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Stochastic processes Spring 2014

50% of the assignments must be solved correctly.

Deadline: Precisely 1 week = 168 hours after the end of the last lecture.

I reserve the right to ask you to explain to me how you solved a problem.

Almost all the exercises below are easy. Exercise 3 (11.2) asks you to write down

a careful derivation of the formula.

Assignment 5

3 Mar. 2014

1. Let Sn, n ∈ Z, is a simple symmetric random walk in Z. That is, S0 = 0, Sn =
ξ1 + · · · + ξn, sum of i.i.d. Bernoulli random variables, P(ξ1 = ±1) = 1/2. Let Mn :=
max(S0, S1, . . . , Sn). (i) Show that Mn−Sn, n ≥ 0, is Markov. This is (a partial) discrete-
time analog of Theorem 14.2. (ii) What else can you squeeze out of these processes? Is
∑n

k=1(sgnSk)ξk, n ≥ 0, a simple symmetric random walk?

2. Let Wt be standard Brownian motion, Mt = sups≤tWs. Use the fact that |W | has the
same law as Q := M − W to show that |W | is Markov. (Hint: Show that Qt = [Qs +
(Wt −Ws)] ∨ sups≤r≤t(Wr −Ws), for s < t.)

3. Exercise 11.2. Very important if you really want to understand Tanaka’s formula and,
therefore, the concept of local time as defined through Tanaka’s formula.

4. Exercise 13.5. This is the more general version of Girsanov’s theorem for continuous
martingales.

5. Let P be a probability measure on Rn and let X : Rn → Rn be the identity function
(regarded as a random variable with law P). Let g : Rn → Rn be a diffeomorphism. (i)
Show that there is a probability measure Q on Rd such that Y := g(X) has law P under
Q. (Just take Q to be the law of g−1(X) under P, and show that it works.) (ii) Consider
a “discrete-time” Brownian motion X := (X1, X2, . . . , Xn), where Xk := ξ1 + · · · + ξk,
where ξ1, ξ2, . . . are i.i.d. N(0,1). Let P be the law of X on Rn. Let Y = g(X) :=
(X1 − c1, X2 − (c1 + c2), . . . , Xn −

∑n
j=1 cj), where c1, c2, . . . are real numbers. Let Q be

defined via
dQ

dP
(x1, . . . , xn) = exp

( n
∑

j=1

cj(xj − xj−1)−
1

2

n
∑

j=1

c2j

)

(x0 := 0), and show that Y has law P under Q.

6. Exercise 10.5.

7. Let Mt, t ≥ 0, be a positive martingale on (Ω,F ,Ft,P), with EMt = 1, and where
F :=

∨

t≥0 Ft. Define, for each t, a probability measure Qt on (Ω,Ft,P) by dQt/dP = Mt,
i.e., by Qt(A) = E[Mt;A], when A ∈ Ft. Show that, for s < t, Qs is the restriction of
Qt on Fs ⊂ Ft. Show that there is a probability measure Q on (Ω,F ,P) such that Q

restricted on Ft equals Qt.

8. In the proof of Girsanov’s theorem, we showed that Ut := Wt −
∫ t

0 Hrdr is martingale
under Q, where Q is the probability measure defined by (13.3)-(13.4). Complete the proof
by showing that U2

t − t is also a martingale with respect to Q.

second page→

1



9. Let Wt, t ≥ 0, be a standard Brownian motion on its canonical probability space Ω =
C[0,∞) of continuous function ω : [0,∞) → R, and Wt(ω) = ω(t) and let P be its law.
Let Ft := σ(Ws, s ≤ t). Let

Zσ,c
t := σWt + ct, t ≥ 0,

for σ 6= 0, c ∈ R. We think of Zσ,c as a random variable on Ω with values in C[0,∞). Let
Pσ,c be the law of Zσ,c. (i) Explain why Girsanov’s theorem says that

dP1,c

dP
(ω) = e−cω(t)− 1

2
c2t, on Ft, for all t ∈ [0,∞)

(part of the statement is that P1,c is absolutely continuous with respect to P on (Ω,Ft), but
makes no claim about the absolute continuity of the two measures on F∞ :=

∨

t∈[0,∞) Ft).
(ii) Explain why, for any σ 6= 1,

dPσ,c

dP
does not exist on any Ft.

(Hint: Compute the quadratic variation of Zσ,c.)
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