Department of Mathematics
 Stochastic processes

Uppsala University
 Spring 2014

```
50% of the assignments must be solved correctly.
Deadline: Precisely 1 week = 168 hours after the end of the last lecture.
I reserve the right to ask you to explain to me how you solved a problem.
Almost all the exercises below are easy. Exercise 3 (11.2) asks you to write down
a careful derivation of the formula.
```


Assignment 5

3 Mar. 2014

1. Let $S_{n}, n \in \mathbb{Z}$, is a simple symmetric random walk in \mathbb{Z}. That is, $S_{0}=0, S_{n}=$ $\xi_{1}+\cdots+\xi_{n}$, sum of i.i.d. Bernoulli random variables, $\mathbb{P}\left(\xi_{1}= \pm 1\right)=1 / 2$. Let $M_{n}:=$ $\max \left(S_{0}, S_{1}, \ldots, S_{n}\right)$. (i) Show that $M_{n}-S_{n}, n \geq 0$, is Markov. This is (a partial) discretetime analog of Theorem 14.2. (ii) What else can you squeeze out of these processes? Is $\sum_{k=1}^{n}\left(\operatorname{sgn} S_{k}\right) \xi_{k}, n \geq 0$, a simple symmetric random walk?
2. Let W_{t} be standard Brownian motion, $M_{t}=\sup _{s<t} W_{s}$. Use the fact that $|W|$ has the same law as $Q:=M-W$ to show that $|W|$ is Markov. (Hint: Show that $Q_{t}=\left[Q_{s}+\right.$ $\left.\left(W_{t}-W_{s}\right)\right] \vee \sup _{s \leq r \leq t}\left(W_{r}-W_{s}\right)$, for $\left.s<t.\right)$
3. Exercise 11.2. Very important if you really want to understand Tanaka's formula and, therefore, the concept of local time as defined through Tanaka's formula.
4. Exercise 13.5. This is the more general version of Girsanov's theorem for continuous martingales.
5. Let \mathbb{P} be a probability measure on \mathbb{R}^{n} and let $X: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the identity function (regarded as a random variable with law \mathbb{P}). Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a diffeomorphism. (i) Show that there is a probability measure \mathbb{Q} on \mathbb{R}^{d} such that $Y:=g(X)$ has law \mathbb{P} under \mathbb{Q}. (Just take \mathbb{Q} to be the law of $g^{-1}(X)$ under \mathbb{P}, and show that it works.) (ii) Consider a "discrete-time" Brownian motion $X:=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, where $X_{k}:=\xi_{1}+\cdots+\xi_{k}$, where ξ_{1}, ξ_{2}, \ldots are i.i.d. $\mathrm{N}(0,1)$. Let \mathbb{P} be the law of X on \mathbb{R}^{n}. Let $Y=g(X):=$ $\left(X_{1}-c_{1}, X_{2}-\left(c_{1}+c_{2}\right), \ldots, X_{n}-\sum_{j=1}^{n} c_{j}\right)$, where c_{1}, c_{2}, \ldots are real numbers. Let \mathbb{Q} be defined via

$$
\frac{d \mathbb{Q}}{d \mathbb{P}}\left(x_{1}, \ldots, x_{n}\right)=\exp \left(\sum_{j=1}^{n} c_{j}\left(x_{j}-x_{j-1}\right)-\frac{1}{2} \sum_{j=1}^{n} c_{j}^{2}\right)
$$

$\left(x_{0}:=0\right)$, and show that Y has law \mathbb{P} under \mathbb{Q}.
6. Exercise 10.5.
7. Let $M_{t}, t \geq 0$, be a positive martingale on $\left(\Omega, \mathscr{F}, \mathscr{F}_{t}, \mathbb{P}\right)$, with $\mathbb{E} M_{t}=1$, and where $\mathscr{F}:=\bigvee_{t \geq 0} \mathscr{F}_{t}$. Define, for each t, a probability measure \mathbb{Q}_{t} on $\left(\Omega, \mathscr{F}_{t}, \mathbb{P}\right)$ by $d \mathbb{Q}_{t} / d \mathbb{P}=M_{t}$, i.e., by $\mathbb{Q}_{t}(A)=\mathbb{E}\left[M_{t} ; A\right]$, when $A \in \mathscr{F}_{t}$. Show that, for $s<t, \mathbb{Q}_{s}$ is the restriction of \mathbb{Q}_{t} on $\mathscr{F}_{s} \subset \mathscr{F}_{t}$. Show that there is a probability measure \mathbb{Q} on $(\Omega, \mathscr{F}, \mathbb{P})$ such that \mathbb{Q} restricted on \mathscr{F}_{t} equals \mathbb{Q}_{t}.
8. In the proof of Girsanov's theorem, we showed that $U_{t}:=W_{t}-\int_{0}^{t} H_{r} d r$ is martingale under \mathbb{Q}, where \mathbb{Q} is the probability measure defined by (13.3)-(13.4). Complete the proof by showing that $U_{t}^{2}-t$ is also a martingale with respect to \mathbb{Q}.
9. Let $W_{t}, t \geq 0$, be a standard Brownian motion on its canonical probability space $\Omega=$ $C[0, \infty)$ of continuous function $\omega:[0, \infty) \rightarrow \mathbb{R}$, and $W_{t}(\omega)=\omega(t)$ and let \mathbb{P} be its law. Let $\mathscr{F}_{t}:=\sigma\left(W_{s}, s \leq t\right)$. Let

$$
Z_{t}^{\sigma, c}:=\sigma W_{t}+c t, \quad t \geq 0
$$

for $\sigma \neq 0, c \in \mathbb{R}$. We think of $Z^{\sigma, c}$ as a random variable on Ω with values in $C[0, \infty)$. Let $\mathbb{P}^{\sigma, c}$ be the law of $Z^{\sigma, c}$. (i) Explain why Girsanov's theorem says that

$$
\frac{d \mathbb{P}^{1, c}}{d \mathbb{P}^{P}}(\omega)=e^{-c \omega(t)-\frac{1}{2} c^{2} t}, \quad \text { on } \mathscr{F} t, \quad \text { for all } t \in[0, \infty)
$$

(part of the statement is that $\mathbb{P}^{1, c}$ is absolutely continuous with respect to \mathbb{P} on $\left(\Omega, \mathscr{F}_{t}\right)$, but makes no claim about the absolute continuity of the two measures on $\left.\mathscr{F}_{\infty}:=\bigvee_{t \in[0, \infty)} \mathscr{F}_{t}\right)$. (ii) Explain why, for any $\sigma \neq 1$,

$$
\frac{d \mathbb{P}^{\sigma, c}}{d \mathbb{P}^{P}} \text { does not exist on any } \mathscr{F}_{t} .
$$

(Hint: Compute the quadratic variation of $Z^{\sigma, c}$.)

