X; are independent Bern(p;) with E(S,) = > p; = A, then

P
(1 o pz)
Note. This bound is of order =~ _ p? compared to the earlier > p?

Proof.
Three steps:

D(Pgn Po(A)) < ZA

(@)

D(Pgn Po()\)) < J(S,) < Zn)%( i)

(a) follows from an application of a recent log-Sobolev inequality
due to Bobkov and Ledoux (more later)

28



A New Bound in Terms of Relative Entropy

Theorem 4: Poisson Approximation via Fisher Information [KHJ 05]

If the X; are independent Bern(p;) with E(S,) = > p; = A, then

D(Pgn Po(A)) < ZA P

(1 — pz)
Note. This bound is of order =~ pr compared to the earlier Zp?
Proof.

Three steps:

(@)

D(Pgn Po(A)) 2 sy 2 i%( )<

(a) follows from an application of a recent log-Sobolev inequality
due to Bobkov and Ledoux (more later)

(c) is a simple evaluation of J(Bern(p))

29



Subadditivity of Fisher Information

Proof cont'd.
b

~
N—
~/
~—

a n p n p
D(P P )\) < JS) < P < j
slfPo) < s < xR <SP
(b) is based on the more general subadditivity property
~ E(X))
J(S,) < J(X;
S FEy T @
Recall
B (X +DP(X +1) A2
J(X) _AEK AP(X) _1> }
(%) is proved by writing [(ZH])D]:;%)ZH) — 1} as a conditional expectation

and using ideas about L? projections of convolutions

Ineq (x) is the natural discrete analog of Stam’s Fisher information ineq
(in the continuous case), used to prove the entropy power inequality

30



Example Revisited: Independent Bernoullis

Recall the earlier example

Suppose Xi,..., X, arei.i.d. Bern(==) and let A = \/n

n

B

QOur earlier bound was
| Ps, — Po(\) v < 1

Stein's method gives

1
Ps. — Po(A < —
|Ps, —PoVllrv < —

Theorem 4 combined with Pinsker's ineq gives

|Ps, — Po(A)||zv < \/§[D(Pgn||Po(>\))] 7 %\é

Moreover, Theorem 4 gives a strong new bound in terms of relative entropy!

31
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Motivation: The Concentration Phenomenon

An Example [Bobkov & Ledoux (1998)]
If W ~ Po()\) and f(i) is 1-Lipschitz, i.e., |f(i+ 1) — f(i)] < 1

Pr{ f(W) = E[f(W)] >t} <exp{ - ilog (1+ %)}
forallt > 0

Note

~> Sharp bound, valid for all t and all such f

~> One example from a very large class of such results

~> Many different methods of proof
dominant one probably the “entropy method"”

33



Proof by the Entropy Method: First Step

Define

The relative entropy of a function g > 0 w.r.t. a prob distr P
Entp(g) = 3 P(i)g(i) log g(i) — | - P(i)g(i)| log | & P(i)g(3)]
e.g., if g(i) = Q(i)/P(7), then Entp(g) = D(Q||P) = relative entropy

A Logarithmic Sobolev Inequality
2
Our earlier log-Sobolev ineq D(P||Po())) < )\E[((XH)P(XH) — 1) }

NP (X)
is equivalent to: If W ~ Po(\), then for any function g > 0:
[Dg(W)|”
Entp, s (g) < AE[ }
nip (/\)(g) = g(W)

where Dg(i) = g(i + 1) — g(7)

Proof: Information-theoretic tools

Use the tensorization property of relative entropy — more later...

34



Proof Second Step: The Herbst Argument

Given f, substitute g(i) = /() in the log-Sobolev ineq

IDg(W)IQ}

Entpo(y(9) < AE{ g(W)

This yields a bound on the log-moment generating fn of f(WW)

L) = E[eeﬂm}, W ~ Po(\)

and combining with Chernoff’s bound,

IA

Pr{f(W) — E[f(W)] > t} L(6) exp { —0(t + E[f<W)])}

oo{ ~ha(1+ )}

IA

35



Remarks

Note
~> General, powerful inequality, proved by info-theoretic techniques

~ Proof heavily dependent on existence of log-moment generating fn

~» Domain of application restricted to a small family (Poisson distr)

Generalize to Compound Poisson Distrs on Z

~» The asymptotic tails of Z ~ CP(\, Q) are determined by those of @
e.g., if Q(i) ~ e then CP, (i) ~e
if Q(i) ~ 1/i” then CP, (i) ~ 1/i", etc

Versatility of tail behavior is attractive for modelling
Concentration? If () has sub-exponential tails the Herbst argument fails

~> The CP(A, Q) distribution can be built up from “small Poissons”
Po(\) -

@) 2 % X Z éj-PO(AQ(j))

36



A Compound Poisson Log-Sobolev Inequality

Theorem 5: Log-Sobolev Inequality for CP Distrs [Wu 00, K-Madiman 05]
Let X ~ P be an arbitrary RV with values in Z
For any A > 0, any distr () on the natural nos, any g > 0

Entcrpno)(9) < A X QU)E [‘D;?;Z))‘ }

where Z ~ CP(\, Q) and D’g(i) = g(i + j) — g(1)

Proof Idea
Use the tensorization property of the relative entropy

n

EntPo(Al)xPo()\g)x---xPo()\n)<g> < ZlE[EntPo(Aj)(g(Wf_la K ]n+1>)i|

j:
to get a vector version of the Poisson LSI
Apply it to g(wi, wa, ..., w,) =, j-wj and let n — oo, using

CP(\.Q) = m 3 j - Po(AQ(s)

37



New Measure Concentration Bounds

Theorem 6: Measure Concentration for CP Distributions [K-Madiman 05]
(i) Suppose Z ~ CP(\, Q) and @ has finite K'th moment

> Q) < oo

If fis 1-Lipschitz, i.e., |f(: +1) — f(i)] <1 for all ¢
then for ¢ > 0

Pr{\ﬂZ) — E[f(2)]] > t} < A(?)K

where the constants A, B are explicit and depend only
on A, K,|f(0)|, and on the integer moments of ()

(ii) An analogous bound holds for any RV Z whose distr satisfies
the log-Sobolev ineq of Thm 5

38



The Constants in Theorem 2

Let

Then

where

q(r) =>_7" Q)

Pr{|£(2) - Bf(2)]| > t} < A(?)K

A = eXp{ f: (f)(ﬂﬂ}

r=1

B = 2|f(0)] +2\q(1) + 1

39



Proof Qutline

Modification of Herbst argument: Given f, let Gy(i) = |f(i) — E[f(Z2)]|’
and define the “polynomial” moment-generating fn

M(0) = E|Gy(Z)]

Substitute g = Gy in the log-Sobolev ineq

Entcpirng)(9) A QU)E

J=1

[!D;?(ZZ))\ }

to get the differential inequality
OM'(8) — M(8) log M(8) < \M(0) 5" Q(5) [terms involving 8log(C + Dj)}

J
Solving, yields a bound on M (#), and combining with Markov's ineq,

Pr{mZ)—E[f(Z)H >t} < MO A(B>K

= t

40



Final Remarks

Information-theoretic approach to (Compound-)Poisson approximation

Two approaches

~> A simple, very general one
~» A tight one for the independent Poisson case

Non-asymptotic, strong new bounds, intuitively satisfying

ldeas
A new version of Fisher information

L?-theory and log-Sobolev inequalities for discrete random variables

Concentration
A simple, general CP-approximation bound
A log-Sobolev ineq for the CP dist

New non-exponential measure concentration bounds

41



Information-Theoretic Interpretation

(P,

N(O,JQ)) L0 = h(S)) T h(N(0,02) as n — oo
(i) The accumulation of many, small, independent random effects
is maximally random

(ii) The monotonicity in n indicates that the entropy
Is a natural measure for the convergence of the CLT

More generally the CLT holds as long as
(a) Each E(X;) is small

(b) The overall variance Var(S,) ~ o>

(c) The X; are weakly dependent

~> Next look at the other central result on the distribution of the sum
of many small random effects: Poisson approximation

42



Two Examples

The defining compound Poisson example

If X1, Xs,...,X,arelID ~Q onNand I, I5,...,1, are lID Bern(A/n)
then for S, = > " | [,X; Theorem 3 gives

n

D(Ps,ICP(A, Q) < X(A/n)* = N/n

1=1

Again, sufficient for convergence, but the optimal rate is O(1/n?)

A Markov chain example

Let S, = > ", I,X; where X;,..., X, are lID ~Q on Nand Iy,...,1,
is a stationary Markov chain with transition matrix

n 1

s 31 |
o Theorem 3 easily gives  D(Ps, ||CP(1,Q)) < -8

n—1 2
n+1 n+1

43



Another Example

Theorem 2 easily generalizes to non-binary X, as long as J(X;) can be
evaluated or estimated. E.g.:

Sum of Small Geometrics

Suppose X1, X, ..., X, are indep Geom(q;)
let A = E(S,) = > [(1 — ¢)/qi

Then J(X;) = (1 — ¢;)*/q; and proceeding as in the proof of Theorem 2

D(Ps Pot) < 3=

In the case when all ¢; =n/(n+ A) &~ 1 — A/n this takes the elegant form
)\2

D(Ps, [Po()) <

44



Tighter Bounds Compound Poisson Approximation?

Recall the proof of Theorem 2 in the Poisson case:

~~
~—

a

Po() <= Js) < XXy < 2P

D (Pgn

~> In order to generalize this approach we first need a new version
of the Fisher information, and a corresponding log-Sobolev ineq
for the compound Poisson measure . . .

45



Properties of the Compound Poisson Distribution

~ The CP(\, Q) laws are the only infinitely divisible distr's on Z.

~> The asymptotic tails of Z ~ CP(\, Q)) are determined by those of ()
e.g., if Q(i) ~ e then CP, (i) ~e
if Q(i) ~1/i” then CP, (i) ~ 1/, etc

Versatility of tail behavior is attractive for modelling

Concentration? If () has sub-exponential tails the Herbst argument fails
~» The CP(), Q) distribution can be built up from “small Poissons”

D Po(\)
CP()‘v Q) — Z X;
1=1

D

> 5 - Po(AQ())

46



A New Log-Sabolev Inequality

Let C)\ (k) denote the compound Poisson probabilities Pr{CP(\, Q) = k}

Theorem 4: Log-Sobolev Inequality for the Compound Poisson Measure

Let X ~ P be an arbitrary Z -valued RV

(a) [Bobkov-Ledoux (1998)] For any A > 0:

D(PHPo(A)) < AE[((X;DP(]ii;)D —1>2}

(b) For any A > 0 and any measure ) on N:

Ora(X) P(X+j)_1>2]
Oro(X +J) P(X)

p(P|cPn@) < 3 Qu)E((

47



Proof of Theorem 4 (a)

Step 1. Derive a simple log-Sobolev ineq for the Bernoulli measure B, (k)
For any binary RV X ~ P:

D(P Bern(p)) < p(1 —p)E[( BylX) PIX+1) 1)2]

B,(X+1) P(X)

Step 2. Recall the “tensorization” property of relative entropy
Whenever X = (X4,...,X,,) ~ P,:

H Vi) S Z EPn |:D<Pn(|X17 SR 7Xi—17Xi+17 SR 7X7”L)
=1 1=1

)]
Use this to extend step 1 to products of Bernoullis:

Zf[lBern(p)) < p(l—-pkE [ i (B]’}Bg((i)ei) Pngt((;)ei) — 1)2]

D (Pn

D (Pn

Step 3. Since Po(\) L lim, > Bern(\/n), applying step 2 to a P,
that only depends on X; +--- + X, and taking n — oo:

Po())) < AE[((X;”P(;i;)D _1)2}

(P
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Proof of Theorem 4 (b)

In (a), the key was the representation of Po(\) in terms of indep Bernoullis
Po(\) 2 lim Z Bern(A/n)
=1

Here use an alternative representation of CP(\, @) in terms of indep Poissons

Po() 00 n
CP(\,Q) 2 > X z > J-Po(rQ()) = lim 3~ - PoAQ()) (%)

Step 1. Start with the Poisson log-Sobolev ineq of (a)

Step 2. Tensorize to obtain an ineq for products of Poissons
Whenever X = (X1,...,X,) ~ Py

[Trotn) < [-+]

Step 3. Apply step 2 to a P, that only depends on Z?:J - X
and take n — oo using () O

D (Pn
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Measure Concentration Bounds

Instead of continuing with CP-approximation, take a detour
~» Suppose, for simplicity, that ) has finite support {1,2,...,m}
~> Write as before C g(k) = Pr{CP(\, Q) = k}

Theorem 5: Measure Concentration for CP-like Measures

(i) Let Z ~ CP(\, Q) and f be a Lipschitz-1 function on Z
[1f(k +1) — f(k)| <1 forall k]. For ¢ > 0:

t

Prf(2) 2 BUA(Z) +1} < exp{ — 5 -logl1 + 1)}

(ii) An analogous bound holds for any Z ~ p that satisfies
the log-Sobolev ineq of Thm 4
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Remarks

Proof. Follows Herbst's Gaussian argument: Apply the log-Sobolev ineq
to f = e’ for a Lipschitz g. Expand to get a differential inequality
for the M.G.F. L() = E[e?9?)]. Use the bound and apply Chebychev

The finite-support assumption. Can be relaxed at the price of technicalities.
More general bounds, much more general class of tails

Poisson tails. From Theorem 5 we see that Lipschitz-1 functions
of CP-like RVs have Poisson tails. In particular:

Corollary: Poisson Tails for Lipschitz Functions

Let Z ~ CP()\, Q) or any other distr satisfying the assumptions of Thm 5
For any Lipschitz-1 function f on Z. we have:

E /AN (D] <« g for all & > 0 small enough
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