Department of Mathematics Stochastic processes Uppsala University Spring 2014

50% of the assignments must be solved correctly. Deadline: Precisely 1 week = 168 hours after the end of the last lecture. I reserve the right to ask you to explain to me how you solved a problem. Almost all the exercises below are easy. Exercise 3 (11.2) asks you to write down a *careful derivation* of the formula.

Assignment 5 3 Mar. 2014

- 1. Let $S_n, n \in \mathbb{Z}$, is a simple symmetric random walk in \mathbb{Z} . That is, $S_0 = 0$, $S_n = \xi_1 + \cdots + \xi_n$, sum of i.i.d. Bernoulli random variables, $\mathbb{P}(\xi_1 = \pm 1) = 1/2$. Let $M_n := \max(S_0, S_1, \ldots, S_n)$. (i) Show that $M_n S_n, n \ge 0$, is Markov. This is (a partial) discrete-time analog of Theorem 14.2. (ii) What else can you squeeze out of these processes? Is $\sum_{k=1}^{n} (\operatorname{sgn} S_k) \xi_k, n \ge 0$, a simple symmetric random walk?
- 2. Let W_t be standard Brownian motion, $M_t = \sup_{s \le t} W_s$. Use the fact that |W| has the same law as Q := M W to show that |W| is Markov. (Hint: Show that $Q_t = [Q_s + (W_t W_s)] \lor \sup_{s \le r \le t} (W_r W_s)$, for $s \le t$.)
- 3. Exercise 11.2. Very important if you really want to understand Tanaka's formula and, therefore, the concept of local time as defined *through* Tanaka's formula.
- 4. Exercise 13.5. This is the more general version of Girsanov's theorem for continuous martingales.
- 5. Let \mathbb{P} be a probability measure on \mathbb{R}^n and let $X : \mathbb{R}^n \to \mathbb{R}^n$ be the identity function (regarded as a random variable with law \mathbb{P}). Let $g : \mathbb{R}^n \to \mathbb{R}^n$ be a diffeomorphism. (i) Show that there is a probability measure \mathbb{Q} on \mathbb{R}^d such that Y := g(X) has law \mathbb{P} under \mathbb{Q} . (Just take \mathbb{Q} to be the law of $g^{-1}(X)$ under \mathbb{P} , and show that it works.) (ii) Consider a "discrete-time" Brownian motion $X := (X_1, X_2, \ldots, X_n)$, where $X_k := \xi_1 + \cdots + \xi_k$, where ξ_1, ξ_2, \ldots are i.i.d. N(0,1). Let \mathbb{P} be the law of X on \mathbb{R}^n . Let Y = g(X) := $(X_1 - c_1, X_2 - (c_1 + c_2), \ldots, X_n - \sum_{j=1}^n c_j)$, where c_1, c_2, \ldots are real numbers. Let \mathbb{Q} be defined via

$$\frac{d\mathbb{Q}}{d\mathbb{P}}(x_1,\ldots,x_n) = \exp\left(\sum_{j=1}^n c_j(x_j-x_{j-1}) - \frac{1}{2}\sum_{j=1}^n c_j^2\right)$$

 $(x_0 := 0)$, and show that Y has law \mathbb{P} under \mathbb{Q} .

- 6. Exercise 10.5.
- 7. Let $M_t, t \ge 0$, be a positive martingale on $(\Omega, \mathscr{F}, \mathscr{F}_t, \mathbb{P})$, with $\mathbb{E}M_t = 1$, and where $\mathscr{F} := \bigvee_{t\ge 0} \mathscr{F}_t$. Define, for each t, a probability measure \mathbb{Q}_t on $(\Omega, \mathscr{F}_t, \mathbb{P})$ by $d\mathbb{Q}_t/d\mathbb{P} = M_t$, i.e., by $\mathbb{Q}_t(A) = \mathbb{E}[M_t; A]$, when $A \in \mathscr{F}_t$. Show that, for s < t, \mathbb{Q}_s is the restriction of \mathbb{Q}_t on $\mathscr{F}_s \subset \mathscr{F}_t$. Show that there is a probability measure \mathbb{Q} on $(\Omega, \mathscr{F}, \mathbb{P})$ such that \mathbb{Q} restricted on \mathscr{F}_t equals \mathbb{Q}_t .
- 8. In the proof of Girsanov's theorem, we showed that $U_t := W_t \int_0^t H_r dr$ is martingale under \mathbb{Q} , where \mathbb{Q} is the probability measure defined by (13.3)-(13.4). Complete the proof by showing that $U_t^2 - t$ is also a martingale with respect to \mathbb{Q} .

second page \rightarrow

9. Let $W_t, t \ge 0$, be a standard Brownian motion on its canonical probability space $\Omega = C[0,\infty)$ of continuous function $\omega : [0,\infty) \to \mathbb{R}$, and $W_t(\omega) = \omega(t)$ and let \mathbb{P} be its law. Let $\mathscr{F}_t := \sigma(W_s, s \le t)$. Let

$$Z_t^{\sigma,c} := \sigma W_t + ct, \quad t \ge 0,$$

for $\sigma \neq 0, c \in \mathbb{R}$. We think of $Z^{\sigma,c}$ as a random variable on Ω with values in $C[0,\infty)$. Let $\mathbb{P}^{\sigma,c}$ be the law of $Z^{\sigma,c}$. (i) Explain why Girsanov's theorem says that

$$\frac{d\mathbb{P}^{1,c}}{d\mathbb{P}}(\omega) = e^{-c\omega(t) - \frac{1}{2}c^2t}, \quad \text{on } \mathscr{F}_t, \quad \text{for all } t \in [0,\infty)$$

(part of the statement is that $\mathbb{P}^{1,c}$ is absolutely continuous with respect to \mathbb{P} on (Ω, \mathscr{F}_t) , but makes no claim about the absolute continuity of the two measures on $\mathscr{F}_{\infty} := \bigvee_{t \in [0,\infty)} \mathscr{F}_t$). (ii) Explain why, for any $\sigma \neq 1$,

$$\frac{d\mathbb{P}^{\sigma,c}}{d\mathbb{P}} \text{ does not exist on any } \mathscr{F}_t.$$

(Hint: Compute the quadratic variation of $Z^{\sigma,c}$.)