Information-Theoretic Ideas in Poisson Approximation and Concentration

loannis Kontoyiannis Athens Univ Econ \& Business

joint work with
P. Harremoës, O. Johnson, M. Madiman

LMS/EPSRC Short Course
Stability, Coupling Methods and Rare Events Heriot-Watt University, Edinburgh, September 2006

Outline

1. Poisson Approximation in Relative Entropy

Motivation: Entropy and the central limit theorem
Motivation: Poisson as a maximum entropy distribution
A very simple general bound; Examples
2. Analogous Bounds in Total Variation

Suboptimal Poisson approximation
Optimal Compound Poisson approximation
3. Tighter Poisson Bounds for Independent Summands

A (new) discrete Fisher information; subadditivity
A log-Sobolev inequality
4. Measure Concentration and Compound Poisson Tails

The compound Poisson distributions
A log-Sobolev inequality and its info-theoretic proof Compound Poisson concentration

Motivation: The Central Limit Theorem

Recall
$N\left(0, \sigma^{2}\right)$ has maximum entropy among all distributions with variance $\leq \sigma^{2}$ where the entropy of a RV Z with density f is

$$
h(Z):=h(f):=-\int f \log f
$$

The Central Limit Theorem

For IID RVs X_{1}, \ldots, X_{n} with zero mean, variance σ^{2}, and a 'nice' density, not only $\hat{S}_{n}:=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i} \xrightarrow{\mathcal{D}} N\left(0, \sigma^{2}\right)$ but in fact $h\left(\hat{S}_{n}\right) \uparrow h\left(N\left(0, \sigma^{2}\right)\right)$
\leadsto Accumulation of many, small, independent random effects is maximally random (cf. second law of thermodynamics)
\leadsto Monotonicity in n indicates that the entropy is a natural measure for the convergence of the CLT
\leadsto This powerful intuition comes with powerful new techniques
[Linnik (1959), Brown (1982), Barron (1985), Ball-Barthe-Naor (2003),...]

Poisson Approximation: Generalities

Binomial convergence to the Poisson
If $X_{1}, X_{2}, \ldots, X_{n}$ are IID $\operatorname{Bern}(\lambda / n) \quad$ [Bernoulli with parameter λ / n]
then, for large n, the distr'n of $S_{n}:=\sum_{i=1}^{n} X_{i}$ is $\approx \operatorname{Po}(\lambda)$ [Poisson with param λ]
General Poisson approximation
If the X_{i} are (possibly dependent) $\operatorname{Bern}\left(p_{i}\right)$ random variables, then the distribution of their sum S_{n} is $\approx \operatorname{Po}(\lambda)$ as long as:
(a) Each $E\left(X_{i}\right)=p_{i}$ is small
(b) The overall mean $E\left(S_{n}\right)=\sum_{i=1}^{n} p_{i} \approx \lambda$
(c) The X_{i} are weakly dependent
\leadsto Information-theoretic interpretation of this phenomenon?

The Poisson Distribution and Entropy

Recall: the entropy of a discrete random variable X with distribution P is

$$
H(X)=H(P)=-\sum_{x} P(x) \log P(x)
$$

Theorem 0: Maximum Entropy
The $\operatorname{Po}(\lambda)$ distribution has maximum entropy among all distributions that can be obtained as sums of Bernoulli RVs:
$H(\operatorname{Po}(\lambda))=\sup \left\{H\left(S_{k}\right): S_{k}=\sum_{i=1}^{k} X_{i}, X_{i} \sim \operatorname{indep} \operatorname{Bern}\left(p_{i}\right), \sum_{i=1}^{k} p_{i}=\lambda, k \geq 1\right\}$

Proof. Messy but straightforward convexity arguments a la
[Mateev 1978] [Shepp \& Olkin 1978] [Harremoës 2001] [Topsøe 2002]

Measuring Distance Between Probability Distributions

Recall

The total variation distance between two distributions P and Q on the same discrete set S is

$$
\|P-Q\|_{T V}=\frac{1}{2} \sum_{x \in S}|P(x)-Q(x)|
$$

The entropy of a discrete random variable X with distribution P is

$$
H(X)=H(P)=-\sum_{x} P(x) \log P(x)
$$

The relative entropy (or Kullback-Leibler divergence) is

$$
D(P \| Q)=\sum_{x \in S} P(x) \log \frac{P(x)}{Q(x)}
$$

Pinsker's ineq:

$$
\frac{1}{2}\|P-Q\|_{T V}^{2} \leq D(P \| Q)
$$

A Simple Poisson Approximation Bound

Theorem 1: Poisson Approximation [KHJ 05]
Suppose the X_{i} are (possibly dependent) Bern $\left(p_{i}\right)$ random variables such that the mean of $S_{n}=\sum_{i=1}^{n} X_{i}$ is $E\left(S_{n}\right)=\sum_{i=1}^{n} p_{i}=\lambda$. Then:

The distribution $P_{S_{n}}$ of S_{n} satisfies

$$
D\left(P_{S_{n}} \| \operatorname{Po}(\lambda)\right) \leq \sum_{i=1}^{n} p_{i}^{2}+D\left(P_{X_{1}, \ldots, X_{n}} \| P_{X_{1}} \times \cdots \times P_{X_{n}}\right)
$$

Note

$\leadsto D\left(P_{X_{1}, \ldots, X_{n}} \| P_{X_{1}} \times \cdots \times P_{X_{n}}\right) \geq 0$ with " $=$ " iff the X_{i} are independent
\leadsto More generally, the bound is "small" iff (a)-(c) are satisfied!
\sim Alternatively,

$$
D\left(P_{X_{1}, \ldots, X_{n}} \| P_{X_{1}} \times \cdots \times P_{X_{n}}\right)=\sum_{i=1}^{n} H\left(X_{i}\right)-H\left(X_{1}, \ldots, X_{n}\right)
$$

Elementary Properties of $D(P \| Q)$

Properties

i. Data processing inequality: $D\left(P_{g(X)} \| P_{g(Y)}\right) \leq D\left(P_{X} \| P_{Y}\right)$

Proof. By Jensen's inequality:

$$
\begin{aligned}
D\left(P_{g(X)} \| P_{g(Y)}\right) & =\sum_{z} P_{g(X)}(z) \log \frac{P_{g(X)}(z)}{P_{g(Y)}(z)} \\
& =\sum_{z}\left[\sum_{x: g(x)=z} P_{X}(x)\right] \log \frac{\left[\sum_{x: g(x)=z} P_{X}(x)\right]}{\left[\sum_{x: g(x)=z} P_{Y}(x)\right]} \\
& \leq \sum_{z} \sum_{x: g(x)=z} P_{X}(x) \log \frac{P_{X}(x)}{P_{Y}(x)} \\
& =D\left(P_{X} \| P_{Y}\right)
\end{aligned}
$$

ii. $\quad D(\operatorname{Bern}(p) \| \operatorname{Po}(p)) \leq p^{2}$

Proof. Elementary calculus

Proof of Theorem 1

Letting $Z_{1}, Z_{2}, \ldots, Z_{n}$ be independent $\operatorname{Po}\left(p_{i}\right)$ and $T_{n}=\sum_{i=1}^{n} Z_{i}$:

$$
\begin{aligned}
& D\left(P_{S_{n}} \| \operatorname{Po}(\lambda)\right) \\
& \\
& \quad=D\left(P_{S_{n}} \| P_{T_{n}}\right) \\
& \\
& \quad \leq D\left(P_{X_{1}, \ldots, X_{n}} \| P_{Z_{1}, \ldots, Z_{n}}\right) \quad \quad \text { (data processing, i.) } \\
& \\
& =\sum_{i=1}^{n} D\left(P_{X_{i}} \| P_{Z_{i}}\right)+D\left(P_{X_{1}, \ldots, X_{n}} \| P_{X_{1}} \times \cdots \times P_{X_{n}}\right) \\
& \\
& \\
& \quad \leq \sum_{i=1}^{n} p_{i}^{2}+D\left(P_{X_{1}, \ldots, X_{n}} \| P_{X_{1}} \times \cdots \times P_{X_{n}}\right) \quad \text { (calculus, ii.) }
\end{aligned}
$$

Example: Independent Bernoullis

If $X_{1}, X_{2}, \ldots, X_{n}$ are indep $\operatorname{Bern}\left(p_{i}\right)$, Theorem 1 gives

$$
D\left(P_{S_{n}} \| \operatorname{Po}(\lambda)\right) \leq \sum_{i=1}^{n} p_{i}^{2}
$$

Convergence: In view of Barbour-Hall (1984) this is necessary and sufficient for convergence

Rate: Pinsker's ineq gives $\left\|P_{S_{n}}-\operatorname{Po}(\lambda)\right\|_{T V} \leq \sqrt{2}\left[\sum_{i=1}^{n} p_{i}^{2}\right]^{1 / 2}$ but Le Cam (1960) gives the optimal TV rate as $O\left(\sum_{i=1}^{n} p_{i}^{2}\right)$

Question: Can we get the optimal TV rate with IT methods??

Two Examples

The classical Binomial/Poisson example
If $X_{1}, X_{2}, \ldots, X_{n}$ are IID $\operatorname{Bern}(\lambda / n)$, Theorem 1 gives

$$
D\left(P_{S_{n}} \| \operatorname{Po}(\lambda)\right) \leq \sum_{i=1}^{n}(\lambda / n)^{2}=\lambda^{2} / n
$$

Sufficient for convergence, but the actual rate is $O\left(1 / n^{2}\right)$

A Markov chain example
Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a stationary Markov chain with transition matrix $\left(\begin{array}{cc}\frac{n}{n+1} & \frac{1}{n+1} \\ \frac{n-1}{n+1} & \frac{2}{n+1}\end{array}\right)$ and each X_{i} having (the stationary) $\operatorname{Bern}\left(\frac{1}{n}\right)$ distribution

Theorem $1 \Rightarrow D\left(P_{S_{n}} \| \operatorname{Po}(1)\right) \leq \frac{3 \log n}{n}+\frac{1}{n}$
Pinsker $\Rightarrow \quad\left\|P_{S_{n}}-\operatorname{Po}(1)\right\|_{T V} \leq 4\left[\frac{\log n}{n}\right]^{1 / 2}$ but optimal rate is $O(1 / n)$

Elementary Properties of Total Variation

TV Properties

i. TV and relative entropy are both " f-divergences"

$$
D_{f}(P \| Q):=\sum_{x} Q(x) f\left(\frac{P(x)}{Q(x)}\right)
$$

ii. Data processing ineq holds for both, same proof as before
iii. Chain rule for TV:

$$
\left\|P \times P^{\prime}-Q \times Q^{\prime}\right\|_{T V} \leq\|P-Q\|_{T V}+\left\|P^{\prime}-Q^{\prime}\right\|_{T V}
$$

Proof. Triangle inequality
iv. $\|\operatorname{Bern}(p)-\operatorname{Po}(p)\|_{T V} \leq p^{2}$

Proof. Simple calculus
v. TV is an actual norm

A Simple Poisson Approximation Bound in TV

Theorem 2: Poisson Approximation in TV [K-Madiman 06]
Suppose the X_{i} are independent $\operatorname{Bern}\left(p_{i}\right)$ random variables such that the mean of $S_{n}=\sum_{i=1}^{n} X_{i}$ is $E\left(S_{n}\right)=\sum_{i=1}^{n} p_{i}=\lambda$.

Then the distribution $P_{S_{n}}$ of S_{n} satisfies

$$
\left\|P_{S_{n}}-\mathrm{Po}(\lambda)\right\|_{T V} \leq \sum_{i=1}^{n} p_{i}^{2}
$$

Proof. Letting $Z_{1}, Z_{2}, \ldots, Z_{n}$ be independent $\operatorname{Po}\left(p_{i}\right)$ and $T_{n}=\sum_{i=1}^{n} Z_{i}$:

$$
\begin{array}{rlr}
\| P_{S_{n}}- & \operatorname{Po}(\lambda) \|_{T V} & \\
& =\left\|P_{S_{n}}-P_{T_{n}}\right\|_{T V} & \\
& \leq\left\|P_{X_{1}, \ldots, X_{n}}-P_{Z_{1}, \ldots, Z_{n}}\right\|_{T V} & \text { (data processing) } \\
& \leq \sum_{i=1}^{n}\left\|P_{X_{i}}-P_{Z_{i}}\right\|_{T V} & \\
& \leq \sum_{i=1}^{n} p_{i}^{2} & \text { (chain rule }
\end{array}
$$

Example Revisited: Independent Bernoullis

Recall: If X_{1}, \ldots, X_{n} are indep $\operatorname{Bern}\left(p_{i}\right)$ with $\lambda=\sum_{i=1}^{n} p_{i}$ then Thm 2 says

$$
\left\|P_{S_{n}}-\operatorname{Po}(\lambda)\right\|_{T V} \leq \sum_{i=1}^{n} p_{i}^{2}
$$

\& from Barbour-Hall (1984): $C_{1} \sum_{i=1}^{n} p_{i}^{2} \leq\left\|P_{S_{n}}-\operatorname{Po}(\lambda)\right\|_{T V} \leq C_{2} \sum_{i=1}^{n} p_{i}^{2}$
so we have the right convergence rate!
For finite n : Stein's method actually yields

$$
\left\|P_{S_{n}}-\operatorname{Po}(\lambda)\right\|_{T V} \leq \min \left\{1, \frac{1}{\lambda}\right\} \sum_{i=1}^{n} p_{i}^{2}
$$

which is much better for large λ
E.g. if all $p_{i}=\frac{1}{\sqrt{n}}$ then $\lambda=\sqrt{n}$ and our bound $=1$ whereas Stein's method yields the bound $1 / \sqrt{n}$

Corollary: Generalization to Dependent RVs

Corollary: General Poisson Approximation in TV [K-Madiman 06]
Suppose the X_{i} are (possibly dependent) \mathbb{Z}_{+}-valued random variables with $p_{i}=\operatorname{Pr}\left\{X_{i}=1\right\}$, and let $\lambda=\sum_{i=1}^{n} p_{i}$. Then the distribution $P_{S_{n}}$ of $S_{n}=\sum_{i=1}^{n} X_{i}$ satisfies

$$
\left\|P_{S_{n}}-\operatorname{Po}(\lambda)\right\|_{T V} \leq \sum_{i=1}^{n} p_{i}^{2}+\sum_{i=1}^{n} E\left|p_{i}-q_{i}\right|+\sum_{i=1}^{n} \operatorname{Pr}\left\{X_{i} \geq 2\right\}
$$

where $q_{i}=\operatorname{Pr}\left\{X_{i}=1 \mid X_{1}, \ldots, X_{i-1}\right\}$

Proof of Corollary

To show: $\left\|P_{S_{n}}-\operatorname{Po}(\lambda)\right\|_{T V} \leq \sum_{i=1}^{n} p_{i}^{2}+\sum_{i=1}^{n} E\left|p_{i}-q_{i}\right|+\sum_{i=1}^{n} \operatorname{Pr}\left\{X_{i} \geq 2\right\}$
As before (data processing+chain rule):

$$
\begin{aligned}
\left\|P_{S_{n}}-\mathrm{Po}(\lambda)\right\|_{T V} & \leq\left\|P_{X_{1}, \ldots, X_{n}}-P_{Z_{1}, \ldots, Z_{n}}\right\|_{T V} \\
& \leq \sum_{i=1}^{n} E\left[\left\|P_{X_{i} \mid X_{1}, \ldots, X_{i-1}}-P_{Z_{i}}\right\|_{T V}\right]
\end{aligned}
$$

Letting $I_{i}=\mathbb{I}_{\left\{X_{i}=1\right\}}$, by the triangle ineq:

$$
\begin{aligned}
\left\|P_{S_{n}}-\mathrm{Po}(\lambda)\right\|_{T V} \leq & \sum_{i=1}^{n}\left\|P_{Z_{i}}-P_{I_{i}}\right\|_{T V} \\
& +\sum_{i=1}^{n} E\left[\left\|P_{I_{i}}-P_{I_{i} \mid X_{1}, \ldots, X_{i-1}}\right\|_{T V}\right] \\
& +\sum_{i=1}^{n} E\left[\left\|P_{I_{i} \mid X_{1}, \ldots, X_{i-1}}-P_{X_{i} \mid X_{i}, \ldots, X_{i-1}}\right\|_{T V}\right]
\end{aligned}
$$

Compound Poisson Approximation

Can IT methods actually yield optimal bounds?
We turn to a more general problem:
Compound Binomial convergence to the compound Poisson
If $X_{1}, X_{2}, \ldots, X_{n}$ are IID $\sim Q$ and $I_{1}, I_{2}, \ldots, I_{n}$ are IID $\operatorname{Bern}(\lambda / n)$
then, for large n, the distr'n of

$$
S_{n}:=\sum_{i=1}^{n} I_{i} X_{i}=\sum_{i=1}^{\operatorname{Bin}(n, \lambda / n)} X_{i} \approx \sum_{i=1}^{\operatorname{Po}(\lambda)} X_{i}
$$

which is the compound Poisson distr $\operatorname{CP}(\lambda, Q)$
General Compound Poisson approximation
For a general sum $S_{n}=\sum_{i=1}^{n} Y_{i}$ of (possibly dependent) \mathbb{R}^{d}-valued RV s Y_{i} we may hope that the distribution of S_{n} is $\approx \mathrm{CP}(\lambda, Q)$ as long as:
(a) Each $p_{i}:=\operatorname{Pr}\left\{Y_{i} \neq 0\right\}$ is small
(b) The Y_{i} are weakly dependent
(c) The $\operatorname{distr} Q$ is chosen appropriately

A General Compound Poisson Approximation Result

Notes

\leadsto Interpretation: Events occurring at random and in clusters
\leadsto The class of dist's $\mathrm{CP}(\lambda, Q)$ is much richer that the Poisson
\leadsto Depending on the choice of Q, MUCH wider class of tails, etc
$\leadsto \mathrm{CP}$ approximation a harder problem, especially in \mathbb{R}^{d}
\leadsto Same method yields a general bound in relative entropy
\leadsto In search of optimality, look directly at TV bounds

Theorem 3: Compound Poisson Approximation [K-Madiman 06]
Suppose the Y_{i} are independent \mathbb{R}^{d}-valued RVs
Write $p_{i}=\operatorname{Pr}\left\{Y_{i} \neq 0\right\}$ and Q_{i} for the distr of $Y_{i} \mid\left\{Y_{i} \neq 0\right\}$
Then the distribution $P_{S_{n}}$ of $S_{n}=\sum_{i=1}^{n} Y_{i}$ satisfies

$$
\left\|P_{S_{n}}-\mathrm{CP}(\lambda, \bar{Q})\right\|_{T V} \leq \sum_{i=1}^{n} p_{i}^{2}
$$

where $\lambda=\sum_{i=1}^{n} p_{i}$ and $\bar{Q}=\sum_{i=1}^{n} \frac{p_{i}}{\lambda} Q_{i}$

Proof of Theorem 3

Let $Z_{1}, Z_{2}, \ldots, Z_{n}$ be indep $\mathrm{CP}\left(p_{i}, Q_{i}\right)$, so that $T_{n}=\sum_{i=1}^{n} Z_{i} \sim \mathrm{CP}(\lambda, \bar{Q})$

Proof of Theorem 3

Let $Z_{1}, Z_{2}, \ldots, Z_{n}$ be indep $\mathrm{CP}\left(p_{i}, Q_{i}\right)$, so that $T_{n}=\sum_{W_{i}}^{n} Z_{i} \sim \mathrm{CP}(\lambda, \bar{Q})$ By the CP defn, each Z_{i} can be expressed as $Z_{i}=\sum_{j=1}^{W_{i}} X_{i, j}$ where $W_{i} \sim \operatorname{Po}\left(p_{i}\right)$ and $X_{i, j} \sim Q_{i}$ are all indep.

Proof of Theorem 3

Let $Z_{1}, Z_{2}, \ldots, Z_{n}$ be indep $\mathrm{CP}\left(p_{i}, Q_{i}\right)$, so that $T_{n}=\sum_{i=1}^{n} Z_{i} \sim \mathrm{CP}(\lambda, \bar{Q})$ By the CP defn, each Z_{i} can be expressed as $Z_{i}=\sum_{j=1}^{W_{i}} X_{i, j}$ where $W_{i} \sim \operatorname{Po}\left(p_{i}\right)$ and $X_{i, j} \sim Q_{i}$ are all indep. Hence:

$$
T_{n}=\sum_{i=1}^{n} Z_{i}=\sum_{i=1}^{n} \sum_{j=1}^{W_{i}} X_{i, j}
$$

Proof of Theorem 3

Let $Z_{1}, Z_{2}, \ldots, Z_{n}$ be indep $\mathrm{CP}\left(p_{i}, Q_{i}\right)$, so that $T_{n}=\sum_{i=1}^{n} Z_{i} \sim \mathrm{CP}(\lambda, \bar{Q})$ By the CP defn, each Z_{i} can be expressed as $Z_{i}=\sum_{j=1}^{W_{i}} X_{i, j}$ where $W_{i} \sim \operatorname{Po}\left(p_{i}\right)$ and $X_{i, j} \sim Q_{i}$ are all indep. Hence:

$$
T_{n}=\sum_{i=1}^{n} Z_{i}=\sum_{i=1}^{n} \sum_{j=1}^{W_{i}} X_{i, j}
$$

Similarly let $I_{1}, I_{2}, \ldots, I_{n}$ be indep $\operatorname{Bern}\left(p_{i}\right)$ and write $Y_{i}=I_{i} X_{i, 1}$. Hence:

$$
S_{n}=\sum_{i=1}^{n} Y_{i}=\sum_{i=1}^{n} \sum_{j=1}^{I_{i}} X_{i, j}
$$

Proof of Theorem 3

Let $Z_{1}, Z_{2}, \ldots, Z_{n}$ be indep $\mathrm{CP}\left(p_{i}, Q_{i}\right)$, so that $T_{n}=\sum_{i=1}^{n} Z_{i} \sim \mathrm{CP}(\lambda, \bar{Q})$ By the CP defn, each Z_{i} can be expressed as $Z_{i}=\sum_{j=1}^{W_{i}} X_{i, j}$ where $W_{i} \sim \operatorname{Po}\left(p_{i}\right)$ and $X_{i, j} \sim Q_{i}$ are all indep. Hence:

$$
T_{n}=\sum_{i=1}^{n} Z_{i}=\sum_{i=1}^{n} \sum_{j=1}^{W_{i}} X_{i, j}
$$

Similarly let $I_{1}, I_{2}, \ldots, I_{n}$ be indep $\operatorname{Bern}\left(p_{i}\right)$ and write $Y_{i}=I_{i} X_{i, 1}$. Hence:

$$
\begin{array}{rlrl}
S_{n} & =\sum_{i=1}^{n} Y_{i}=\sum_{i=1}^{n} \sum_{j=1}^{I_{i}} X_{i, j} \\
\left\|P_{S_{n}}-\mathrm{CP}(\lambda, \bar{Q})\right\|_{T V} & =\left\|P_{S_{n}}-P_{T_{n}}\right\|_{T V} \\
& \leq\left\|P_{\left\{I_{i}\right\},\left\{X_{i, j}\right\}}-P_{\left\{W_{i}\right\},\left\{X_{i, j}\right\}}\right\|_{T V} & & \text { (data processing) } \\
& \leq \sum_{i=1}^{n}\left\|P_{I_{i}}-P_{W_{i}}\right\|_{T V} & \text { (chain rule) } \\
& \leq \sum_{i=1}^{n} p_{i}^{2} \tag{calculus}
\end{array}
$$

Then:

Comments

$\leadsto \operatorname{In}$ general, the bound of Theorem $3\left\|P_{S_{n}}-\mathrm{CP}(\lambda, \bar{Q})\right\|_{T V} \leq \sum_{i=1}^{n} p_{i}^{2}$ cannot be improved
\leadsto Here, the IT method gives the optimal rate and optimal constants
\leadsto Can we refine our IT methods to recover the optimal $1 / \lambda$ factor in the simple Poisson case?
\leadsto Recall the earlier example: If X_{1}, \ldots, X_{n} are i.i.d. Bern $\left(\frac{1}{\sqrt{n}}\right)$ with $\lambda=\sqrt{n}$, Stein's method gives

$$
\left\|P_{S_{n}}-\operatorname{Po}(\lambda)\right\|_{T V} \leq \frac{1}{\sqrt{n}}
$$

whereas we got

$$
\left\|P_{S_{n}}-\operatorname{Po}(\lambda)\right\|_{T V} \leq 1
$$

\leadsto To obtain tighter bounds, take a hint from corresponding work for the CLT [Barron, Johnson, Ball-Barthe-Naor, ...] and turn to Fisher information

A Discrete Version of Fisher Information

By analogy to the continuous case, the Fisher information of a \mathbb{Z}_{+}-valued random variable $X \sim P$ is usually defined as

$$
J(X)=E\left[\left(\frac{P(X)-P(X-1)}{P(X)}\right)^{2}\right]=E\left[\left(\frac{P(X-1)}{P(X)}-1\right)^{2}\right]
$$

Problem: $J(X)=+\infty$ whenever X has finite support

Recall: $\quad(k+1) P(k+1)=\lambda P(k) \quad$ iff $\quad P=\operatorname{Po}(\lambda)$
Define: \quad the Fisher information of $X \sim P$ via

$$
J(X)=\lambda E\left[\left(\frac{(X+1) P(X+1)}{\lambda P(X)}-1\right)^{2}\right]
$$

and note that $J(X) \geq 0$ with equality iff $X \sim$ Poisson

A New Bound in Terms of Relative Entropy

Theorem 4: Poisson Approximation via Fisher Information [KHJ 05]
If the X_{i} are independent $\operatorname{Bern}\left(p_{i}\right)$ with $E\left(S_{n}\right)=\sum_{i=1}^{n} p_{i}=\lambda$, then

$$
D\left(P_{S_{n}} \| \operatorname{Po}(\lambda)\right) \leq \sum_{i=1}^{n} \frac{p_{i}^{3}}{\lambda\left(1-p_{i}\right)}
$$

Note. This bound is of order $\approx \sum p_{i}^{3}$ compared to the earlier $\sum p_{i}^{2}$

A New Bound in Terms of Relative Entropy

Theorem 4: Poisson Approximation via Fisher Information [KHJ 05] If the X_{i} are independent $\operatorname{Bern}\left(p_{i}\right)$ with $E\left(S_{n}\right)=\sum_{i=1}^{n} p_{i}=\lambda$, then

$$
D\left(P_{S_{n}} \| \operatorname{Po}(\lambda)\right) \leq \sum_{i=1}^{n} \frac{p_{i}^{3}}{\lambda\left(1-p_{i}\right)}
$$

Note. This bound is of order $\approx \sum p_{i}^{3}$ compared to the earlier $\sum p_{i}^{2}$ Proof.

Three steps:

$$
D\left(P_{S_{n}} \| \operatorname{Po}(\lambda)\right) \stackrel{(a)}{\leq} J\left(S_{n}\right)
$$

(a) follows from an application of a recent log-Sobolev inequality due to Bobkov and Ledoux (more later)

A New Bound in Terms of Relative Entorpy

Theorem 4: Poisson Approximation via Fisher Information [KHJ 05] If the X_{i} are independent $\operatorname{Bern}\left(p_{i}\right)$ with $E\left(S_{n}\right)=\sum_{i=1}^{n} p_{i}=\lambda$, then

$$
D\left(P_{S_{n}} \| \operatorname{Po}(\lambda)\right) \leq \sum_{i=1}^{n} \frac{p_{i}^{3}}{\lambda\left(1-p_{i}\right)}
$$

Note. This bound is of order $\approx \sum p_{i}^{3}$ compared to the earlier $\sum p_{i}^{2}$ Proof.

Three steps:

$$
D\left(P_{S_{n}} \| \operatorname{Po}(\lambda)\right) \quad \stackrel{(a)}{\leq} \quad J\left(S_{n}\right) \quad \stackrel{(b)}{\leq} \quad \sum_{i=1}^{n} \frac{p_{i}}{\lambda} J\left(X_{i}\right)
$$

(a) follows from an application of a recent log-Sobolev inequality due to Bobkov and Ledoux (more later)

A New Bound in Terms of Relative Entropy

Theorem 4: Poisson Approximation via Fisher Information [KHJ 05] If the X_{i} are independent $\operatorname{Bern}\left(p_{i}\right)$ with $E\left(S_{n}\right)=\sum_{i=1}^{n} p_{i}=\lambda$, then

$$
D\left(P_{S_{n}} \| \operatorname{Po}(\lambda)\right) \leq \sum_{i=1}^{n} \frac{p_{i}^{3}}{\lambda\left(1-p_{i}\right)}
$$

Note. This bound is of order $\approx \sum p_{i}^{3}$ compared to the earlier $\sum p_{i}^{2}$ Proof.

Three steps:

$$
D\left(P_{S_{n}} \| \operatorname{Po}(\lambda)\right) \stackrel{(a)}{\leq} J\left(S_{n}\right) \stackrel{(b)}{\leq} \sum_{i=1}^{n} \frac{p_{i}}{\lambda} J\left(X_{i}\right) \stackrel{(c)}{\leq} \sum_{i=1}^{n} \frac{p_{i}^{3}}{\lambda\left(1-p_{i}\right)}
$$

(a) follows from an application of a recent log-Sobolev inequality due to Bobkov and Ledoux (more later)
(c) is a simple evaluation of $J(\operatorname{Bern}(p))$

Subadditivity of Fisher Information

Proof cont'd.

$$
D\left(P_{S_{n}} \| \operatorname{Po}(\lambda)\right) \stackrel{(a)}{\leq} J\left(S_{n}\right) \stackrel{(b)}{\leq} \sum_{i=1}^{n} \frac{p_{i}}{\lambda} J\left(X_{i}\right) \stackrel{(c)}{\leq} \sum_{i=1}^{n} \frac{p_{i}^{3}}{\lambda\left(1-p_{i}\right)}
$$

(b) is based on the more general subadditivity property

$$
\begin{equation*}
J\left(S_{n}\right) \leq \sum_{i=1}^{n} \frac{E\left(X_{i}\right)}{E\left(S_{n}\right)} J\left(X_{i}\right) \tag{*}
\end{equation*}
$$

Recall

$$
J(X)=\lambda E\left[\left(\frac{(X+1) P(X+1)}{\lambda P(X)}-1\right)^{2}\right]
$$

$(*)$ is proved by writing $\left[\frac{(z+1) P * Q(z+1)}{P * Q(z)}-1\right]$ as a conditional expectation and using ideas about L^{2} projections of convolutions

Ineq $(*)$ is the natural discrete analog of Stam's Fisher information ineq (in the continuous case), used to prove the entropy power inequality

Example Revisited: Independent Bernoullis

Recall the earlier example

$$
\text { Suppose } X_{1}, \ldots, X_{n} \text { are i.i.d. } \operatorname{Bern}\left(\frac{1}{\sqrt{n}}\right) \text { and let } \lambda=\sqrt{n}
$$

Our earlier bound was

$$
\left\|P_{S_{n}}-\operatorname{Po}(\lambda)\right\|_{T V} \leq 1
$$

Stein's method gives

$$
\left\|P_{S_{n}}-\operatorname{Po}(\lambda)\right\|_{T V} \leq \frac{1}{\sqrt{n}}
$$

Theorem 4 combined with Pinsker's ineq gives

$$
\left\|P_{S_{n}}-\operatorname{Po}(\lambda)\right\|_{T V} \leq \sqrt{2}\left[D\left(P_{S_{n}} \| \operatorname{Po}(\lambda)\right)\right]^{1 / 2} \leq \frac{1}{\sqrt{n}} \sqrt{\frac{5}{2}}
$$

Moreover, Theorem 4 gives a strong new bound in terms of relative entropy!

Outline

1. Poisson Approximation in Relative Entropy

Motivation: Entropy and the central limit theorem
Motivation: Poisson as a maximum entropy distribution
A very simple general bound; Examples
2. Analogous Bounds in Total Variation

Suboptimal Poisson approximation
Optimal Compound Poisson approximation
3. Tighter Poisson Bounds for Independent Summands

A (new) discrete Fisher information; subadditivity A log-Sobolev inequality
4. Measure Concentration and Compound Poisson Tails

The compound Poisson distributions
A log-Sobolev inequality and its info-theoretic proof Compound Poisson concentration

Motivation: The Concentration Phenomenon

An Example [Bobkov \& Ledoux (1998)]

$$
\begin{aligned}
& \text { If } W \sim \operatorname{Po}(\lambda) \text { and } f(i) \text { is 1-Lipschitz, i.e., }|f(i+1)-f(i)| \leq 1 \\
& \qquad \operatorname{Pr}\{f(W)-E[f(W)]>t\} \leq \exp \left\{-\frac{t}{4} \log \left(1+\frac{t}{2 \lambda}\right)\right\}
\end{aligned}
$$

for all $t>0$

Note
\leadsto Sharp bound, valid for all t and all such f
\leadsto One example from a very large class of such results
\leadsto Many different methods of proof dominant one probably the "entropy method"

Proof by the Entropy Method: First Step

Define

The relative entropy of a function $g>0$ w.r.t. a prob distr P

$$
\begin{gathered}
\operatorname{Ent}_{P}(g)=\sum_{i} P(i) g(i) \log g(i)-\left[\sum_{i} P(i) g(i)\right] \log \left[\sum_{i} P(i) g(i)\right] \\
\text { e.g., if } g(i)=Q(i) / P(i) \text {, then } \operatorname{Ent}_{P}(g)=D(Q \| P)=\text { relative entropy }
\end{gathered}
$$

A Logarithmic Sobolev Inequality

Our earlier log-Sobolev ineq $\quad D(P \| \mathrm{Po}(\lambda)) \leq \lambda E\left[\left(\frac{(X+1) P(X+1)}{\lambda P(X)}-1\right)^{2}\right]$
is equivalent to: If $W \sim \operatorname{Po}(\lambda)$, then for any function $g>0$:

$$
\operatorname{Ent}_{\mathrm{Po}(\lambda)}(g) \leq \lambda E\left[\frac{|D g(W)|^{2}}{g(W)}\right]
$$

where $D g(i)=g(i+1)-g(i)$
Proof: Information-theoretic tools
Use the tensorization property of relative entropy - more later...

Proof Second Step: The Herbst Argument

Given f, substitute $g(i)=e^{\theta f(i)}$ in the log-Sobolev ineq

$$
\operatorname{Ent}_{\mathrm{Po}(\lambda)}(g) \leq \lambda E\left[\frac{|D g(W)|^{2}}{g(W)}\right]
$$

This yields a bound on the log-moment generating fn of $f(W)$

$$
L(\theta)=E\left[e^{\theta f(W)}\right], \quad W \sim \operatorname{Po}(\lambda)
$$

and combining with Chernoff's bound,

$$
\begin{aligned}
\operatorname{Pr}\{f(W)-E[f(W)]>t\} & \leq L(\theta) \exp \{-\theta(t+E[f(W)])\} \\
& \leq \exp \left\{-\frac{t}{4} \log \left(1+\frac{t}{2 \lambda}\right)\right\}
\end{aligned}
$$

Remarks

Note

\leadsto General, powerful inequality, proved by info-theoretic techniques
\leadsto Proof heavily dependent on existence of log-moment generating fn
\leadsto Domain of application restricted to a small family (Poisson distr)

Generalize to Compound Poisson Distrs on \mathbb{Z}_{+}

\leadsto The asymptotic tails of $Z \sim \mathrm{CP}(\lambda, Q)$ are determined by those of Q
e.g., if $Q(i) \sim e^{-\alpha i}$ then $\mathrm{CP}_{\lambda, Q}(i) \sim e^{-\alpha i}$

$$
\text { if } Q(i) \sim 1 / i^{\beta} \text { then } \mathrm{CP}_{\lambda, Q}(i) \sim 1 / i^{\beta} \text {, etc }
$$

Versatility of tail behavior is attractive for modelling
Concentration? If Q has sub-exponential tails the Herbst argument fails
\leadsto The $\mathrm{CP}(\lambda, Q)$ distribution can be built up from "small Poissons"

$$
\mathrm{CP}(\boldsymbol{\lambda}, \boldsymbol{Q}) \stackrel{\mathcal{D}}{=} \sum_{i=1}^{\mathrm{Po}(\lambda)} \boldsymbol{X}_{i} \stackrel{\mathcal{D}}{=} \sum_{j=1}^{\infty} j \cdot \operatorname{Po}(\lambda Q(j))
$$

A Compound Poisson Log-Sobolev Inequality

Theorem 5: Log-Sobolev Inequality for CP Distrs [Wu 00, K-Madiman 05] Let $X \sim P$ be an arbitrary RV with values in \mathbb{Z}_{+}

For any $\lambda>0$, any $\operatorname{distr} Q$ on the natural nos, any $g>0$

$$
\operatorname{Ent}_{\mathrm{CP}(\lambda, Q)}(g) \leq \lambda \sum_{j \geq 1} Q(j) E\left[\frac{\left|D^{j} g(Z)\right|^{2}}{g(Z)}\right]
$$

where $Z \sim \mathrm{CP}(\lambda, Q)$ and $D^{j} g(i)=g(i+j)-g(i)$
Proof Idea
Use the tensorization property of the relative entropy

$$
\operatorname{Ent}_{\mathrm{Po}\left(\lambda_{1}\right) \times \operatorname{Po}\left(\lambda_{2}\right) \times \cdots \times \operatorname{Po}\left(\lambda_{n}\right)}(g) \leq \sum_{j=1}^{n} E\left[\operatorname{Ent}_{\mathrm{Po}\left(\lambda_{j}\right)}\left(g\left(W_{1}^{j-1}, \cdot, W_{j+1}^{n}\right)\right)\right]
$$

to get a vector version of the Poisson LSI
Apply it to $g\left(w_{1}, w_{2}, \ldots, w_{n}\right)=\sum_{j} j \cdot w_{j}$ and let $n \rightarrow \infty$, using

$$
\mathrm{CP}(\lambda, Q)=\lim _{n} \sum_{j=1}^{n} j \cdot \mathrm{Po}(\lambda Q(j))
$$

New Measure Concentration Bounds

Theorem 6: Measure Concentration for CP Distributions [K-Madiman 05]
(i) Suppose $Z \sim \operatorname{CP}(\lambda, Q)$ and Q has finite K th moment

$$
\sum_{j} j^{K} Q(j)<\infty
$$

If f is 1-Lipschitz, i.e., $|f(i+1)-f(i)| \leq 1$ for all i
then for $t>0$

$$
\operatorname{Pr}\{|f(Z)-E[f(Z)]|>t\} \leq A\left(\frac{B}{t}\right)^{K}
$$

where the constants A, B are explicit and depend only on $\lambda, K,|f(0)|$, and on the integer moments of Q
(ii) An analogous bound holds for any RV Z whose distr satisfies the log-Sobolev ineq of Thm 5

The Constants in Theorem 2

Let

$$
q(r)=\sum_{j} j^{r} Q(j)
$$

Then

$$
\operatorname{Pr}\{|f(Z)-E[f(Z)]|>t\} \leq A\left(\frac{B}{t}\right)^{K}
$$

where

$$
\begin{aligned}
& A=\exp \left\{\sum_{r=1}^{K}\binom{K}{r} q(r)\right\} \\
& B=2|f(0)|+2 \lambda q(1)+1
\end{aligned}
$$

Proof Outline

Modification of Herbst argument: Given f, let $G_{\theta}(i)=|f(i)-E[f(Z)]|^{\theta}$ and define the "polynomial" moment-generating fn

$$
M(\theta)=E\left[G_{\theta}(Z)\right]
$$

Substitute $g=G_{\theta}$ in the log-Sobolev ineq

$$
\operatorname{Ent}_{\mathrm{CP}(\lambda, Q)}(g) \leq \lambda \sum_{j \geq 1} Q(j) E\left[\frac{\left|D^{j} g(Z)\right|^{2}}{g(Z)}\right]
$$

to get the differential inequality

$$
\theta M^{\prime}(\theta)-M(\theta) \log M(\theta) \leq \lambda M(\theta) \sum_{j} Q(j)[\text { terms involving } \theta \log (C+D j)]
$$

Solving, yields a bound on $M(\theta)$, and combining with Markov's ineq,

$$
\operatorname{Pr}\{|f(Z)-E[f(Z)]|>t\} \leq \frac{M(\theta)}{t^{\theta}} \leq \cdots \leq A\left(\frac{B}{t}\right)^{K}
$$

Final Remarks

Information-theoretic approach to (Compound-)Poisson approximation
Two approaches
\leadsto A simple, very general one
\leadsto A tight one for the independent Poisson case
Non-asymptotic, strong new bounds, intuitively satisfying

Ideas

A new version of Fisher information
L^{2}-theory and log-Sobolev inequalities for discrete random variables

Concentration

A simple, general CP-approximation bound
A log-Sobolev ineq for the CP dist
New non-exponential measure concentration bounds

Information-Theoretic Interpretation

$$
D\left(P_{\hat{S}_{n}} \| N\left(0, \sigma^{2}\right)\right) \downarrow 0 \Longleftrightarrow h\left(\hat{S}_{n}\right) \uparrow h\left(N\left(0, \sigma^{2}\right)\right) \text { as } n \rightarrow \infty
$$

(i) The accumulation of many, small, independent random effects is maximally random
(ii) The monotonicity in n indicates that the entropy is a natural measure for the convergence of the CLT

More generally the CLT holds as long as
(a) Each $E\left(X_{i}\right)$ is small
(b) The overall variance $\operatorname{Var}\left(\hat{S}_{n}\right) \approx \sigma^{2}$
(c) The X_{i} are weakly dependent
\leadsto Next look at the other central result on the distribution of the sum of many small random effects: Poisson approximation

Two Examples

The defining compound Poisson example
If $X_{1}, X_{2}, \ldots, X_{n}$ are IID $\sim Q$ on \mathbb{N} and $I_{1}, I_{2}, \ldots, I_{n}$ are IID $\operatorname{Bern}(\lambda / n)$ then for $S_{n}=\sum_{i=1}^{n} I_{i} X_{i}$ Theorem 3 gives

$$
D\left(P_{S_{n}} \| \mathrm{CP}(\lambda, Q)\right) \leq \sum_{i=1}^{n}(\lambda / n)^{2}=\lambda^{2} / n
$$

Again, sufficient for convergence, but the optimal rate is $O\left(1 / n^{2}\right)$
A Markov chain example
Let $S_{n}=\sum_{i=1}^{n} I_{i} X_{i}$ where X_{1}, \ldots, X_{n} are IID $\sim Q$ on \mathbb{N} and I_{1}, \ldots, I_{n} is a stationary Markov chain with transition matrix

$$
\left(\begin{array}{cc}
\frac{n}{n+1} & \frac{1}{n+1} \\
\frac{n-1}{n+1} & \frac{2}{n+1}
\end{array}\right) \quad \text { Theorem } 3 \text { easily gives } \quad D\left(P_{S_{n}} \| \mathrm{CP}(1, Q)\right) \leq \frac{3 \log n}{n}+\frac{1}{n}
$$

Another Example

Theorem 2 easily generalizes to non-binary X_{i}, as long as $J\left(X_{i}\right)$ can be evaluated or estimated. E.g.:

Sum of Small Geometrics

Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are indep $\operatorname{Geom}\left(q_{i}\right)$ let $\lambda=E\left(S_{n}\right)=\sum_{i=1}^{n}\left[\left(1-q_{i}\right) / q_{i}\right]$

Then $J\left(X_{i}\right)=\left(1-q_{i}\right)^{2} / q_{i}$ and proceeding as in the proof of Theorem 2

$$
D\left(P_{S_{n}} \| \mathrm{Po}(\lambda)\right) \leq \sum_{i=1}^{n} \frac{\left(1-q_{i}\right)^{3}}{\lambda q_{i}^{2}}
$$

In the case when all $q_{i}=n /(n+\lambda) \approx 1-\lambda / n$ this takes the elegant form

$$
D\left(P_{S_{n}} \| \mathrm{Po}(\lambda)\right) \leq \frac{\lambda^{2}}{n^{2}}
$$

Tighter Bounds Compound Poisson Approximation?

Recall the proof of Theorem 2 in the Poisson case:

$$
D\left(P_{S_{n}} \| \operatorname{Po}(\lambda)\right) \stackrel{(a)}{\leq} J\left(S_{n}\right) \stackrel{(b)}{\leq} \sum_{i=1}^{n} \frac{p_{i}}{\lambda} J\left(X_{i}\right) \stackrel{(c)}{\leq} \sum_{i=1}^{n} \frac{p_{i}^{3}}{\lambda\left(1-p_{i}\right)}
$$

\leadsto In order to generalize this approach we first need a new version of the Fisher information, and a corresponding log-Sobolev ineq for the compound Poisson measure . . .

Properties of the Compound Poisson Distribution

\leadsto The $\mathrm{CP}(\lambda, Q)$ laws are the only infinitely divisible distr's on \mathbb{Z}_{+}
\leadsto The asymptotic tails of $Z \sim \mathrm{CP}(\lambda, Q)$ are determined by those of Q e.g., if $Q(i) \sim e^{-\alpha i}$ then $\mathrm{CP}_{\lambda, Q}(i) \sim e^{-\alpha i}$

$$
\text { if } Q(i) \sim 1 / i^{\beta} \text { then } \mathrm{CP}_{\lambda, Q}(i) \sim 1 / i^{\beta} \text {, etc }
$$

Versatility of tail behavior is attractive for modelling
Concentration? If Q has sub-exponential tails the Herbst argument fails
\leadsto The $\mathrm{CP}(\lambda, Q)$ distribution can be built up from "small Poissons"

$$
\mathrm{CP}(\boldsymbol{\lambda}, \boldsymbol{Q}) \stackrel{\mathcal{D}}{=} \sum_{i=1}^{\mathrm{Po}(\boldsymbol{\lambda})} \boldsymbol{X}_{\boldsymbol{i}} \stackrel{\mathcal{D}}{=} \sum_{j=1}^{\infty} \boldsymbol{j} \cdot \operatorname{Po}(\boldsymbol{\lambda} \boldsymbol{Q}(\boldsymbol{j}))
$$

A New Log-Sobolev Inequality

Let $C_{\lambda, Q}(k)$ denote the compound Poisson probabilities $\operatorname{Pr}\{\mathrm{CP}(\lambda, Q)=k\}$

Theorem 4: Log-Sobolev Inequality for the Compound Poisson Measure
Let $X \sim P$ be an arbitrary \mathbb{Z}_{+}-valued RV
(a) [Bobkov-Ledoux (1998)] For any $\lambda>0$:

$$
D(P \| \operatorname{Po}(\lambda)) \leq \lambda E\left[\left(\frac{(X+1)}{\lambda} \frac{P(X+1)}{P(X)}-1\right)^{2}\right]
$$

(b) For any $\lambda>0$ and any measure Q on \mathbb{N} :

$$
D(P \| \mathrm{CP}(\lambda, Q)) \leq \lambda \sum_{j=1}^{\infty} Q(j) E\left[\left(\frac{C_{\lambda, Q}(X)}{C_{\lambda, Q}(X+j)} \frac{P(X+j)}{P(X)}-1\right)^{2}\right]
$$

Proof of Theorem 4 (a)

Step 1. Derive a simple log-Sobolev ineq for the Bernoulli measure $B_{p}(k)$ For any binary $\mathrm{RV} X \sim P$:

$$
D(P \| \operatorname{Bern}(p)) \leq p(1-p) E\left[\left(\frac{B_{p}(X)}{B_{p}(X+1)} \frac{P(X+1)}{P(X)}-1\right)^{2}\right]
$$

Step 2. Recall the "tensorization" property of relative entropy Whenever $X=\left(X_{1}, \ldots, X_{n}\right) \sim P_{n}$:

$$
D\left(P_{n} \| \prod_{i=1}^{n} \nu_{i}\right) \leq \sum_{i=1}^{n} E_{P_{n}}\left[D\left(P_{n}\left(\cdot \mid X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}\right) \| \nu_{i}\right)\right]
$$

Use this to extend step 1 to products of Bernoullis:

$$
D\left(P_{n} \| \prod_{i=1}^{n} \operatorname{Bern}(p)\right) \leq p(1-p) E\left[\sum_{i=1}^{n}\left(\frac{B_{p}^{n}(X)}{B_{p}^{n}\left(X+e_{i}\right)} \frac{P_{n}\left(X+e_{i}\right)}{P_{n}(X)}-1\right)^{2}\right]
$$

Step 3. Since $\operatorname{Po}(\lambda) \stackrel{\mathcal{D}}{=} \lim _{n} \sum_{i=1}^{n} \operatorname{Bern}(\lambda / n)$, applying step 2 to a P_{n} that only depends on $X_{1}+\cdots+X_{n}$ and taking $n \rightarrow \infty$:

$$
D(P \| \mathrm{Po}(\lambda)) \leq \lambda E\left[\left(\frac{(X+1)}{\lambda} \frac{P(X+1)}{P(X)}-1\right)^{2}\right]
$$

Proof of Theorem 4 (b)

In (a), the key was the representation of $\operatorname{Po}(\lambda)$ in terms of indep Bernoullis

$$
\operatorname{Po}(\lambda) \stackrel{\mathcal{D}}{=} \lim _{n} \sum_{i=1}^{n} \operatorname{Bern}(\lambda / n)
$$

Here use an alternative representation of $\mathrm{CP}(\lambda, Q)$ in terms of indep Poissons

$$
\begin{equation*}
\mathrm{CP}(\lambda, Q) \stackrel{\mathcal{D}}{=} \sum_{i=1}^{\mathrm{Po}(\lambda)} X_{i} \stackrel{\mathcal{D}}{=} \sum_{i=1}^{\infty} j \cdot \operatorname{Po}(\lambda Q(j)) \stackrel{\mathcal{D}}{=} \lim _{n} \sum_{i=1}^{n} j \cdot \operatorname{Po}(\lambda Q(j)) \tag{*}
\end{equation*}
$$

Step 1. Start with the Poisson log-Sobolev ineq of (a)
Step 2. Tensorize to obtain an ineq for products of Poissons Whenever $X=\left(X_{1}, \ldots, X_{n}\right) \sim P_{n}$:

$$
D\left(P_{n} \| \prod_{i=1}^{n} \operatorname{Po}\left(\lambda_{i}\right)\right) \leq[\cdots]
$$

Step 3. Apply step 2 to a P_{n} that only depends on $\sum_{j=1}^{n} j \cdot X_{j}$ and take $n \rightarrow \infty$ using $(*)$

Measure Concentration Bounds

Instead of continuing with CP-approximation, take a detour
\leadsto Suppose, for simplicity, that Q has finite support $\{1,2, \ldots, m\}$
\leadsto Write as before $C_{\lambda, Q}(k)=\operatorname{Pr}\{\mathrm{CP}(\lambda, Q)=k\}$

Theorem 5: Measure Concentration for CP-like Measures
(i) Let $Z \sim \mathrm{CP}(\lambda, Q)$ and f be a Lipschitz-1 function on \mathbb{Z}_{+}

$$
\begin{aligned}
& {[|f(k+1)-f(k)| \leq 1 \text { for all } k] \text {. For } t>0 \text { : }} \\
& \qquad \operatorname{Pr}\{f(Z) \geq E[f(Z)]+t\} \leq \exp \left\{-\frac{t}{2 m} \log \left(1+\frac{t}{\lambda m^{2}}\right)\right\}
\end{aligned}
$$

(ii) An analogous bound holds for any $Z \sim \mu$ that satisfies the log-Sobolev ineq of Thm 4

Remarks

Proof. Follows Herbst's Gaussian argument: Apply the log-Sobolev ineq to $f=e^{\theta g}$ for a Lipschitz g. Expand to get a differential inequality for the M.G.F. $L(\theta)=E\left[e^{\theta g(Z)}\right]$. Use the bound and apply Chebychev

The finite-support assumption. Can be relaxed at the price of technicalities.
More general bounds, much more general class of tails
Poisson tails. From Theorem 5 we see that Lipschitz-1 functions of CP-like RVs have Poisson tails. In particular:

Corollary: Poisson Tails for Lipschitz Functions
Let $Z \sim \mathrm{CP}(\lambda, Q)$ or any other distr satisfying the assumptions of Thm 5 For any Lipschitz- 1 function f on \mathbb{Z}_{+}we have:

$$
E\left[e^{\theta|f(Z)| \log ^{+}|f(Z)|}\right]<\infty \quad \text { for all } \theta>0 \text { small enough }
$$

