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Stochastic processes Spring 2014

50% of the assignments must be solved correctly.
Deadline: Precisely 1 week = 168 hours after the end of the last lecture.
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23 Feb. 2014

17 Let M be a local martingale, that is, there is a sequence 7,, of finite stopping times,
such that T), 1 oo, a.s. and M7, t > 0, is a martingale for all n. (A sequence T, of
such stopping times is called a localizing sequence.) Suppose that M is a continuous local
martingale. Show that we can take T}, := inf{¢t > 0: |M;| > n} as a localizing sequence.

2¥ Show that if My, t > 0, is a uniformly integrable martingale and S, T" are a.s. finite stopping
times with S < T, a.s., then E(Mrp|Zg) = Mg.

3¥ Does Proposition 9.5 use the usual conditions for the filtration?

4* For a uniformly integrable martingale M, show that the family of random variables { My :
T finite stopping time} is uniformly integrable.

55 Let My, t > 0, be a square integrable martingale with quadratic variation (M). Given
predictable function H : Ry x 2 — R define, as in Ch. 10,

|H], = \/E /0 " H2A(M),.

(N)

If |H||; < oo, show that there exists a sequence H"Y)| N € N; of elementary predictable
functions' such that |[H — HN) ||y — 0, as N — oco. (Hint: truncate space and time and
use hint near the end of pg. 67.)

6* (If the integrands are deterministic then we may allow the parameter space to be “general”—
not necessarily time!) Let %< denote the Borel o-field on RY. Define a family {W (B), B €
%%} of random variables by requiring that every finite subfamily is normal (Gaussian) and
that EW(B) = 0, EW(A)W(B) = AM(AN B), with A being the d-dimensional Lebesgue
measure. By using arguments similar do the ones of Ch. 10, give a meaning to the integral
Jga ¢(x) AW (z) where ¢ is a square-integrable function: [p4 ¢(2)? M(dz) < oo, and by
requiring that [, 15 dW (z) := W(B), whenever B € %%, A\(B) < cc.

7.2** [Optional problem] Construct a function f : [0,1] — R such that (i) f is cadlag ,
(i) f(t) — f(t—) > 0 for all ¢, (iii) f has unbounded variation. Can such a function be
increasing?
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! An elementary predictable function is a linear combination of finitely many step predictable functions; a step
predictable function is a function: Ry x Q — R of the form K (w)Xl(,4(t) where K : Q — R is #,-measurable
and bounded.



The following need not be submitted, but should be done in connection with your study of the
construction of the stochastic integral for which I only provided a (hopefully illuminated) road map in
class.

1. Suppose that A : R — R is a continuous function with locally bounded variation. Show, from first
principles, that if f € C!, then

f(A(t))—f(A(S))=/ f'(A(u)) dA(u).

If A is the Cantor function on [0,1], then compute [ exp(A(u)) dA(u), for 0 <z < 1.

2. Let (£2,.7) be a measurable space with a filtration .%;, ¢ > 0. Consider the class (call it class
A) of bounded functions F' : Ry x Q — R such that ¢t — F(t,w) is left-continuous for all w and
w = F(t,w) is #—measurable for all t. Let & be the o-field of subsets of R} x € generated by
class A, i.e., & := o(class A). Next, consider the class (call it class B) of functions G : Ry xQ — R
of the form G(t,w) = K(w)1(q(t) where 0 < a < b, and where K : Q — R is .%,~measurable and
bounded. Let 2 := o(class B). Show that &2 = 2, i.e., that every set in & is in £ and vice versa.

3. An elementary predictable process is a linear combination of finitely many functions from class
B. Let H be an elementary predictable process and M a square-integrable continuous martingale.
We defined N; := fot HydM; in the obvious way. Show that this definition makes sense (if H is
represented in two ways as linear combination of functions from class B, then the result is the same.)
Show that N;, t > 0, is a square-integrable continuous martingale. Therefore, there is a random
variable No, such that (N;,0 <t < 00) is a martingale. Show that (N); = fot H2d{M)s, for all t,
a.s., and that (N) o :=lim¢ oo (N); = [ H2d(M), < 00, a.s., and, moreover, ENZ = (N).

4. (Exercise 9.5) Let 5 be the collection of processes Y : Ry x  — R which are jointly measurable
in (¢,w) and such that Esupg<; Y? < oo. Define d(Y, Z) := \/EsupOSKOO(YQ — Z;)? and show
that it is a pseudo-metric. Identify processes Y,Y” such that d(Y,Y’) = 0 and let A be the
collection of equivalence classes. Show that d naturally extends to 7. (All that is “standard

machinery”!) Moreover (and this is the important thing) show that A is complete (i.e., if Yy, is
a Cauchy sequence, meaning that d(Y,,Y,,) — 0 as (m,n) — (0o, 00), then there is Y such that
d(Y,,Y) = 0.

5. Explain how the Hilbert-space isometry mentioned in class is an alternative way of seeing what’s
going on in “taking limits” on pages 67-68.

6. Let M be a continuous square-integrable martingale and let T be a stopping time. Let L; := Myap.
Show that L; is a continuous square-integrable martingale and that (L); = (M)iar, t > 0, a.s.

7. We have carefully defined (M) for a continuous square-integrable martingale. Have we defined it
for any continuous local martingale too?

8. If X is a continuous semimartingale with Doob-Meyer decomposition X = M + A why does it
make sense to define (X) = (M)? Also, assuming M is not constant, why is the variation of X
infinite on any interval of positive length?

9. (Bonus problem!) Let A : R — R be a bounded increasing function (not necessarily continuous).
Let A(—o0) := limy)_oo A(t), and A(+00) := limy 1o A(t), both of which exist and finite by
monotonicity and boundedness, respectively. Let B : R — [—o00,+00] be the “inverse” of A
(keeping in mind that inf @ := +oo, sup@ := —o0): B(x) :=inf{t € R: A(t) > z}, € R. Let
f R — R, be measurable and non-negative function. Show that

A(+00)
/ o(t) dA() = / () di.
R A(—o00)

(The left side is a Lebesgue-Stieltjes integral; the right is a Lebesgue integral.)



