Assignment 1 5 Feb. 2014

- 1. Let \mathscr{A} be the smallest σ -field of subsets of $\mathbb{R}^{[0,\infty)}$ containing cylinder sets. Show that the set $C[0,\infty)$ of continuous functions $f:[0,\infty) \to \mathbb{R}$ is not an element of \mathscr{A} .
- 2. If X, Y are random variables, defined on some probability space $(\Omega, \mathscr{F}, \mathbb{P})$, and taking values in C[0,1]—the set of continuous functions $f : [0.1] \to \mathbb{R}$, equipped with the σ -algebra generated by the open sets in the topology of uniform convergence—show that equality of the finite-dimensional distributions of X and Y implies equality of their laws (i.e., that $\mathbb{P} \circ X^{-1} = \mathbb{P} \circ Y^{-1}$.)
- 3. Show that time-inversion of a standard Brownian motion gives a standard Brownian motion.
- 4. If W_t , $t \ge 0$, is a standard Brownian motion, show that the finite-dimensional distributions of $Z_t := e^{-t}W(e^{2t})$, $t \ge 0$, are invariant under time shifts. Also show that Z is Markov and Gaussian. (This Z is known as [the stationary version of an] Ornstein-Uhlenbeck process.)
- 5. Write down a complete proof of the fact that if \mathscr{F}_t , $t \ge 0$, is a right-continuous filtration, if A is a closed set, and if X_t , $t \ge 0$, has continuous paths, then $T_A := \inf\{t \ge 0 : X_t \in A\}$ is a stopping time (with respect to \mathscr{F}_t).
- 6. Show that a family $\{X_t\}$ of random variables on $(\Omega, \mathscr{F}, \mathbb{P})$ is uniformly integrable if and only if for all $\varepsilon > 0$ there exists $\delta > 0$ such that $\mathbb{E}(|X|; A) < \varepsilon$ whenever $\mathbb{P}(A) < \delta$. Use this to show that a martingale $M_t, t \ge 0$, is uniformly integrable when t is restricted on bounded sets.
- 7. Let W be a Brownian motion. Show that $M_t := W_t^3 3 \int_0^t W_s \, ds$ and $N_t := W_t^3 3tW_t$ are both martingales. (The first martingale is, as we will see later, rather special because $A_t := 3 \int_0^t W_s \, ds$ is differentiable in t and so has locally bounded variation on bounded intervals. We will later see that this A_t is, in some sense, unique.)
- 8. Exercise 3.16.
- 9. Exercise 3.17.