Information-Theoretic Ideas in Poisson Approximation and Concentration

Ioannis Kontoyiannis Athens Univ Econ & Business

joint work with P. Harremoës, O. Johnson, M. Madiman

LMS/EPSRC Short Course Stability, Coupling Methods and Rare Events Heriot-Watt University, Edinburgh, September 2006

1. Poisson Approximation in Relative Entropy

Motivation: Entropy and the central limit theorem *Motivation*: Poisson as a maximum entropy distribution A very simple general bound; **Examples**

2. Analogous Bounds in Total Variation

Suboptimal Poisson approximation Optimal Compound Poisson approximation

3. Tighter Poisson Bounds for Independent Summands

A (new) discrete Fisher information; subadditivity A log-Sobolev inequality

4. Measure Concentration and Compound Poisson Tails

The compound Poisson distributions A log-Sobolev inequality and its info-theoretic proof Compound Poisson concentration

Recall

 $N(0,\sigma^2)\,$ has maximum entropy among all distributions with variance $\le\sigma^2$ where the entropy of a RV Z with density f is

$$h(Z) := h(f) := -\int f \log f$$

The Central Limit Theorem

For IID RVs
$$X_1, \ldots, X_n$$
 with zero mean, variance σ^2 , and a 'nice' density,
not only $\hat{S}_n := \frac{1}{\sqrt{n}} \sum_{i=1}^n X_i \xrightarrow{\mathcal{D}} N(0, \sigma^2)$ but in fact $h(\hat{S}_n) \uparrow h(N(0, \sigma^2))$

- → Accumulation of many, small, independent random effects is maximally random (cf. second law of thermodynamics)
- \rightsquigarrow Monotonicity in n indicates that the entropy is a *natural measure* for the convergence of the CLT
- → This powerful intuition comes with powerful new techniques [Linnik (1959), Brown (1982), Barron (1985), Ball-Barthe-Naor (2003),...]

Binomial convergence to the Poisson

If X_1, X_2, \ldots, X_n are IID $\text{Bern}(\lambda/n)$ [Bernoulli with parameter λ/n] then, for large n, the distr'n of $S_n := \sum_{i=1}^n X_i$ is $\approx \text{Po}(\lambda)$ [Poisson with param λ]

General Poisson approximation

If the X_i are (possibly dependent) $\text{Bern}(p_i)$ random variables, then the distribution of their sum S_n is $\approx \text{Po}(\lambda)$ as long as:

(a) Each $E(X_i) = p_i$ is small

(b) The overall mean
$$E(S_n) = \sum_{i=1}^n p_i \approx \lambda$$

(c) The X_i are weakly dependent

→ Information-theoretic interpretation of this phenomenon?

Recall: the **entropy** of a discrete random variable X with distribution P is

$$H(X) = H(P) = -\sum_{x} P(x) \log P(x)$$

Theorem 0: Maximum Entropy

The Po(λ) distribution has maximum entropy among all distributions that can be obtained as sums of Bernoulli RVs: $H(Po(\lambda)) = \sup \left\{ H(S_k) : S_k = \sum_{i=1}^{k} X_i, X_i \sim \text{indep Bern}(n_i), \sum_{i=1}^{k} n_i = \lambda \ k > 1 \right\}$

$$I(\mathsf{Po}(\lambda)) = \sup \left\{ H(S_k) : S_k = \sum_{i=1}^{k} X_i, X_i \sim \mathsf{indep } \mathsf{Bern}(p_i), \sum_{i=1}^{k} p_i = \lambda, k \ge 1 \right\}$$

Proof. Messy but straightforward convexity arguments a la [Mateev 1978] [Shepp & Olkin 1978] [Harremoës 2001] [Topsøe 2002] □

Recall

The total variation distance between two distributions P and Q on the same discrete set S is

$$||P - Q||_{TV} = \frac{1}{2} \sum_{x \in S} |P(x) - Q(x)|$$

The **entropy** of a discrete random variable X with distribution P is

$$H(X) = H(P) = -\sum_{x} P(x) \log P(x)$$

The relative entropy (or Kullback-Leibler divergence) is

$$D(P||Q) = \sum_{x \in S} P(x) \log \frac{P(x)}{Q(x)}$$

Pinsker's ineq:
$$\frac{1}{2} ||P - Q||_{TV}^2 \le D(P||Q)$$

Theorem 1: Poisson Approximation [KHJ 05]

Suppose the X_i are (possibly dependent) $\text{Bern}(p_i)$ random variables such that the mean of $S_n = \sum_{i=1}^n X_i$ is $E(S_n) = \sum_{i=1}^n p_i = \lambda$. Then:

The distribution P_{S_n} of S_n satisfies

$$D\left(P_{S_n} \left\| \mathsf{Po}(\lambda)\right) \le \sum_{i=1}^n p_i^2 + D(P_{X_1,\dots,X_n} \| P_{X_1} \times \dots \times P_{X_n})$$

Note

- $\rightarrow D(P_{X_1,\dots,X_n} || P_{X_1} \times \dots \times P_{X_n}) \ge 0$ with "=" iff the X_i are independent
- \rightarrow More generally, the bound is "small" iff (a)–(c) are satisfied!
- \rightsquigarrow Alternatively,

$$D(P_{X_1,...,X_n} || P_{X_1} \times \cdots \times P_{X_n}) = \sum_{i=1}^n H(X_i) - H(X_1,...,X_n)$$

Properties

i. Data processing inequality: $D(P_{g(X)} || P_{g(Y)}) \le D(P_X || P_Y)$ *Proof.* By Jensen's inequality:

$$D(P_{g(X)} || P_{g(Y)}) = \sum_{z} P_{g(X)}(z) \log \frac{P_{g(X)}(z)}{P_{g(Y)}(z)}$$
$$= \sum_{z} \left[\sum_{x:g(x)=z} P_X(x) \right] \log \frac{\left[\sum_{x:g(x)=z} P_X(x) \right]}{\left[\sum_{x:g(x)=z} P_Y(x) \right]}$$
$$\leq \sum_{z} \sum_{x:g(x)=z} P_X(x) \log \frac{P_X(x)}{P_Y(x)}$$
$$= D(P_X || P_Y)$$

 \square

ii. $D(\operatorname{Bern}(p) \| \operatorname{Po}(p)) \le p^2$

Proof. Elementary calculus

Letting Z_1, Z_2, \ldots, Z_n be independent Po(p_i) and $T_n = \sum_{i=1}^n Z_i$:

$$D\left(P_{S_n} \| \mathsf{Po}(\lambda)\right)$$

$$= D(P_{S_n} \| P_{T_n})$$

$$\leq D(P_{X_1,\dots,X_n} \| P_{Z_1,\dots,Z_n}) \qquad (\text{data processing, i.})$$

$$= \sum_{i=1}^n D(P_{X_i} \| P_{Z_i}) + D(P_{X_1,\dots,X_n} \| P_{X_1} \times \dots \times P_{X_n})$$

$$\qquad (\text{"chain rule": } \log(ab) = \log a + \log b)$$

$$\leq \sum_{i=1}^n p_i^2 + D(P_{X_1,\dots,X_n} \| P_{X_1} \times \dots \times P_{X_n}) \quad (\text{calculus, ii.})$$

If X_1, X_2, \dots, X_n are indep $\text{Bern}(p_i)$, Theorem 1 gives $D(P_{S_n} \| \text{Po}(\lambda)) \leq \sum_{i=1}^n p_i^2$

Convergence: In view of Barbour-Hall (1984) this is necessary and sufficient for convergence

Rate: Pinsker's ineq gives $||P_{S_n} - Po(\lambda)||_{TV} \leq \sqrt{2} \left[\sum_{i=1}^n p_i^2\right]^{1/2}$ but Le Cam (1960) gives the optimal TV rate as $O\left(\sum_{i=1}^n p_i^2\right)$

Question: Can we get the optimal TV rate with IT methods??

The classical Binomial/Poisson example

If X_1, X_2, \dots, X_n are IID Bern (λ/n) , Theorem 1 gives $D(P_{S_n} \| \mathsf{Po}(\lambda)) \leq \sum_{i=1}^n (\lambda/n)^2 = \lambda^2/n$

Sufficient for convergence, but the actual rate is $O(1/n^2)$

A Markov chain example

Suppose X_1, X_2, \ldots, X_n is a stationary Markov chain with transition matrix $\begin{pmatrix} \frac{n}{n+1} & \frac{1}{n+1} \\ \frac{n-1}{n+1} & \frac{2}{n+1} \end{pmatrix}$ and each X_i having (the stationary) $\text{Bern}(\frac{1}{n})$ distribution
Theorem $1 \Rightarrow D(P_{S_n} || \text{Po}(1)) \leq \frac{3 \log n}{n} + \frac{1}{n}$ Pinsker $\Rightarrow ||P_{S_n} - \text{Po}(1)||_{TV} \leq 4 \left[\frac{\log n}{n}\right]^{1/2}$ but optimal rate is O(1/n)

TV Properties

i. TV and relative entropy are both "f-divergences"

$$D_f(P||Q) := \sum_x Q(x) f\left(\frac{P(x)}{Q(x)}\right)$$

- **ii.** Data processing ineq holds for both, same proof as before
- **iii.** Chain rule for TV:

$$||P \times P' - Q \times Q'||_{TV} \le ||P - Q||_{TV} + ||P' - Q'||_{TV}$$

Proof. Triangle inequality

iv. $\|\text{Bern}(p) - \text{Po}(p)\|_{TV} \le p^2$

Proof. Simple calculus

 $\boldsymbol{v}.$ TV is an actual norm

Theorem 2: Poisson Approximation in TV [K-Madiman 06]

Suppose the X_i are *independent* Bern (p_i) random variables such that the mean of $S_n = \sum_{i=1}^n X_i$ is $E(S_n) = \sum_{i=1}^n p_i = \lambda$.

Then the distribution P_{S_n} of S_n satisfies

$$\|P_{S_n} - \mathsf{Po}(\lambda)\|_{TV} \le \sum_{i=1}^n p_i^2$$

Proof. Letting Z_1, Z_2, \ldots, Z_n be independent $Po(p_i)$ and $T_n = \sum_{i=1}^n Z_i$: $\|P_{S_n} - Po(\lambda)\|_{TV}$

$$= \|P_{S_n} - P_{T_n}\|_{TV}$$

$$\leq \|P_{X_1,\dots,X_n} - P_{Z_1,\dots,Z_n}\|_{TV} \qquad (\text{data processing})$$

$$\leq \sum_{i=1}^n \|P_{X_i} - P_{Z_i}\|_{TV} \qquad (\text{chain rule})$$

$$\leq \sum_{i=1}^n p_i^2 \qquad (\text{calculus})$$

Recall: If X_1, \ldots, X_n are indep $\text{Bern}(p_i)$ with $\lambda = \sum_{i=1}^n p_i$ then Thm 2 says $\|P_{S_n} - \text{Po}(\lambda)\|_{TV} \leq \sum_{i=1}^n p_i^2$

& from Barbour-Hall (1984): $C_1 \sum_{i=1}^n p_i^2 \le ||P_{S_n} - \mathsf{Po}(\lambda)||_{TV} \le C_2 \sum_{i=1}^n p_i^2$ so we have the right convergence rate!

For finite *n*: Stein's method actually yields

$$\|P_{S_n} - \mathsf{Po}(\lambda)\|_{TV} \le \min\left\{1, \frac{1}{\lambda}\right\} \sum_{i=1}^n p_i^2,$$

which is much better for large λ

E.g. if all $p_i = \frac{1}{\sqrt{n}}$ then $\lambda = \sqrt{n}$ and our bound = 1 whereas Stein's method yields the bound $1/\sqrt{n}$

Corollary: General Poisson Approximation in TV [K-Madiman 06] Suppose the X_i are (*possibly dependent*) \mathbb{Z}_+ -valued random variables with $p_i = \Pr\{X_i = 1\}$, and let $\lambda = \sum_{i=1}^n p_i$. Then the distribution P_{S_n} of $S_n = \sum_{i=1}^n X_i$ satisfies

$$\|P_{S_n} - \mathsf{Po}(\lambda)\|_{TV} \le \sum_{i=1}^n p_i^2 + \sum_{i=1}^n E|p_i - q_i| + \sum_{i=1}^n \Pr\{X_i \ge 2\}$$

where $q_i = \Pr\{X_i = 1 | X_1, \dots, X_{i-1}\}$

Proof of Corollary

To show:
$$||P_{S_n} - \mathsf{Po}(\lambda)||_{TV} \le \sum_{i=1}^n p_i^2 + \sum_{i=1}^n E|p_i - q_i| + \sum_{i=1}^n \Pr\{X_i \ge 2\}$$

As before (data processing+chain rule):

$$\begin{aligned} \|P_{S_n} - \mathsf{Po}(\lambda)\|_{TV} &\leq \|P_{X_1,\dots,X_n} - P_{Z_1,\dots,Z_n}\|_{TV} \\ &\leq \sum_{i=1}^n E\Big[\|P_{X_i|X_1,\dots,X_{i-1}} - P_{Z_i}\|_{TV}\Big] \end{aligned}$$

Letting $I_i = \mathbb{I}_{\{X_i=1\}}$, by the triangle ineq:

$$\begin{aligned} \|P_{S_n} - \mathsf{Po}(\lambda)\|_{TV} &\leq \sum_{i=1}^n \|P_{Z_i} - P_{I_i}\|_{TV} \\ &+ \sum_{i=1}^n E\Big[\|P_{I_i} - P_{I_i|X_1,\dots,X_{i-1}}\|_{TV}\Big] \\ &+ \sum_{i=1}^n E\Big[\|P_{I_i|X_1,\dots,X_{i-1}} - P_{X_i|X_i,\dots,X_{i-1}}\|_{TV}\Big] \quad \Box \end{aligned}$$

Compound Poisson Approximation

Can IT methods actually yield *optimal* bounds? We turn to a more general problem:

Compound Binomial convergence to the compound Poisson

If X_1, X_2, \ldots, X_n are IID $\sim Q$ and I_1, I_2, \ldots, I_n are IID Bern (λ/n) then, for large n, the distr'n of

$$S_n := \sum_{i=1}^n I_i X_i = \sum_{i=1}^{\operatorname{Bin}(n,\lambda/n)} X_i \approx \sum_{i=1}^{\operatorname{Po}(\lambda)} X_i$$

which is the compound Poisson distr $\mathsf{CP}(\lambda, Q)$

General Compound Poisson approximation

For a general sum $S_n = \sum_{i=1}^n Y_i$ of (possibly dependent) \mathbb{R}^d -valued RVs Y_i we may *hope* that the distribution of S_n is $\approx CP(\lambda, Q)$ as long as:

(a) Each
$$p_i := \Pr\{Y_i \neq 0\}$$
 is small

(b) The Y_i are weakly dependent

(c) The distr Q is chosen appropriately

A General Compound Poisson Approximation Result

Notes

 \rightarrow Interpretation: Events occurring at random and in clusters \rightarrow The class of dist's CP(λ , Q) is much richer that the Poisson \rightarrow Depending on the choice of Q, MUCH wider class of tails, etc \rightarrow CP approximation a harder problem, especially in \mathbb{R}^d \rightarrow Same method yields a general bound in relative entropy

 \rightsquigarrow In search of optimality, look directly at TV bounds

Theorem 3: Compound Poisson Approximation [K-Madiman 06] Suppose the Y_i are independent \mathbb{R}^d -valued RVs Write $p_i = \Pr\{Y_i \neq 0\}$ and Q_i for the distr of $Y_i | \{Y_i \neq 0\}$ Then the distribution P_{S_n} of $S_n = \sum_{i=1}^n Y_i$ satisfies $\|P_{S_n} - \mathsf{CP}(\lambda, \bar{Q})\|_{TV} \leq \sum_{i=1}^n p_i^2$ where $\lambda = \sum_{i=1}^n p_i$ and $\bar{Q} = \sum_{i=1}^n \frac{p_i}{\lambda}Q_i$ Let Z_1, Z_2, \ldots, Z_n be indep $CP(p_i, Q_i)$, so that $T_n = \sum_{i=1}^n Z_i \sim CP(\lambda, \overline{Q})$

Let Z_1, Z_2, \ldots, Z_n be indep $CP(p_i, Q_i)$, so that $T_n = \sum_{i=1}^n Z_i \sim CP(\lambda, \overline{Q})$ By the CP defn, each Z_i can be expressed as $Z_i = \sum_{j=1}^{W_i} X_{i,j}$ where $W_i \sim Po(p_i)$ and $X_{i,j} \sim Q_i$ are all indep. Let Z_1, Z_2, \ldots, Z_n be indep $CP(p_i, Q_i)$, so that $T_n = \sum_{i=1}^n Z_i \sim CP(\lambda, \overline{Q})$ By the CP defn, each Z_i can be expressed as $Z_i = \sum_{j=1}^{W_i} X_{i,j}$ where $W_i \sim Po(p_i)$ and $X_{i,j} \sim Q_i$ are all indep. Hence:

$$T_n = \sum_{i=1}^n Z_i = \sum_{i=1}^n \sum_{j=1}^{W_i} X_{i,j}$$

Let Z_1, Z_2, \ldots, Z_n be indep $CP(p_i, Q_i)$, so that $T_n = \sum_{i=1}^n Z_i \sim CP(\lambda, \overline{Q})$ By the CP defn, each Z_i can be expressed as $Z_i = \sum_{j=1}^{W_i} X_{i,j}$ where $W_i \sim Po(p_i)$ and $X_{i,j} \sim Q_i$ are all indep. Hence:

$$T_n = \sum_{i=1}^n Z_i = \sum_{i=1}^n \sum_{j=1}^{W_i} X_{i,j}$$

Similarly let I_1, I_2, \ldots, I_n be indep $\text{Bern}(p_i)$ and write $Y_i = I_i X_{i,1}$. Hence: $S_n = \sum_{i=1}^n Y_i = \sum_{i=1}^n \sum_{j=1}^{I_i} X_{i,j}$ Let Z_1, Z_2, \ldots, Z_n be indep $CP(p_i, Q_i)$, so that $T_n = \sum_{i=1}^n Z_i \sim CP(\lambda, \overline{Q})$ By the CP defn, each Z_i can be expressed as $Z_i = \sum_{j=1}^{W_i} X_{i,j}$ where $W_i \sim Po(p_i)$ and $X_{i,j} \sim Q_i$ are all indep. Hence:

$$T_n = \sum_{i=1}^n Z_i = \sum_{i=1}^n \sum_{j=1}^{W_i} X_{i,j}$$

Similarly let I_1, I_2, \ldots, I_n be indep $\operatorname{Bern}(p_i)$ and write $Y_i = I_i X_{i,1}$. Hence: $S_n = \sum_{i=1}^n Y_i = \sum_{i=1}^n \sum_{j=1}^{I_i} X_{i,j}$ Then: $\|P_{S_n} - \operatorname{CP}(\lambda, \bar{Q})\|_{TV} = \|P_{S_n} - P_{T_n}\|_{TV}$ $\leq \|P_{\{I_i\}, \{X_{i,j}\}} - P_{\{W_i\}, \{X_{i,j}\}}\|_{TV}$ (data processing) $\leq \sum_{i=1}^n \|P_{I_i} - P_{W_i}\|_{TV}$ (chain rule) $\leq \sum_{i=1}^n p_i^2$ (calculus)

Comments

- \rightsquigarrow In general, the bound of Theorem 3 $||P_{S_n} CP(\lambda, \bar{Q})||_{TV} \le \sum_{i=1}^n p_i^2$ can*not* be improved
- \sim Here, the IT method gives the optimal rate *and* optimal constants
- \rightsquigarrow Can we refine our IT methods to recover the optimal $1/\lambda$ factor in the simple Poisson case?
- \rightsquigarrow Recall the earlier example: If X_1, \ldots, X_n are i.i.d. Bern $(\frac{1}{\sqrt{n}})$ with $\lambda = \sqrt{n}$, Stein's method gives

$$\|P_{S_n} - \mathsf{Po}(\lambda)\|_{TV} \le \frac{1}{\sqrt{n}}$$

whereas we got

$$\|P_{S_n} - \mathsf{Po}(\lambda)\|_{TV} \le 1$$

→ To obtain tighter bounds, take a hint from corresponding work for the CLT [Barron, Johnson, Ball-Barthe-Naor, ...] and turn to Fisher information

By analogy to the continuous case, the Fisher information of a \mathbb{Z}_+ -valued random variable $X \sim P$ is usually defined as

$$J(X) = E\left[\left(\frac{P(X) - P(X - 1)}{P(X)}\right)^2\right] = E\left[\left(\frac{P(X - 1)}{P(X)} - 1\right)^2\right]$$

Problem: $J(X) = +\infty$ whenever X has finite support

Recall: $(k+1)P(k+1) = \lambda P(k)$ iff $P = Po(\lambda)$

Define: the Fisher information of $X \sim P$ via

$$J(X) = \lambda E \Big[\Big(rac{(X+1)P(X+1)}{\lambda P(X)} - 1 \Big)^2 \Big]$$

and note that $J(X) \geq 0$ with equality iff $X \sim$ Poisson

$$D\Big(P_{S_n}\Big\|\mathsf{Po}(\lambda)\Big) \leq \sum_{i=1}^n \frac{p_i^3}{\lambda(1-p_i)}$$

Note. This bound is of order $\approx \sum p_i^3$ compared to the earlier $\sum p_i^2$

$$D\Big(P_{S_n}\Big\|\mathsf{Po}(\lambda)\Big) \leq \sum_{i=1}^n \frac{p_i^3}{\lambda(1-p_i)}$$

Note. This bound is of order $\approx \sum p_i^3$ compared to the earlier $\sum p_i^2$ Proof.

Three steps:

$$D\Big(P_{S_n}\Big\|\mathsf{Po}(\lambda)\Big) \stackrel{(a)}{\leq} J(S_n)$$

(a) follows from an application of a recent log-Sobolev inequality due to Bobkov and Ledoux (more later)

$$D\left(P_{S_n} \left\| \mathsf{Po}(\lambda) \right) \le \sum_{i=1}^n \frac{p_i^3}{\lambda(1-p_i)}$$

Note. This bound is of order $\approx \sum p_i^3$ compared to the earlier $\sum p_i^2$ Proof.

Three steps:

$$D(P_{S_n} \| \mathsf{Po}(\lambda)) \stackrel{(a)}{\leq} J(S_n) \stackrel{(b)}{\leq} \sum_{i=1}^n \frac{p_i}{\lambda} J(X_i)$$

(a) follows from an application of a recent log-Sobolev inequality due to Bobkov and Ledoux (more later)

$$D\left(P_{S_n} \left\| \mathsf{Po}(\lambda) \right) \le \sum_{i=1}^n \frac{p_i^3}{\lambda(1-p_i)}$$

Note. This bound is of order $\approx \sum p_i^3$ compared to the earlier $\sum p_i^2$ Proof.

Three steps:

$$D\left(P_{S_n} \left\| \mathsf{Po}(\lambda)\right) \stackrel{(a)}{\leq} J(S_n) \stackrel{(b)}{\leq} \sum_{i=1}^n \frac{p_i}{\lambda} J(X_i) \stackrel{(c)}{\leq} \sum_{i=1}^n \frac{p_i^3}{\lambda(1-p_i)}\right)$$

(a) follows from an application of a recent log-Sobolev inequality due to Bobkov and Ledoux (more later)

(c) is a simple evaluation of J(Bern(p))

Proof cont'd.

$$D\left(P_{S_n} \left\| \mathsf{Po}(\lambda)\right) \stackrel{(a)}{\leq} J(S_n) \stackrel{(b)}{\leq} \sum_{i=1}^n \frac{p_i}{\lambda} J(X_i) \stackrel{(c)}{\leq} \sum_{i=1}^n \frac{p_i^3}{\lambda(1-p_i)}\right)$$

(b) is based on the more general subadditivity property

$$J(S_n) \le \sum_{i=1}^n \frac{E(X_i)}{E(S_n)} J(X_i) \tag{*}$$

Recall

$$J(X) = \lambda E \left[\left(\frac{(X+1)P(X+1)}{\lambda P(X)} - 1 \right)^2 \right]$$

(*) is proved by writing $\left[\frac{(z+1)P*Q(z+1)}{P*Q(z)}-1\right]$ as a conditional expectation and using ideas about L^2 projections of convolutions

Ineq (*) is the natural discrete analog of Stam's Fisher information ineq (in the continuous case), used to prove the *entropy power inequality*

Recall the earlier example

Suppose
$$X_1, \ldots, X_n$$
 are i.i.d. Bern $(\frac{1}{\sqrt{n}})$ and let $\lambda = \sqrt{n}$

Our earlier bound was

$$\|P_{S_n} - \mathsf{Po}(\lambda)\|_{TV} \le 1$$

Stein's method gives

$$\|P_{S_n} - \mathsf{Po}(\lambda)\|_{TV} \le \frac{1}{\sqrt{n}}$$

Theorem 4 combined with Pinsker's ineq gives

$$||P_{S_n} - \mathsf{Po}(\lambda)||_{TV} \le \sqrt{2} \Big[D(P_{S_n} ||\mathsf{Po}(\lambda)) \Big]^{1/2} \le \frac{1}{\sqrt{n}} \sqrt{\frac{5}{2}}$$

Moreover, Theorem 4 gives a strong **new** bound in terms of relative entropy!

1. Poisson Approximation in Relative Entropy

Motivation: Entropy and the central limit theorem *Motivation*: Poisson as a maximum entropy distribution A very simple general bound; **Examples**

2. Analogous Bounds in Total Variation

Suboptimal Poisson approximation Optimal Compound Poisson approximation

3. Tighter Poisson Bounds for Independent Summands

A (new) discrete Fisher information; subadditivity A log-Sobolev inequality

4. Measure Concentration and Compound Poisson Tails

The compound Poisson distributions A log-Sobolev inequality and its info-theoretic proof Compound Poisson concentration

An Example [Bobkov & Ledoux (1998)] If $W \sim \text{Po}(\lambda)$ and f(i) is 1-Lipschitz, i.e., $|f(i+1) - f(i)| \le 1$ $\Pr\left\{f(W) - E[f(W)] > t\right\} \le \exp\left\{-\frac{t}{4}\log\left(1 + \frac{t}{2\lambda}\right)\right\}$ for all t > 0

Note

- \rightsquigarrow Sharp bound, valid for all t and all such f
- \rightsquigarrow One example from a very large class of such results
- → Many different methods of proof dominant one probably the "entropy method"

Define

The relative entropy of a function g > 0 w.r.t. a prob distr P $\operatorname{Ent}_P(g) = \sum_i P(i)g(i)\log g(i) - \left[\sum_i P(i)g(i)\right]\log\left[\sum_i P(i)g(i)\right]$ e.g., if g(i) = Q(i)/P(i), then $\operatorname{Ent}_P(g) = D(Q||P)$ = relative entropy

A Logarithmic Sobolev Inequality

Our earlier log-Sobolev ineq $D(P \| \mathsf{Po}(\lambda)) \leq \lambda E \left[\left(\frac{(X+1)P(X+1)}{\lambda P(X)} - 1 \right)^2 \right]$ is equivalent to: If $W \sim \mathsf{Po}(\lambda)$, then for any function g > 0:

$$\operatorname{Ent}_{\operatorname{Po}(\lambda)}(g) \le \lambda E \left[\frac{|Dg(W)|^2}{g(W)} \right]$$

where Dg(i) = g(i+1) - g(i)

Proof: Information-theoretic tools

Use the **tensorization property** of relative entropy – more later...

Given f, substitute $g(i)=e^{\theta f(i)}$ in the log-Sobolev ineq

$$\operatorname{Ent}_{\operatorname{Po}(\lambda)}(g) \le \lambda E\left[\frac{|Dg(W)|^2}{g(W)}\right]$$

This yields a bound on the log-moment generating fn of $f(\boldsymbol{W})$

$$L(\boldsymbol{\theta}) = E\Big[e^{\boldsymbol{\theta}f(W)}\Big], \quad W \sim \mathsf{Po}(\lambda)$$

and combining with Chernoff's bound,

$$\Pr\left\{f(W) - E[f(W)] > t\right\} \leq L(\theta) \exp\left\{-\theta\left(t + E[f(W)]\right)\right\}$$
$$\leq \exp\left\{-\frac{t}{4}\log\left(1 + \frac{t}{2\lambda}\right)\right\}$$

Remarks

Note

- \sim General, powerful inequality, proved by info-theoretic techniques
- → Proof heavily dependent on existence of log-moment generating fn
- → Domain of application restricted to a small family (Poisson distr)

Generalize to Compound Poisson Distrs on \mathbb{Z}_+

 $\begin{array}{l} \rightsquigarrow \ \ \, \mbox{The asymptotic tails of } Z\sim {\rm CP}(\lambda,Q) \ \mbox{are determined by those of } Q \\ {\rm e.g., \ if \ } Q(i)\sim e^{-\alpha i} \ \ \mbox{then \ } {\rm CP}_{\lambda,Q}(i)\sim e^{-\alpha i} \\ {\rm if \ } Q(i)\sim 1/i^\beta \ \ \mbox{then \ } {\rm CP}_{\lambda,Q}(i)\sim 1/i^\beta, \ \mbox{etc} \end{array}$

Versatility of tail behavior is attractive for modelling

Concentration? If Q has sub-exponential tails the Herbst argument fails

 \leadsto The $\mathsf{CP}(\lambda,Q)$ distribution can be built up from "small Poissons"

$$\mathsf{CP}(\lambda,Q) \;\stackrel{\mathcal{D}}{=}\;\; \sum_{i=1}^{\mathsf{Po}(\lambda)} X_i \;\stackrel{\mathcal{D}}{=}\;\; \sum_{j=1}^{\infty}\; j \cdot \mathsf{Po}(\lambda Q(j))$$

Theorem 5: Log-Sobolev Inequality for CP Distrs [Wu 00, K-Madiman 05] Let $X \sim P$ be an arbitrary RV with values in \mathbb{Z}_+

For any $\lambda > 0$, any distr Q on the natural nos, any g > 0 $\operatorname{Ent}_{\operatorname{CP}(\lambda,Q)}(g) \leq \lambda \sum_{j \geq 1} Q(j) E\left[\frac{|D^j g(Z)|^2}{g(Z)}\right]$ where $Z \sim \operatorname{CP}(\lambda, Q)$ and $D^j g(i) = g(i+j) - g(i)$

Proof Idea

Use the tensorization property of the relative entropy

$$\operatorname{Ent}_{\operatorname{Po}(\lambda_1)\times\operatorname{Po}(\lambda_2)\times\cdots\times\operatorname{Po}(\lambda_n)}(g) \leq \sum_{j=1}^n E\left[\operatorname{Ent}_{\operatorname{Po}(\lambda_j)}\left(g(W_1^{j-1},\cdot,W_{j+1}^n)\right)\right]$$

to get a vector version of the Poisson LSI Apply it to $g(w_1, w_2, \dots, w_n) = \sum_j j \cdot w_j$ and let $n \to \infty$, using $\mathsf{CP}(\lambda, Q) = \lim_n \sum_{j=1}^n j \cdot \mathsf{Po}(\lambda Q(j))$ **Theorem 6:** Measure Concentration for CP Distributions [K-Madiman 05] (i) Suppose $Z \sim CP(\lambda, Q)$ and Q has finite Kth moment

$$\sum_{j} j^{K} Q(j) < \infty$$

If f is 1-Lipschitz, i.e., $|f(i+1)-f(i)|\leq 1$ for all i then for t>0

$$\Pr\Big\{ \Big| f(Z) - E[f(Z)] \Big| > t \Big\} \le A \Big(\frac{B}{t} \Big)^K$$

where the constants A,B are explicit and depend only on $\lambda,K,|f(0)|,$ and on the integer moments of Q

(ii) An analogous bound holds for any RV Z whose distr satisfies the log-Sobolev ineq of Thm 5

The Constants in Theorem 2

Let

$$q(r) = \sum_{j} j^{r} Q(j)$$

Then

$$\Pr\Big\{ \Big| f(Z) - E[f(Z)] \Big| > t \Big\} \le A \Big(\frac{B}{t} \Big)^K$$

where

$$A = \exp\left\{\sum_{r=1}^{K} \binom{K}{r} q(r)\right\}$$
$$B = 2|f(0)| + 2\lambda q(1) + 1$$

Modification of Herbst argument: Given f, let $G_{\theta}(i) = |f(i) - E[f(Z)]|^{\theta}$ and define the "polynomial" moment-generating fn

 $M(\theta) = E[G_{\theta}(Z)]$

Substitute $g = G_{\theta}$ in the log-Sobolev ineq

$$\operatorname{Ent}_{\operatorname{CP}(\lambda,Q)}(g) \le \lambda \sum_{j \ge 1} Q(j) E\left[\frac{|D^j g(Z)|^2}{g(Z)}\right]$$

to get the differential inequality

$$\theta M'(\theta) - M(\theta) \log M(\theta) \le \lambda M(\theta) \sum_{j} Q(j) \Big[\text{terms involving } \theta \log(C + Dj) \Big]$$

Solving, yields a bound on $M(\theta)$, and combining with Markov's ineq,

$$\Pr\left\{\left|f(Z) - E[f(Z)]\right| > t\right\} \leq \frac{M(\theta)}{t^{\theta}} \leq \cdots \leq A\left(\frac{B}{t}\right)^{K}$$

Information-theoretic approach to (Compound-)Poisson approximation

Two approaches

 \rightsquigarrow A simple, very general one

 $\rightsquigarrow \mathsf{A}$ tight one for the independent Poisson case

Non-asymptotic, strong *new* bounds, intuitively satisfying

Ideas

A new version of Fisher information

 L^2 -theory and log-Sobolev inequalities for discrete random variables

Concentration

A simple, general CP-approximation bound

A log-Sobolev ineq for the CP dist

New non-exponential measure concentration bounds

$$D\Big(P_{\hat{S_n}}\Big\|N(0,\sigma^2)\Big)\downarrow 0 \iff h(\hat{S_n})\uparrow h(N(0,\sigma^2)) \text{ as } n\to\infty$$

- (i) The accumulation of many, small, independent random effects is maximally random
- (ii) The monotonicity in n indicates that the entropy is a natural measure for the convergence of the CLT

More generally the CLT holds as long as

- (a) Each $E(X_i)$ is small
- (b) The overall variance $\operatorname{Var}(\hat{S}_n) \approx \sigma^2$
- (c) The X_i are weakly dependent
- → Next look at the other central result on the distribution of the sum of many small random effects: Poisson approximation

The defining compound Poisson example

If X_1, X_2, \ldots, X_n are IID $\sim Q$ on \mathbb{N} and I_1, I_2, \ldots, I_n are IID Bern (λ/n) then for $S_n = \sum_{i=1}^n I_i X_i$ Theorem 3 gives

$$D(P_{S_n} \| \mathsf{CP}(\lambda, Q)) \leq \sum_{i=1}^n (\lambda/n)^2 = \lambda^2/n$$

Again, sufficient for convergence, but the optimal rate is ${\cal O}(1/n^2)$

A Markov chain example

Let $S_n = \sum_{i=1}^n I_i X_i$ where X_1, \ldots, X_n are IID $\sim Q$ on \mathbb{N} and I_1, \ldots, I_n is a stationary Markov chain with transition matrix $\begin{pmatrix} \frac{n}{n+1} & \frac{1}{n+1} \\ \frac{n-1}{n+1} & \frac{2}{n+1} \end{pmatrix}$ Theorem 3 easily gives $D(P_{S_n} \| \mathsf{CP}(1, Q)) \leq \frac{3 \log n}{n} + \frac{1}{n}$

Another Example

Theorem 2 easily generalizes to non-binary X_i , as long as $J(X_i)$ can be evaluated or estimated. E.g.:

Sum of Small Geometrics

Suppose X_1, X_2, \ldots, X_n are indep Geom (q_i) let $\lambda = E(S_n) = \sum_{i=1}^n [(1 - q_i)/q_i]$

Then $J(X_i) = (1 - q_i)^2/q_i$ and proceeding as in the proof of Theorem 2 $D(P_{S_n} \| \mathsf{Po}(\lambda)) \leq \sum_{i=1}^n \frac{(1 - q_i)^3}{\lambda q_i^2}$

In the case when all $q_i = n/(n+\lambda) \approx 1 - \lambda/n$ this takes the elegant form $D(P_{S_n} \| \mathsf{Po}(\lambda)) \leq \frac{\lambda^2}{n^2}$

Recall the proof of Theorem 2 in the Poisson case:

$$D\left(P_{S_n} \left\| \mathsf{Po}(\lambda)\right) \stackrel{(a)}{\leq} J(S_n) \stackrel{(b)}{\leq} \sum_{i=1}^n \frac{p_i}{\lambda} J(X_i) \stackrel{(c)}{\leq} \sum_{i=1}^n \frac{p_i^3}{\lambda(1-p_i)}\right)$$

 \rightsquigarrow In order to generalize this approach we first need a new version of the Fisher information, and a corresponding log-Sobolev ineq for the compound Poisson measure . . .

- \rightsquigarrow The $CP(\lambda, Q)$ laws are the *only* infinitely divisible distr's on \mathbb{Z}_+
- $\begin{array}{l} \rightsquigarrow \quad \text{The asymptotic tails of } Z \sim \operatorname{CP}(\lambda, Q) \text{ are determined by those of } Q \\ \text{e.g., if } Q(i) \sim e^{-\alpha i} \quad \text{then } \operatorname{CP}_{\lambda,Q}(i) \sim e^{-\alpha i} \\ \text{ if } Q(i) \sim 1/i^{\beta} \quad \text{then } \operatorname{CP}_{\lambda,Q}(i) \sim 1/i^{\beta}, \text{ etc} \end{array}$

Versatility of tail behavior is attractive for modelling

Concentration? If Q has sub-exponential tails the Herbst argument fails

 \rightsquigarrow The $\operatorname{CP}(\lambda, Q)$ distribution can be built up from "small Poissons"

$$\mathrm{CP}(\lambda, Q) \stackrel{\mathcal{D}}{=} \sum_{i=1}^{\mathrm{Po}(\lambda)} X_i \stackrel{\mathcal{D}}{=} \sum_{j=1}^{\infty} j \cdot \mathrm{Po}(\lambda Q(j))$$

Let $C_{\lambda,Q}(k)$ denote the compound Poisson probabilities $Pr\{CP(\lambda,Q) = k\}$

Theorem 4: Log-Sobolev Inequality for the Compound Poisson Measure Let $X \sim P$ be an arbitrary \mathbb{Z}_+ -valued RV

(a) [Bobkov-Ledoux (1998)] For any $\lambda > 0$: $D\left(P \| \mathsf{Po}(\lambda)\right) \leq \lambda E\left[\left(\frac{(X+1)}{\lambda} \frac{P(X+1)}{P(X)} - 1\right)^2\right]$

(b) For any $\lambda > 0$ and any measure Q on \mathbb{N} :

$$D\left(P\left\|\mathsf{CP}(\lambda,Q)\right) \leq \lambda \sum_{j=1}^{\infty} Q(j) E\left[\left(\frac{C_{\lambda,Q}(X)}{C_{\lambda,Q}(X+j)} \frac{P(X+j)}{P(X)} - 1\right)^2\right]$$

Step 1. Derive a simple log-Sobolev ineq for the Bernoulli measure $B_p(k)$ For any binary RV $X \sim P$:

$$D(P \| \text{Bern}(p)) \le p(1-p)E\left[\left(\frac{B_p(X)}{B_p(X+1)} \frac{P(X+1)}{P(X)} - 1\right)^2\right]$$

Step 2. Recall the "tensorization" property of relative entropy Whenever $X = (X_1, \ldots, X_n) \sim P_n$:

$$D\left(P_{n} \left\| \prod_{i=1}^{n} \nu_{i} \right) \leq \sum_{i=1}^{n} E_{P_{n}} \left[D\left(P_{n}(\cdot | X_{1}, \dots, X_{i-1}, X_{i+1}, \dots, X_{n}) \| \nu_{i} \right) \right]$$

Use this to extend step 1 to products of Bernoullis:

$$D\Big(P_n\Big\|\prod_{i=1}^n \text{Bern}(p)\Big) \le p(1-p)E\Big[\sum_{i=1}^n \Big(\frac{B_p^n(X)}{B_p^n(X+e_i)}\frac{P_n(X+e_i)}{P_n(X)}-1\Big)^2\Big]$$

Step 3. Since
$$\operatorname{Po}(\lambda) \stackrel{\mathcal{D}}{=} \lim_{n} \sum_{i=1}^{n} \operatorname{Bern}(\lambda/n)$$
, applying step 2 to a P_n that only depends on $X_1 + \dots + X_n$ and taking $n \to \infty$:
$$D\left(P \| \operatorname{Po}(\lambda)\right) \leq \lambda E\left[\left(\frac{(X+1)}{\lambda} \frac{P(X+1)}{P(X)} - 1\right)^2\right]$$

In (a), the key was the representation of $Po(\lambda)$ in terms of indep Bernoullis

$$\operatorname{Po}(\lambda) \stackrel{\mathcal{D}}{=} \lim_{n} \sum_{i=1}^{n} \operatorname{Bern}(\lambda/n)$$

Here use an alternative representation of $CP(\lambda, Q)$ in terms of indep Poissons

$$CP(\lambda, Q) \stackrel{\mathcal{D}}{=} \sum_{i=1}^{PO(\lambda)} X_i \stackrel{\mathcal{D}}{=} \sum_{i=1}^{\infty} j \cdot PO(\lambda Q(j)) \stackrel{\mathcal{D}}{=} \lim_{n} \sum_{i=1}^{n} j \cdot PO(\lambda Q(j))$$
(*)

- *Step 1.* Start with the Poisson log-Sobolev ineq of (a)
- Step 2. Tensorize to obtain an ineq for products of Poissons Whenever $X = (X_1, \dots, X_n) \sim P_n$: $D(P_n \| \prod_{i=1}^n \operatorname{Po}(\lambda_i)) \leq [\cdots]$

Step 3. Apply step 2 to a
$$P_n$$
 that only depends on $\sum_{j=1}^n j \cdot X_j$
and take $n \to \infty$ using $(*)$

Instead of continuing with CP-approximation, take a detour

- \rightsquigarrow Suppose, for simplicity, that Q has finite support $\{1, 2, \ldots, m\}$
- \rightsquigarrow Write as before $C_{\lambda,Q}(k) = \Pr{\{\mathsf{CP}(\lambda,Q) = k\}}$

Theorem 5: Measure Concentration for CP-like Measures

(i) Let
$$Z \sim CP(\lambda, Q)$$
 and f be a Lipschitz-1 function on \mathbb{Z}_+
 $[|f(k+1) - f(k)| \le 1 \text{ for all } k]$. For $t > 0$:
 $Pr\{f(Z) \ge E[f(Z)] + t\} \le \exp\left\{-\frac{t}{2m}\log(1 + \frac{t}{\lambda m^2})\right\}$

(ii) An analogous bound holds for any $Z \sim \mu$ that satisfies the log-Sobolev ineq of Thm 4

Proof. Follows Herbst's Gaussian argument: Apply the log-Sobolev ineq to $f = e^{\theta g}$ for a Lipschitz g. Expand to get a differential inequality for the M.G.F. $L(\theta) = E[e^{\theta g(Z)}]$. Use the bound and apply Chebychev

The finite-support assumption. Can be relaxed at the price of technicalities. More general bounds, much more general class of tails

Poisson tails. From Theorem 5 we see that Lipschitz-1 functions of CP-like RVs have Poisson tails. In particular:

Corollary: Poisson Tails for Lipschitz Functions

Let $Z \sim CP(\lambda, Q)$ or any other distr satisfying the assumptions of Thm 5 For any Lipschitz-1 function f on \mathbb{Z}_+ we have:

$$E\left[e^{\theta|f(Z)|\log^+|f(Z)|}\right] < \infty$$
 for all $\theta > 0$ small enough