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1.∗ Let M be a local martingale, that is, there is a sequence Tn of finite stopping times,
such that Tn ↑ ∞, a.s. and Mt∧Tn

, t ≥ 0, is a martingale for all n. (A sequence Tn of
such stopping times is called a localizing sequence.) Suppose that M is a continuous local
martingale. Show that we can take Tn := inf{t ≥ 0 : |Mt| > n} as a localizing sequence.

2.∗ Show that ifMt, t ≥ 0, is a uniformly integrable martingale and S, T are a.s. finite stopping
times with S ≤ T , a.s., then E(MT |FS) = MS .

3.∗ Does Proposition 9.5 use the usual conditions for the filtration?

4.∗ For a uniformly integrable martingale M , show that the family of random variables {MT :
T finite stopping time} is uniformly integrable.

5.∗∗ Let Mt, t ≥ 0, be a square integrable martingale with quadratic variation 〈M〉. Given
predictable function H : R+ × Ω → R define, as in Ch. 10,

‖H‖2 :=

√
E

∫
∞

0
H2

t d〈M〉t.

If ‖H‖1 < ∞, show that there exists a sequence H(N), N ∈ N, of elementary predictable
functions1 such that ‖H −H(N)‖2 → 0, as N → ∞. (Hint: truncate space and time and
use hint near the end of pg. 67.)

6.∗∗ (If the integrands are deterministic then we may allow the parameter space to be “general”–
not necessarily time!) Let Bd denote the Borel σ-field on R

d. Define a family {W (B), B ∈
Bd} of random variables by requiring that every finite subfamily is normal (Gaussian) and
that EW (B) = 0, EW (A)W (B) = λ(A ∩ B), with λ being the d-dimensional Lebesgue
measure. By using arguments similar do the ones of Ch. 10, give a meaning to the integral∫
Rd ϕ(x) dW (x) where ϕ is a square-integrable function:

∫
Rd ϕ(x)

2 λ(dx) < ∞, and by
requiring that

∫
Rd 1B dW (x) := W (B), whenever B ∈ Bd, λ(B) < ∞.

7.∗ ∗ ∗ [Optional problem] Construct a function f : [0, 1] → R such that (i) f is càdlàg ,
(ii) f(t) − f(t−) ≥ 0 for all t, (iii) f has unbounded variation. Can such a function be
increasing?

second page→

1An elementary predictable function is a linear combination of finitely many step predictable functions; a step
predictable function is a function: R+ × Ω → R of the form K(ω)1(a,b](t) where K : Ω → R is Fa-measurable
and bounded.
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The following need not be submitted, but should be done in connection with your study of the
construction of the stochastic integral for which I only provided a (hopefully illuminated) road map in
class.

1. Suppose that A : R → R is a continuous function with locally bounded variation. Show, from first
principles, that if f ∈ C1, then

f(A(t))− f(A(s)) =

∫ t

s

f ′(A(u)) dA(u).

If A is the Cantor function on [0, 1], then compute
∫ x

0
exp(A(u)) dA(u), for 0 ≤ x ≤ 1.

2. Let (Ω,F ) be a measurable space with a filtration Ft, t ≥ 0. Consider the class (call it class
A) of bounded functions F : R+ × Ω → R such that t 7→ F (t, ω) is left-continuous for all ω and
ω 7→ F (t, ω) is Ft–measurable for all t. Let P be the σ-field of subsets of R+ × Ω generated by
class A, i.e., P := σ(class A). Next, consider the class (call it class B) of functions G : R+×Ω → R

of the form G(t, ω) = K(ω)1(a,b](t) where 0 ≤ a ≤ b, and where K : Ω → R is Fa–measurable and
bounded. Let Q := σ(class B). Show that P = Q, i.e., that every set in P is in Q and vice versa.

3. An elementary predictable process is a linear combination of finitely many functions from class
B. Let H be an elementary predictable process and M a square-integrable continuous martingale.
We defined Nt :=

∫ t

0
HsdMs in the obvious way. Show that this definition makes sense (if H is

represented in two ways as linear combination of functions from class B, then the result is the same.)
Show that Nt, t ≥ 0, is a square-integrable continuous martingale. Therefore, there is a random
variable N∞ such that (Nt, 0 ≤ t ≤ ∞) is a martingale. Show that 〈N〉t =

∫ t

0
H2

sd〈M〉s, for all t,

a.s., and that 〈N〉∞ := limt→∞〈N〉t =
∫∞

0
H2

sd〈M〉s < ∞, a.s., and, moreover, EN2
∞ = 〈N〉∞.

4. (Exercise 9.5) Let H be the collection of processes Y : R+ ×Ω → R which are jointly measurable

in (t, ω) and such that E sup0≤t<∞ Y 2
t < ∞. Define d(Y,Z) :=

√
E sup0≤t<∞(Yt − Zt)2 and show

that it is a pseudo-metric. Identify processes Y, Y ′ such that d(Y, Y ′) = 0 and let H̃ be the

collection of equivalence classes. Show that d naturally extends to H̃ . (All that is “standard

machinery”!) Moreover (and this is the important thing) show that H̃ is complete (i.e., if Yn is
a Cauchy sequence, meaning that d(Yn, Ym) → 0 as (m,n) → (∞,∞), then there is Y such that
d(Yn, Y ) → 0.

5. Explain how the Hilbert-space isometry mentioned in class is an alternative way of seeing what’s
going on in “taking limits” on pages 67-68.

6. Let M be a continuous square-integrable martingale and let T be a stopping time. Let Lt := Mt∧T .
Show that Lt is a continuous square-integrable martingale and that 〈L〉t = 〈M〉t∧T , t ≥ 0, a.s.

7. We have carefully defined 〈M〉 for a continuous square-integrable martingale. Have we defined it
for any continuous local martingale too?

8. If X is a continuous semimartingale with Doob-Meyer decomposition X = M + A why does it
make sense to define 〈X〉 = 〈M〉? Also, assuming M is not constant, why is the variation of X
infinite on any interval of positive length?

9. (Bonus problem!) Let A : R → R be a bounded increasing function (not necessarily continuous).
Let A(−∞) := limt↓−∞ A(t), and A(+∞) := limt↓+∞ A(t), both of which exist and finite by
monotonicity and boundedness, respectively. Let B : R → [−∞,+∞] be the “inverse” of A

(keeping in mind that inf ∅ := +∞, sup∅ := −∞): B(x) := inf{t ∈ R : A(t) > x}, x ∈ R. Let
f : R → R+ be measurable and non-negative function. Show that

∫

R

ϕ(t) dA(t) =

∫ A(+∞)

A(−∞)

ϕ(x) dx.

(The left side is a Lebesgue-Stieltjes integral; the right is a Lebesgue integral.)
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