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PLURA FACIUNT HOMINES E CONSUETUDINE, QUAM E RATIONE
(Men do more from habit than from reason)

–Anon.

THERE ARE NO SUCH THINGS AS APPLIED SCIENCES,
ONLY APPLICATIONS OF SCIENCE

–Louis Pasteur
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Preface

This course introduces some basic models used in the analysis of survival data. The goal
is to decide, from often incomplete and censored data, how to estimate parameters, test
hypotheses and intelligently deduce how to calculate life annuities and other matters of
interest in life insurance.

The models can be quite sophisticated based, for example, on the concept of point processes.
However, in this class, we shall only discuss the simplest of them. For instance, we shall
discuss trivial Markov chains in continuous time with a small, finite, number of states, and
model a lifetime as the time till the chain is absorbed by a specific state (the graveyard). The
caveat is that we allow for time-inhomogeneous Markov chains for which explicit solutions
of even the most trivial functionals are sometimes impossible to derive analytically.

The prerequisites are:
• A course in Probability.
• A course in Statistics.
• Standard Analysis, Calculus and Elementary (Linear) Differential Equations.
• Introductory Stochastic Processes concepts.
• Elementary Algebra and Arithmetic.
• Ability to think, read (in English) and count.
• Elementary (first-order) Logic.

While I will take it for granted that you know what a set, a function, a relation, a set
operation, a random variable, and a probability is, I shall try to make the course self-
consistent as regards the more “advanced” notions.

Regarding references: Life Insurance was a matter of concern long ago: The famous Leon-
hard Euler [7] had thought about the problem of how to pay annuities and provided some
suggestions. He was not using probability. A very accessible book on survival models is
that of Eland-Johnson and Johnson [6]. A more advanced text, using the language of point
processes, is that of Fleming and Harrington [8]. A good book, discussing the whole range
of the actuarial notation and applications, is the recent book by B laszczyszyn and Rolski
[3] (but it is only available in Polish). Another accessible book is that of Gerber and Cox
[9]. Finally, to check your background on Probability and Statistics, measure it against
an undergraduate book such as that of Williams [14]. You need to know what is in it; if
necessary, review it rapidly.

The reason I wrote the notes is that I feel I cannot teach the subject, (or any other subject
for that matter), without providing some rational explanation. Indeed, I strongly believe
that there is no way to learn anything unless you understand it, at some level. Also, my
constant suggestion is that “learning” by rote is a recipe for failure.∗ More to the point, it

∗That, of course, depends on one’s definition of failure vs success.
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is rather obvious that there would be no need for a student to come to class and attend my
lectures if he/she had to learn things by heart. He/she should take a manual and read it at
his/her leisure. Indeed, there are many excellent manuals (cookbooks) regarding the subject
of Statistics. These manuals tell you, step-by-step, how to apply a method for data analysis.
Good manuals are [15], [16], both available online. But the point of teaching is to–at the
minimum–understand what you are reading in the manual and the logic (or absence of it)
behind it so that you can apply it intelligently.

These notes are quite elementary in terms of their mathematical content. So, I offer
my apologies to the mathematically inclined for they will not find extreme rigour herein.
However, they will find that the notes are not devoid of logic and some logical organisation
and this has been my purpose. Those who wish to see the topic from a proper mathematical
standpoint should consult, e.g., Fleming and Harrington [8] and Liptser and Shiryaev [12].

It is clear that taking discrete observations in time should not be seen as the estimation
of random variables but of stochastic processes. Just a trivial example: Let T be the time
somebody dies. To estimate T , we should consider the (trivial but useful) process 1(T ≤ t),
t ≥ 0. In this sense, the notion of hazard rate (or force of mortality in the actuarial lingo)

µt should be replaced by the much more natural process
∫ t∧T
0 µsds: Indeed, on one hand,

the integral of µt is more fundamental than µt itself (a version of the former exists for any
random variable); on the other hand, it makes no sense to go beyond T , and hence the

minimum between t and T in the above quantity is natural. Mathematically,
∫ t∧T
0 µsds is

the compensator of 1(T ≤ t), and using this trivial but useful observation makes things
much more clear, both for physical AND mathematical reasons, than a completely static
point of view. After all, these things have been around for decades...

I have followed the syllabus of the course and not ventured beyond its restricting
boundaries. Had I written the notes without paying attention to the syllabus, I would have
organised them differently, and then they would make much more sense.

The student will realise that, except for the first 3 chapters, the remaining of them are
reviews of what he/she should have learned in Probability and Statistics: Markov chains is
standard material in Probability and, in any case, the syllabus only requires discussion of,
essentially, just definitions and elementary computations. Then, the Statistics parts of these
notes (which could probably be 50% of them) are just standard, plain Statistics subjects as
taught in standard courses.

I wrote these notes very quickly and they should not be considered complete. I therefore
expect lots of typos... Any corrections would be appreciated.

My thanks to Iain Currie who gave me the notes he has been using. Some of the examples
here are his examples.



Chapter 1

Introduction

This chapter introduces you to the notation I shall be using throughout the notes.
You should familiarise yourselves with it, along with your revision of Probability
and Statistics.

1.1 Overview

We shall be dealing with positive numbers representing lifetimes. Despite the morbid charac-
ter of these notes, the subject is applicable to situations beyond life and death. For instance,
a medical statistician may be interested in finding how long it takes for a new drug to cure
a particular disease. She designs an experiment, administers the drug to volunteers∗ (the
subjects) and takes measurements. Things are not as simple as they look. There are several
problems. First there are psychological factors, i.e. a subject may, just by believing that he
is taking a drug, feel better. The experiment must be designed so that some subjects take
the drug, and some not, without them knowing it. Second, a subject may become bored and
drop out from the study. At first sight, one may say, forget about the data corresponding to
dropouts. But they do provide valuable information: if a subject has dropped out x units of
time till he became part our experiment, then we know he has not been cured by that time.
We have partial information about the random variable T , i.e. that a particular observation
of the random variable resulted a value that is larger than x. So we do not throw away the
data, but try to modify our estimators in order to take into account partial observations .
Partial observations are referred to as censoring . The type of censoring just described is
called right censoring. Another type is this: a subject enters our experiment at some un-
known time A, prior to the start of our observation at time t0. We observe him completely,
i.e. until he is cured at time A + T . Thus we know that A < t0 < A + T . The only thing
we know about T is that T > t0 − A, but A is unknown. This is called left censoring. A
mixed situation is when we have left censoring and, in addition, the subject drops out at
time t1 > t0. In this case we know that A < t0 < t1 < A + T , but A is unknown. So we
have left censoring (T > t0−A) and right censoring (T > x := t1− t0). We call this interval
censoring.

∗This is just an assumption. For instance, in Huntsville, Texas, drugs were administered to prisoners on
the death row because they were going to die anyway.

9
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The best language to describe Survival Models is the language of point processes. I am
only occasionally going to use it, so let me describe what this object is. A (simple) point
process is a random discrete set.† If we talk about a point process of real numbers, from the
very fact that real numbers are ordered‡ we can enumerate the points of a point process as
T1 < T2 < · · · . (We may also want to introduce points T1 > T0 > T−1 > · · · .) Note that, on
purpose, I do not specify the exact range of the index n because it may be random. Thus,
describing the point process is equivalent to describing the random variables {Tn} which is
a “trivial”§ matter.

Here is an example: let U1, . . . , Un be i.i.d. uniform random variables in the integral [0, 1] =
{x : 0 ≤ x ≤ 1}. Then the first point of the point process is T1 = min(U1, . . . , Un) and so
on, till the last point, which is Tn = max(U1, . . . , Un). In statistical notation, Tk := U(k),
and the joint distribution of {Tk, 1 ≤ k ≤ n} is easily found via the joint density

P (T1 ∈ dt1, . . . , Tn ∈ dtn) =
1

n!
1(t1 < · · · < tn)dt1 . . . dtn.

(The reader is referred to Section 1.2 for the “dt” notation.) Indeed, there are n! per-
mutations of (U1, . . . , Un) and each permutation has exactly the same density: P (U1 ∈
dt1, . . . , Un ∈ dt1) = dt1 . . . dtn. The counting measure associated to any point process is
the quantity

N(B) =
∑

n

1(Tn ∈ B),

where B is a set. In words, N(B) is the number of points falling in B. The counting process
associated to the point process is the function

Nt = N [0, t], t ≥ 0

(and if t also runs on negative numbers, we may let Nt = −N(t, 0), for t < 0). We shall only
deal with the simplest of point processes, such as the Poisson process, or the point process
of counts of a finite number of censored data.

The force of mortality (FOM) is the subject of Chapter 2. This is also known as the hazard
rate µt and µtδ gives the probability that a lifetime T expires in the δ-neighbourhood of
t given that it has not expired up to t, when δ is small. It is only defined for absolutely
continuous random variables. It is a useful concept because of its practicality, and because
Markovian models are essentially defined through FOM’s, among other reasons. But its
real force lies in the fact that it gives a way to “predict” what a point process will do as it
evolves in time. This is described in the Section 2.4.

Chapter 3 discusses the standard way to estimate a distribution function. This is called the
Fundamental Theorem of Statistics. It rests on the Fundamental Theorem of Probability,
also known as the (Strong) “Law” of Large Numbers.¶ When we introduce censoring, we
have to modify the empirical distribution function and this was done by Kaplan and Meier.

†A set of real numbers or vectors is called discrete if it is at most countable and has no limit points.
Any finite set is discrete. The set of integers is discrete. The set 1, 1/2, 1/3, 1/4, . . . is countable but has an
accumulation point (the point 0), so it is not discrete.

‡Ordering means: x < y iff y − x is positive
§One man’s triviality is another man’s professionalism.
¶A stupid terminology: there are no laws in Mathematics. Indeed, this law is a theorem which, I hope,

you have seen and proved hundreds of times so far, but, for the sake of completeness I prove it once more,
in a very simple case.
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Next, a parametric estimator is introduced, namely the Cox regression model. It is useful
in cases where subjects belong to different types.

In Chapter 4 we introduce continuous time Markov chains with time-varying characteristics.
Indeed, the rate of becoming ill changes with the age, so it makes sense, in practice, to seek
time-varying models. Unfortunately, if a Markov chain has a cycle, it is, in generally,
not tractable analytically. Thus, numerical schemes are devised. The numerical methods
are not discussed here, but they are extremely classical. They can be found in any book
that discusses time-varying linear systems, i.e. time-varying linear differential equations.
There are thousands of research papers on the subject. In Section 4.4 we specialise to the
classical homogeneous case. This is a subject you know from undergraduate classes, so
the chapter only serves as a reminder. In particular, I remind you how to find means of
quantities representing hitting times, e.g. the first time a subject dies or the first time a
subject retires, and so on. Section 4.5 discusses Maximum Likelihood Estimators (MLE)
for Markovian Models. In other words, we model a lifetime as a Markov chain with some
unknown parameters, and, from observations, we estimate the parameters. We discuss
properties of the estimators, such as asymptotic normality.

Chapter 5 discusses how to estimate when the only information available is counts. In other
words, we only observe numbers of deaths (and not actual times) over specific intervals.

Chapter 6 describes various statistical tests that one performs to see whether certain con-
tinuous approximations to estimated data are good or not.

The last part of the notes offers discussion, and exercises to accompany the first part (which
is the “theory” part‖). This is to be taken seriously too. We shall discuss it in class, but
you need to try several of the problems by yourselves.

1.2 Conventions and notation

The distribution function of a real-valued random variable X is the function

F (x) := P (X ≤ x), x ∈ R.

Note that it is increasing, right-continuous and F (−∞) = 0, F (+∞) = 1. The survival
function (or complementary distribution function) is the function 1− F (x) = P (X > x); it
is denoted either by F (x) or by S(x).

More generally, the distribution of a random variable X is any function that allows us to
compute probabilities of the form P (X ∈ B), where B is a nice set. The distribution
function is such function. For instance, B may be the set of all numbers whose decimal
expansion contains consecutive 0’s in blocks of length which is a prime number. Another
example is the set B containing all real numbers not exceeding 2.

We say that a sequence X1, X2, . . . of random variables is i.i.d. if any finite sub-collection
is independent and if all random variables have the same distribution.

A random variable is continuous if F is continuous. A random variable is absolutely con-
tinuous if there is a function f such that F (x) =

∫∞
0 f(y)dy. Necessarily, an absolutely

continuous random variable is continuous. The function f is called density. Example: Let
ξ1, ξ2, . . . be i.i.d. with P (ξ1 = 0) = P (ξ1 = 1) = 1. Define X :=

∑∞
n=1 ξn/2

n. Then X takes

‖Although, I never understood what means theory and what means applications/examples
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values between 0 and 1 and P (X ≤ x) = x for all 0 ≤ x ≤ 1. Since dP (X ≤ x)/dx = 1,
we conclude that f(x) = 1 serves as a density, and so this X is absolutely continuous. Next
define Y =

∑∞
n=1 2ξn/3

n. It can be shown that P (Y ≤ y) is a continuous function of y but
there is no function f such that P (Y ≤ y) =

∫ y
−∞ f(z)dz, and so Y is continuous but not

absolutely continuous.

Caution: In practice, people use a slippery language and say “continuous” when they actu-
ally mean “absolutely continuous”. We shall be using the informal notation P (X ∈ dx) to
stand for the probability that X is between x and x + dx where dx is “infinitesimal”. So,
P (X ∈ dx) ≈ f(x)dx. The notation is useful when applying the total probability formula,
for example, assuming that X,Y are independent (absolutely) continuous random variables,

P (X + Y ≤ t) =

∫
P (X + Y ≤ t,X ∈ dx) =

∫
P (x+ Y ≤ t,X ∈ dx)

=

∫
P (Y ≤ t− x)P (X ∈ dx) =

∫
P (Y ≤ t− x)fX(x)dx,

and so, differentiating with respect to t, we find

fX+Y (t) =

∫
fY (t− x)fX(x)dx.

This notation is more than just notation: it is a correct way of formally expressing something
deeper concerning Integration Theory. We refer the student to her standard courses on the
subject. Hereafter, we shall not bother explaining “technicalities”.∗∗

When a random variable is not continuous, it is called discrete. A discrete random variable
X assumes at most countably many values c1, c2, . . ., and so we may define the probabilities
P (X = ci) = pi directly. Of course,

∑
i pi = 1. Let us denote by dc (the Dirac distribution)

the distribution of a random variable that takes value c with probability 1. In other words,

dc(B) = P (X ∈ B) = 1(c ∈ B) =

{
1 if c ∈ B
0 if c 6∈ B

,

where B is a set of real numbers. Then a random variable that takes values ci with proba-
bility pi has distribution ∑

i

pidci .

Indeed, for any set B,

P (X ∈ B) =
∑

i

pi1(ci ∈ B) =
∑

i

pidci(B).

A random variable may be mixed, i.e. it may have a continuous and a discrete part.

Example 1.1. Let T be exponential with rate µ. Find the distribution of the random
variable X := T ∧ c, for a given constant c > 0.
Solution: It is clear that X is neither discrete nor continuous; it is mixed. Indeed, P (X =
c) = P (T > c) = e−µc. On the other hand, if 0 < x < c, we have P (X ≤ x) = P (T ≤ x) =

∗∗But bear in mind that... one man’s technicality is another man’s professionalism.
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1− e−µx. The latter faction has derivative µe−µx. We can describe the situation by saying
that

{
With probability p := e−µc the r.v. X takes value c

With probability 1− p the r.v. X has density (1− p)−1µe−µx1(0 < x < c).

In other words, if B is a set,

P (X ∈ B) = p1(X ∈ B) +

∫

B∩(0,c)
µe−µxdx

= pdc(B) + (1− p)
∫

B∩(0,c)

µe−µx

1− p dx.

Formally, we can write

P (X ∈ dx) = pdc(dx) + µe−µxdx, 0 ≤ x ≤ c.

The reader is advised to keep this last notation in mind because I am going to use it later.

The notation X
d
= Y means that the random variables X and Y have the same distribution

(one says that they are equal in distribution). Occasionally, one writes X ∼ Y . When F
is a distribution function, X ∼ F means that F is the distribution function of the random

variable X. The notation applies to vectors as well. So (X,Y )
d
= (X ′, Y ′) means that

P (X ≤ x, Y ≤ y) = P (X ≤ x′, Y ≤ y′) for all x, y, so, obviously, (X,Y )
d
= (X ′, Y ′) implies

that X
d
= X ′ and Y

d
= Y ′ (but the converse is false).

Concerning random variables with positive values, the following are notations used in Ac-
tuarial Science . We let T be such a random variable, and F its distribution function.

1. Fx(t) := P (T ≤ t+ x | T > x) =: tqx

2. fx is the density of Fx (whenever it exists)

3. Tx is a random variable with distribution Fx (note that Tx cannot, in general, be de-
fined as a deterministic function of T ; rather, it is defined by means of its distribution).

In other words: Tx
d
= (T − x | T > x)

4. Fx(t) = Sx(t) = P (T > t+ x | T > x) =: tpx

5. qx = 1qx (the 1 here has no significance other than it designates a standard period
such as one year††; by possibly changing units we can always make the standard period
equal to 1)

6. px = 1px.

††Our confusion with units of time, such as years, months, days, etc., goes back to the Babylonians . You
will have noticed that one year has 12 months, one month has 30 days (approximately), one hour has 60
minutes, one minute has 60 seconds. All these integers are divisors of 60. Just as we use (mostly) decimal,
the Babylonians used a sexagesimal numbering system, that is, base 60 (schoolchildren , presumably, had
to memorise a multiplication table with 60 × 61/2 = 1830 entries). There was a good reason for that: 60
has a large number of divisors: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 (and every number below 60 has at most 10
divisors) and, for want of accuracy, this was convenient. What is quite silly is that, about 4000 years later,
we still use the same old-fashioned system when it comes to time units. If, therefore, a tradition takes at
least so many years to break, then it is no wonder that the actuarial notation will still be with us for a while.
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Chapter 2

Force of mortality

We introduce hazard rates as alternative descriptions for the law of an absolutely
continuous random variable. We shall mostly use the actuarial term force of mor-

tality in lieu of hazard rate . These are mathematically useful functions but also
very convenient in applications (one talks of mortality rates). . We will learn how
to handle these objects and how to approximate them when we partially know
them. The real usefulness arises in connection with discrete-event phenomena
occurring at discrete, a priori unknown, epochs of time. The force of mortality
gives rise to the concept of the compensator which is a smoothed, predictable,
counterpart of a counting process. We will learn how to compute compensators
which will later turn out to be the correct tools for constructing statistical esti-
mators. Their appeal lies in their intuitive meaning which makes is easy for us to
understand what the estimators are about and why they work.

2.1 Positive random variables

In this section, we shall pay special attention to the random variable Tx that, as you will
recall, is defined to have the distribution of T − x, given that T > x. Some warm-up
facts/exercises:

Fact 2.1. If T has survival function S(t) = P (T > t) then Tx has survival function Sx(t) =
P (Tx > t) = S(x + t)/S(x), t ≥ 0. If T has density f then Tx has density fx(t) =
f(x+ t)/S(x), t ≥ 0. (Left as an exercise.)

View the operation Z 7→ Zx as an operation that changes the distribution of the random
variable Z and produces the distribution of the random variable Zx. We can substitute any
random variable in place of Z. In particular, we can let Z = Tt, in which case Zx = Tt,x has
the following meaning: it is in distribution equal to Tt − x given that Tt > x.

Fact 2.2. It holds that Tt,x
d
= Tt+x for any t, x ≥ 0. (Exercise.)

The force of mortality (FOM or hazard rate) of a positive random variable T with density

15
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f and distribution function F is defined as the function

µt :=
f(t)

1− F (t)
, t ≥ 0.

The FOM is clearly depicted in Figure 2.1. By interpreting 0/0 as zero we may define µt

Figure 2.1: The Force of Mortality

for all t ≥ 0. The physical meaning of µt is that

Proposition 2.1. As h→ 0,

P (T ≤ t+ h | T > t) = P (Tt ≤ h) = µth+ o(h).

In other words, µt is the value of the density of Tt at zero: µt = ft(0).

Proof. Since f(t) = −dS(t)/dt, we have S(t)− S(t+ h) = f(t)h+ o(h), as h→ 0, and so

P (T ≤ t+ h | T > t) =
S(t)− S(t+ h)

S(t)
=
f(t)h+ o(h)

S(t)
= µth+ o(h),

where we used the fact that o(h) divided by something that does not depend on h is still
o(h).

The logarithmic derivative of a function g is, by definition, the derivative of log g, i.e. it is
equal to g′/g.

Fact 2.3. Observe that µt is the negative of the logarithmic derivative of S(t), i.e. µt =
−S′(t)/S(t). (Exercise.)

Proposition 2.2. From the mortality rate of T we can recover its survival function and,
consequently, its density:

S(t) = exp−
∫ t

0
µudu

f(t) = S(t)µt

Proof. From Exercise 2.3 we have that −µu = d
du logS(u). Integrate this from 0 to t to get

−
∫ t
0 µudu = logS(t)− logS(0). But S(0) = P (T > 0). Since we assume that T has density,

we must have P (T = 0) = 0 and so P (T > 0) = 1. So S(0) = 1 which has logarithm
zero. Applying the exponential function on both sides we obtain the desired formula. The
formula for f(t) is found by f(t) = − d

dtS(t).
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Note that f(t) = S(t)µt has a natural physical meaning. Think of T as a lifetime. First, µtdt
is, approximately, the probability that the lifetime expires between t and t+ dt, when dt is
infinitesimal, given it has not yet (i.e. by time t) expired. Multiplying this by the probability
S(t) that the lifetime exceeds t we get, by the definition of conditional probability, the
(unconditional) probability that the lifetime expires between t and t + dt; which is, by
definition, f(t)dt.

Proposition 2.3. Let T have force of mortality µt. Then Tx has force of mortality µx,t =

µx+t, survival function Sx(t) = exp−
∫ x+t
x µudu, and density fx(t) = S(x+ t)µx+t/S(x).

Proof. From Exercise 2.1 we have that Tx,t
d
= Tx+t, and this establishes the first claim. The

second claim follows from Fact (2.2) by replacing T by Tx:

Sx(t) = exp−
∫ t

0
µx,udu.

But we just showed that µx,u = µx+u. So

Sx(t) = exp−
∫ t

0
µx+udu = exp−

∫ x+t

x
µx+vdv,

where we made the change of variable u 7→ v = x + u. The density of Tx is, again by Fact
2.2, Sx(t)µx,t, and, since Sx(t) = S(x + t)/S(x) (Exercise 2.1) and µx.t = µx+t, we have
what we need.

Fact 2.4 (Exercise in notation). By making use of the actuarial notation, show that:

s+tpx = tpx · spx+t

f(t) = tp0 · µt
fx(t) = tpx+t · µx+t

tp0 = exp−
∫ t

0
µsds

tpx = exp−
∫ x+t

x
µsds

tqx =

∫ t

0
spx · µx+sds

Fact 2.5. (i) Suppose that S(t) = e−λt, t ≥ 0, for some positive constant λ. Then µt ≡ λ.
(ii) Suppose that T is uniform on the interval [0, 1]. Then µt = 1/(1 − t), for 0 ≤ t < 1
(and zero otherwise). (iii) Suppose that S(t) = t−α, for t ≥ 1, for some positive constant
α. Then µt = α/t, for t ≥ 1. (Exercise.)

Comments: In case (i) we have an example of a random variable with constant force of
mortality. In case (ii) we have increasing force of mortality (also known as increasing failure
rate). In case (iii) we have decreasing force of mortality (also known as decreasing failure
rate).

Fact 2.6. There is a random variable with non-monotonic force of mortality. (Exercise.)
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Important remark: Are there random variables, other the one in (i), with constant force
of mortality? The answer is NO. Because, if µt is constant, say equal to some positive
constant λ, then, by Fact 2.2, S(t) MUST be e−λt, as in case (i). Such a random variable,
as you recall, called exponential. An exponential random variable also has the memoryless
property:

Tt
d
= T, for all t.

Fact 2.7. Among positive continuous random variables, only the exponential has the mem-
oryless property. Also show that the memoryless property can be written as tps = tp0 for all
s, t ≥ 0. (Exercise.)

2.2 Interpolation

Frequently, we may have some partial information about a lifetime T , i.e., for example, we
may know hqx = P (T < x+ h | T > x), for a fixed x and h and may, from this information
alone, find a “reasonable” formula for the distribution P (T < x+t | T > h), for all t ∈ [0, h].
From this formula we will be able to compute quantities of interest, such as the probability
that the lifetime expires within a subinterval [x + a, x + b] of [x, x + h]. The following are
three common practices: (We shall take, without loss of generality, h = 1.)

I. The uniform assumption

This states that Tx is uniform on [0, 1] conditionally on Tx < 1. In other words,

P (Tx < t | Tx < 1) = t, 0 ≤ t ≤ 1.

Proposition 2.4. The uniform assumption holds iff∗

P (Tx < t) = tP (Tx < 1)

In actuarial notation, recall that P (Tx < t) is denoted also as tqx and P (Tx < 1) as 1qx.
The latter is also denoted as qx.

Fact 2.8 (Exercise in notation). Show Fact 2.4 and thus show that the uniform assumption
is equivalent to

tqx = tqx.

Now consider finding b−aqx+a = P (Tx < b | Tx > a), which is the probability that the
lifetime expires in the interval [x+ a, x+ b], given it had not expired before x+ a, for any
0 < a < b < 1.

Proposition 2.5. Under the uniform assumption,

b−aqx+a =
(b− a)qx
1− aqx

.

∗“iff” means “if and only if”
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Proof.

b−aqx+a = P (Tx < b | Tx > a) [by definition]

=
P (a < Tx < b)

1− P (Tx < a)
[conditional probability]

=
P (Tx < b)− P (Tx < a)

P (Tx > a)

=
bP (Tx < 1)− aP (Tx < 1)

1− aP (Tx < 1)
[from the uniform assumption]

=
(b− a)qx
1− aqx

[remember that P (Tx < 1) = qx].

Proposition 2.6. The FOM µx,t of Tx is

µx,t = µx+t =
qx

1− tqx
, 0 ≤ t ≤ 1.

Proof. The first equality follows from Exercise 2.2, while the latter is from the definition of
the FOM:

µx,t = µx+t =
d
dtP (Tx < t)

P (Tx > t)
.

But P (Tx < t) = tqx, so d
dtP (Tx < t) = qx, while P (Tx > t) = 1− P (Tx < t) = 1− tqx.

II. The Balducci assumption

This states that P (Tx < 1 | Tx > t) = c1 + c2t.

Proposition 2.7. The Balducci assumption holds iff

P (Tx < 1 | Tx > t) = (1− t)P (Tx < 1).

Proof. Since, for t = 0, P (Tx < 1 | Tx > 0) = P (Tx < 1), while for t = 1, P (Tx < 1 | Tx >
1) = 0, we have c1 + c2 = 0, and c1 = P (Tx < 1).

Fact 2.9 (Exercise in notation). The Balducci assumption is equivalent to

1−tqx+t = (1− t)qx, 0 ≤ t ≤ 1.

Proposition 2.8. Under the Balducci assumption,

P (Tx > t) =
1− qx

1− (1− t)qx
.

Proof. From Fact 2.7, we have

(1− t)qx =
P (Tx < 1, Tx > t)

P (Tx > t)
=
P (Tx > t)− P (Tx > 1)

P (Tx > t)

Solving this for P (Tx > t) we obtain the formula.

As before, we are interested in finding b−aqx+a.
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Proposition 2.9. Under the Balducci assumption,

b−aqx+a =
(b− a)qx

1− (1− b)qx
.

Proof.

b−aqx+a = P (Tx < b | Tx > a) [by definition]

=
P (a < Tx < b)

1− P (Tx < a)
[conditional probability]

=
P (Tx > a)− P (Tx > b)

P (Tx > a)

=

1−qx
1−(1−a)qx

− 1−qx
1−(1−b)qx

1−qx
1−(1−a)qx

[from Fact 2.8]

=
(b− a)qx

1− (1− b)qx
[remember that P (Tx < 1) = qx].

Finally, we find the hazard rate:

Proposition 2.10. Under the Balducci assumption, the FOM of Tx is

µx,t = µx+t =
qx

1− (1− t)qx
.

Proof. The formula is found by applying µx,t = − d
dtP (Tx > t)/P (Tx > t) and using Fact

2.8.

III. Constant FOM assumption

This says that Tx has constant FOM on the interval [0, 1], i.e.

µx,t = µx+t = µx, 0 ≤ t ≤ 1.

Proposition 2.11. Under constant FOM assumption,

P (Tx > t) = e−µxt, 0 ≤ t ≤ 1.

Proof. This readily follows from the formula of Fact 2.2.

Fact 2.10. The FOM assumption is equivalent to

µx,t = µx+t = − log(1− qx), 0 ≤ t ≤ 1,

and to

tqx = P (Tx > t) = (1− qx)t.

(Exercise.)

Finally, we find b−aqx+a.
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Proposition 2.12. Under the constant FOM assumption,

b−aqx+a =
(1− qx)a − (1− qx)b

(1− qx)a
.

Proof.

b−aqx+a = P (Tx < b | Tx > a) [by definition]

=
P (a < Tx < b)

P (Tx > a)
[conditional probability]

=
P (Tx > a)− P (Tx > b)

P (Tx > a)
,

and now use Exercise 2.10.

The plots above compare the distribution functions P (Tx < t), the distribution functions
fx(t), and the FOMS µx,t, for 0 ≤ t ≤ 1, under the different assumptions. Notice that,
despite the apparent similarity of the distribution functions, the FOMs are vastly different.
Notice that the FOMs under U and B are symmetric around the vertical line at the point
t = 1/2. Also, while U results in increasing failure rate, B results in decreasing failure rate.

2.3 Point processes

I shall now devote this small section to explain what a point process is.

Definition 2.1. A point process is a discrete random set.

I explain: Discrete means that (i) the set can be enumerated and (ii) the set has no accu-
mulation points. We shall be dealing with point processes which are contained in R+, the
set of non-negative real numbers.

Example 2.1. Consider one random variable T . Consider the set {T}. This is a point
process with one element.

Example 2.2. Let T1, . . . , Tn be n random variables (perhaps independent, but not neces-
sarily). The set {T1, . . . , Tn} is a point process.
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Definition 2.2. The counting process corresponding to the point process {T1, T2, . . .} is
defined by

Nt =
∑

n≥1

1(Tn ≤ t).

I explain: In other words, Nt counts the number of points Tn that fall below t. Note that
Nt increases when t increases and has a jump precisely at each of the points Tn. Hence, if
we know the function Nt we can recover the points Tn by looking at the jump epochs of Nt.
Thus, the set {T1, T2, . . .} and the function Nt convey precisely the same information. From
now on, I shall be very loose when I speak about a point process. I may be referring to the
set {T1, T2, . . .} or to the function Nt.

Example 2.3. Let τ1, τ2, . . . be i.i.d. exponential random variables, i.e. P (τi > t) =
e−λt1(t ≥ 0). Let Tn = τ1 + · · ·+ τn. Then Nt =

∑∞
n=1 1(Tn ≤ t) is a Poisson process .

2.4 The force of the force of mortality

The real force of the force of mortality lies in the fact that it can predict what is about to
happen in a stochastic discrete-event phenomenon.

Let us redo what we did so far by thinking in terms of point processes. The most trivial
point process is, arguably, one that consists of a single point. So let T be a (positive) random
variable and consider the singleton {T}. The counting process of it is

Nt = 1(t ≥ T ), t ≥ 0.

(We take it to be right-continuous.) Assume that T is absolutely continuous.

Proposition 2.13. There exists a unique continuous stochastic process {Ñt, t ≥ 0} such
that, for each t, Ñt is a deterministic function of the collection of random variables (Nu, u ≤
t), and

E(Nt −Ns | Nu, u ≤ s) = E(Ñt − Ñs | Nu, u ≤ s), s < t. (2.1)

This process is given by

Ñt =

∫ t∧T

0
µudu. (2.2)

Proof. Obviously, (2.2) is also written as Ñt =
∫ t
0 µu1(u ≤ T )du and hence it is a deter-

ministic function of (Nu, u ≤ t). Note that (Nu, u ≤ s) contains the information about the
occurrence of T before s. So if T ≤ s then Ns = 1 = Nt. On the other hand, Ñs = ÑT = Ñt.
Hence both sides of (2.1) are zero. If T > s then

E(Nt −Ns | Nu, u ≤ s) = P (T ≤ t | T > s).

On the other hand, Ñt − Ñs =
∫ t
s µu1(T ≥ u)du, so that

E(Ñt − Ñs | Nu, u ≤ s) =

∫ t

s
µuP (T ≥ u | T > s)ds.

Recall that P (T ≥ u | T > s) = exp−
∫ u
s µxdx so the last display is further written as

∫ t

s
µue

−
∫ u

s
µxdxdu = −

∫ t

s

d

du
e−

∫ u

s
µxdxdu = 1− e−

∫ t

s
µxdx,
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where the last line follows from the Fundamental Theorem of Calculus.† But then this is
P (T ≤ t | T > s), which verifies 2.1. The proof of uniqueness is omitted.

Now turn this last fact into a definition:

Definition 2.3 (FOM of a point process). We say that a point process N admits a FOM
λt if (2.1) holds with Ñt =

∫ t
0 λsds.

The reader will excuse me, but, at this point, I shall change terminology and call the FOM
of a point process stochastic intensity. On the other hand, the process Ñt (the integral of
the FOM) is called compensator.

Example 2.4. Consider a rate λ Poisson point process. Let Nt be its counting process.
Then its stochastic intensity is Ñt = λt. Indeed, E(Nt − Ns | Nu, u ≤ s) = E(Nt − Ns)
because a Poisson process has independent increments. Since Nt −Ns is a Poisson random
variable with mean λ(t− s), the claim follows.

Example 2.5. Consider two independent, positive, absolutely continuous random variables
τ1, τ2, with FOMs µ1, µ2 and let T1 = τ1, Ts = τ1 + τ2. Consider the point process {T1, T2}.
Find its stochastic intensity.
Solution: Let me offer you the “quick and dirty way” for doing this. I don’t want to be
writing stuff like (Nu, u ≤ t) so let us denote this by Ft. Basically, we are looking for a Ñt

so that, when dt is a small change of time, the corresponding change dNt of the counting
process relates to the change dÑt via

E(dNt | Ft) = E(dÑt | Ft) = dÑt,

and where I was allowed to push dÑt out because of the the continuity. Indeed, the fact
that Ñt is continuous allows us to “predict” infinitesimally into the future, something that
is not possible for Nt. We shall distinguish three cases: (i) t < T1, (ii) T1 ≤ t < T2, (iii)
T2 ≤ t. We are careful and observe that each of these events is contained in the information
Ft. In case (i) we have, as before,

E(dNt | Ft) = P (T1 ∈ dt | T1 > t) = µ1(t)dt.

In case (ii) we have

E(dNt | Ft) = P (T1 + τ2 ∈ dt | T1, τ2 > t− T1) = µ2(t− T1)dt.
In case (iii) we have

E(dNt | Ft) = 0.

So Ñt is a process which is defined through its derivative as:

d

dt
Ñt = µ1(t)1(t < T1) + µ2(t− T1)1(T1 ≤ t < T2).

Check that, upon integrating, we have

Ñt =

∫ t∧T1

0
µ1(s)ds+

∫ t∧T2

T1

µ2(s− T1)ds, (2.3)

(where an integral
∫ b
a with a > b is taken to be zero.) Now that we have guessed a formula

for Ñt, you may rigorously prove that it satisfies (2.1).

†I think that every mathematical discipline has its fundamental theorem. In this course, you are privileged
to use the fundamental theorems (i) of Calculus, (ii) of Probability and (iii) of Statistics. Do you know a
mathematical discipline whose fundamental theorem is not proved by means of the results of the discipline
itself? (Hint: Algebra)
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Fact 2.11. The process Ñ defined in (2.3) is the compensator of the point process N of
Example 2.5. (Exercise.)

Fact 2.12. Let T be an absolutely continuous positive random variable with density f(t),
distribution function F (t), survival function S(t) = 1 − F (t), and FOM µt = f(t)/S(t).
Then the compensator Ñt of the point process {T} is given by

Ñt = − logS(T ∧ t).

(Exercise; hint: This same Ñt was derived in equation (2.2).)

Suppose now that T is censored by the random variable U . This means that, whereas T
represents an actual lifetime, we do not observe T ; rather, we observe

X := T ∧ U :

censoring
=
partial observation

X = min (T, U)T

Consider now

Nt := 1(X ≤ t, T ≤ U).

This is the counting process corresponding to a random set

{
{T} if T ≤ U
∅ if T > U.

Fact 2.13. Let µt be the FOM of T and assume that U is independent of T . Then the
compensator of Nt is given by

∫ t

0
1(X ≥ s)µsds = − logS(t ∧ T ∧ U).

(Exercise.)

Now let T1, T2, . . . , Tn be independent random variables (positive, absolutely continuous).
Suppose that Ti is censored by Ui, and that all random variables are mutually independent.
Let

Xi = Ti ∧ Ui, n = 1, . . . , n.

Consider the point processes

N i
t = 1(Ti ≤ t, Ti ≤ Ui), n = 1, . . . , n.
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Their superposition , i.e. the counting process corresponding to {T1, . . . , Tn} is

Nt =
n∑

i=1

N i
t .

To find the compensator Ñt is to find a continuous process such that (2.1) holds. But
observe that

E(Nt −Ns | Nu, u ≤ s) =
n∑

i=1

E(N i
t −N i

s | Nu, u ≤ s)

=

n∑

i=1

E(N i
t −N i

s | N i
u, u ≤ s),

where the last equality follows from independence (N i contains no information about N j if
j 6= i). But then we can use Proposition 2.13 to assert that the compensator of N i

t is given
by

Ñ i
t =

∫ t

0
1(Xi ≥ s)µisds.

Therefore,

E(N i
t −N i

s | N i
u, u ≤ s) = E(Ñ i

t − Ñ i
s | N i

u, u ≤ s).

Now assume that the Ti have the same distribution, so that

µit ≡ µt.

In this case, let

Ñt =
n∑

i=1

N i
t =

∫ t

0

n∑

i=1

1(Xi ≥ s)µsds.

and observe that this is the compensator of Nt. We summarise this important result below.

Fact 2.14. Let T1, . . . , Tn be i.i.d. with common FOM µt. Let U1, . . . , Un be independent
random variables, and independent of the T1, . . . , Tn. Define Xi = Ti ∧ Ui, i = 1, . . . , n
(censoring). Consider the point process

Nt :=
n∑

i=1

1(Xi ≤ t, Ti ≤ Ui).

Define the number-at-risk process

Yt :=
n∑

i=1

1(Xi ≥ t).

Then the compensator of Nt is given by

Ñt =

∫ t

0
Yuµudu.

(Exercise.)
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2.5 More force to the force of mortality

You may be wondering, at this point, why we are wasting so much time with new definitions
and calculations. But here is why.

First, recall that the compensator Ñt of a point process Nt is a continuous process which
satisfies (2.1), which we repeat below:

E(Nt −Ns | Nu, u ≤ s) = E(Ñt − Ñs | Nu, u ≤ s), s < t.

Also, for each t, Ñt it is a function of (Nu, u ≤ t). By taking expectations we find that

E(Nt −Ns) = E(Ñt − Ñs), s < t.

So, in particular,

ENt = EÑt.

This, by itself, is important, because, often Ñt is easier to handle than Nt.

Now suppose that Gt is some continuous (or, simply left-continuous) process, such that, for
each t, Gt is a function of (Nu, u ≤ t), and consider the quantity

∫ t
0 GudNu defined by

Ht :=

∫ t

0
GudNu =

∑

n

GTn , (2.4)

where Tn are the points of Nt. We can then see that Ht has itself a compensator H̃t, in the
sense that

E(Ht −Hs | Hu, u ≤ s) = E(H̃t − H̃s | Hu, u ≤ s), s < t. (2.5)

Fact 2.15. The process Ht defined in (2.4) has a compensator given by

H̃t =

∫ t

0
GudÑu,

i.e. (2.5) holds. (Exercise.)

Example 2.6. People die according to a Poisson process of rate λ. When someone dies,
my company has to pay b pounds to the diseased’s family. There is also inflation rate α.
How much, on the average, money will I pay up to time t?
Answer: The current value of the money I must pay by time t is

Ht =

∫ t

0
be−αsdNs.

To compute EHt we remember that EHt = EĤt. But

Ĥt =

∫ t

0
be−αsλds = bλ

1− e−αt

α
.

This is deterministic, so EĤt = Ĥt = bλ1−e−αt

α .

Example 2.7. Compute the variance of Nt (a Poisson process with rate λ), without using
the fact that it is Poisson distributed; rather, use a compensator. Answer: We will compute



2.5. MORE FORCE TO THE FORCE OF MORTALITY 27

EN2
t . Let us write ∆Ns = Ns −Ns− and, using the algebraic identity (

∑
i ai)

2 =
∑

i a
2
i +

2
∑

i<j aiaj ,

N2
t =


∑

s≤t

∆Ns




2

=
∑

s≤t

(∆Ns)
2 + 2

∑

s≤t

∑

u<s

∆Nu∆Ns.

But (∆Ns)
2 = ∆Ns, because it is 0 or 1. Hence the first term is Nt. Now check that the

second term equals 2
∫ t
0 Ns−dNs. Thus,

N2
t = Nt + 2

∫ t

0
Ns−dNs.

The compensator of this is the compensator of Nt (which is λt) plus the compensator of
2
∫ t
0 Ns−dNs (which is 2

∫ t
0 Ns−λds):

N̂2
t = λt+ 2

∫ t

0
Ns−λds.

Hence

EN2
t = λt+ 2

∫ t

0
λsλds = λt+ λ2t2.

So var(Nt) = EN2
t − (ENt)

2 = λt, as expected, because, after all, Nt is a Poisson random
variable with mean λt.
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Chapter 3

Lifetime estimation

We first look at nonparametric estimators of a distribution function. Then we
have to deal with the fact that, in real life, censored (i.e. incomplete) observations
are not discarded for they may provide valuable information. We learn how to
construct a nonparametric estimator, known as the Nelson estimator, for the
cumulative force of mortality and then how to “translate” this into a nonparametric
estimator for the survival function; this is the Kaplan-Meier estimator. When
observations can be classified into many types, we may use a semi-parametric
model introduced by Cox (the proportional hazards model) or its more modern
version due to Aalen (the multiplicative intensities model). To understand the
estimators we shall use the language, tools and intuition built around the concept
of force of mortality and its dynamic version, i.e. the concept of the compensator.

3.1 Introduction

We shall consider the problem of estimation of the distribution of a lifetime variable from
real data. As discussed in Section 1.1, data may be incomplete and/or censored.

3.2 Empirical distribution function

The technique of estimating a lifetime based on the method of empirical distribution function
(EDF) is one that is typically used in cohort studies. An example of a cohort study is in
the estimation of lifetime of a smoker and its comparison vs that of a nonsmoker. The
estimation is done separately for the two groups and, in the end, the results are compared.
The problem is that such a study may take years to complete.

Suppose that X1, . . . , Xn are random variables. Then the EDF is the random function

Fn(x) =
1

n

n∑

i=1

1(Xi ≤ x), x ∈ R.

In words: Fn(x) is the fraction of the variables with values not larger than x. Note that the
function x 7→ Fn(x) is a distribution function because it is increasing (right-continuous) and
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30 CHAPTER 3. LIFETIME ESTIMATION

Fn(−∞) = 0, Fn(+∞) = 1. However, it is random because it is a function of the random
variables X1, . . . , Xn.

Typically, we must assume that the Xi come from the same population. Here we will assume
that they are i.i.d. with common (real) distribution F (x). That is, P (Xi ≤ x) = F (x). This
function is assumed to be unknown.

Note that, due to the Fundamental Theorem of Statistics (look at Section B.8), the random
function Fn is a consistent estimator of the FUNCTION F . This means that we can uni-
formly approximate the function F with arbitrarily small probability of error as long as n
is large enough (and this is a BIG problem, because n may not be big).

Figure 3.1: An empirical distribution function for n = 10 observations. Note that the
function jumps at each observation Xi and the jump size is 1/10

You will recall, from the Fundamental Theorem of Statistics (the Glivenko-Cantelli result
of Section B.8), that

Dn := sup
x
|Fn(x)− F (x)|

converges to 0, as n→∞, with probability 1.

The Kolmogorov-Smirnov test is a nonparametric test of the hypothesis that the true dis-
tribution is F . Following the Neyman-Pearson formulation, we choose a significance level α
(say α = 5%) and try to find a rejection region R (which is a subset of the set of values of
our observations), such that the type II error probability is minimised while the type I error
probability remains below α. The type I error probability is the probability of rejecting the
hypothesis when the true distribution is actually F , while the type II error probability is
the probability of accepting the hypothesis when the true distribution is not F . According
to the Kolmogorov-Smirnov result, we should try to look for a rejection region of the form

R = {Dn > k},
and try to find k so that

P (R) = α.

This P (R) is computed under the hypothesis that F is the true distribution. The result also
says (which may be surprising at first look!) that P (R) is the same no matter what F is!

So we choose F to be uniform, understand enough probability to compute

α = P (sup
x
|Fn(x)− F (x)| > k)
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(this is done in many books–but also see Section B.3), then tabulate α vs k (or, what is the
same, k vs α)∗ and just compute Dn for the given data. It’s beautiful and simple.

3.3 The Nelson estimator of the (cumulative) FOM for cen-
sored data

The problem is, again, to estimate an unknown distribution function F but with one extra
complication: right-censoring. We will assume that F is the distribution of a positive and
absolutely continuous random variable. Let T be such a random variable representing, say,
the life of a patient. In this section, we will construct an estimator for the integrated FOM

Λ(t) :=

∫ t

0
µsds.

Let us think of an experiment involving n such patients with lifetimes T1, T2, . . . , Tn, assumed
to be i.i.d. random variables with common distribution F .

If all n observations were available, then the problem reduces to that of the previous section.
But, in real life, some patients may decide to withdraw from the experiment, before they
die. This is censoring.

We model censoring as follows: Let T be the unknown lifetime of a patient and let U be a
withdrawal time. We will assume that U is random, independent of T . What we observe,
in reality, is the random variable

X = min(T, U).

Define
δ = 1(T ≤ U).

Thus δ = 0 corresponds to censoring.

Now, for the n subjects, define, along with the Ti, the random variables Ui, assumed to be
independent and independent of the Ti’s. Let Xi = min(Ti, Ui) and δi = 1(Ti ≤ Ui). The
Xi’s constitute the observations

Consider the point process

N i
t = 1(Xi ≤ t, δi = 1) = 1(Ti ≤ t, Ti ≤ Ui), i = 1, . . . , n.

Each of these point processes is observable, and so is their sum

Nt =
n∑

i=1

N i
t .

The situation is as described in Proposition 2.14. It was shown there that the compensator
of Nt is given by

Ñt =

∫ t

0
Yuµudu,

where Yt is the number-at-risk process

Yt :=

n∑

i=1

1(Xi ≥ t).

∗There ARE tables doing this! But also see Section B.8.1
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We now apply Proposition 2.15 with

Ht :=

∫ t

0
1(Ys > 0)

dNs

Ys
=

n∑

i=1

1

YTi

1(Ti ≤ t, Ti ≤ Ui). (3.1)

By definition, Yt is left-continuous, so Proposition 2.15 tells us that Ht has the following
compensator:

H̃t =

∫ t

0
1(Ys > 0)

dÑs

Ys
=

∫ t

0
1(Ys > 0)

Ysµs
Ys

ds =

∫ t

0
1(Ys > 0)µsds =

∫ t∧τ

0
µsds = Λ(t∧τ),

where τ is the first time t such that Yt = 0. Since EHt = EH̃t, it is reasonable to take Ht

as an estimator of Λ(t ∧ τ).

Definition 3.1 (The Nelson estimator). The Ht, defined in (3.1) is the Nelson estimator
for the cumulative hazard rate.

The Nelson estimator was introduced in [13]. The time τ represents the earliest time at
which all subjects are either dead or have withdrawn; in other words, the number-at-risk is
zero after τ . So, obviously, nothing after τ is of relevance. We have also shown that

Proposition 3.1 (Unbiasedness of the Nelson estimator). Under the true probability mea-
sure (i.e. under the distribution F )

EHt = EΛ(t ∧ τ), for all t ≥ 0.

Out of the times T1, . . . , Tn, some of them correspond to actual observed deaths (δi = 1 or
Ti ≤ Ui) and some to censoring (δi = 0 or Ti > Ui). The point process Nt jumps at the
epochs of the actual observed deaths only. Let as then take those times, i.e. those Ti for
which δi = 1 and let T o

1 be the smallest, T 0
2 be the next one, etc. In this notation, the

Nelson estimator (3.1) takes the form

Ht =

Nt∑

k=1

1

YT o
k

.

The 1 in the numerator can be interpreted as the number of deaths occurring and observed
at time exactly T o

k . So, if we let YT o
k
+ be the value of the number-at-risk, just after TO

k , we
have YT o

k
− YT o

k
+ = 1 and so, trivially,

Ht =

Nt∑

k=1

YT o
k
− YT o

k
+

YT o
k

. (3.2)

In theory, only one death occurs at each time T o
k . In practice, because measurements

cannot be taken continuously, but every day, or even every week, there may be more than
one deaths recorded. That is, in practice, it is (3.2) that is used, rather than (3.1), and
the interpretation of the numerator Dk := YT o

k
− YT o

k
+ is that it represents the number of

observed deaths at T o
k .

But if we look at (3.2) once more, then its form starts making sense. For is we know that
YT o

k
subjects were alive just before T o

k and Dk died at T o
k then the FOM at this time can

be estimated to be equal to Dk/YT o
k
. Hence the cumulative FOM is the sum of these ratios,

exactly as the Nelson estimator prescribes.
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Example 3.1. In a clinical experiment, 10 patients were monitored from the time they took
a drug until they recovered. The table below shows the time-to-recovery for each patient.
Four patients withdrew from the study and so only the times till their withdrawal were
recorded (censoring).

patient index 1 2 3 4 5 6 7 8 9 10

observations 5 16 12 9 8 2 6 10 20 14

censoring? N Y N N N N Y Y N N

The first order of business is to order the observation times, regardless of whether they are
censored or not, but we clearly indicated the censored ones by a little C next to them:

ordered observations 2 5 6C 8 9 10C 12 14C 16C 20

Figure 3.2 shows the observations counting process. Figure 3.4 shows the number-at-risk
process and, below it, the Nelson estimator. Note that the sizes of the jumps of the Nelson
estimator are equal to the inverse of the number-at-risk process just before the jump time.

Nt

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

t

Figure 3.2: The observations counting process for Example 3.1

3.4 The Kaplan-Meier estimator for the survival function un-
der censoring

How can we transform the Nelson estimator for Λ(t) =
∫ t
0 µsds into an estimator for S(t)?

The answer lies in the relation between S(t) and Λ(t). We have:

S(t) = 1−
∫ t

0
f(s)ds = 1−

∫ t

0
S(s)

f(s)

S(s)
ds = 1−

∫ t

0
S(s)µsds. = 1−

∫ t

0
S(s)dΛ(s).

We can read this as

−dS(t) = S(t)dΛ(t). (3.3)

Hence, by substituting the estimator Ht for Λ(t), we hope to obtain an estimator Ŝ(t) for
S(t). We think of (3.3) as saying that the change in S(t) at time t is equal to its value before
the change times the change in Λ(t). Now translate this into a statement for an estimator:
the change in Ŝ(t) at time t is equal to its value before the change times the change in Ht.
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In other words, if we agree that Ŝ(t) is right-continuous and denote by Ŝ(t−) its value just
before t, we have

Ŝ(t−)− Ŝ(t) = Ŝ(t−)[Ht −Ht−].

But the change Ht −Ht− is either 0 (if t is not a real observed death) or Dk/YT o
k

if t = T o
k .

We write this as

Ŝ(t−)− Ŝ(t) = Ŝ(t−)
∆Nt

Yt
,

with ∆Nt denoting the change in the observations process (equal to Dk if t = T o
k ) and solve

for Ŝ(t) to obtain

Ŝ(t) = Ŝ(t−)

[
1− ∆Nt

Yt

]
.

Thus, Ŝ(t) is found by multiplying its previous value by the factor inside the bracket. Iter-
ating the procedure we obtain

Ŝ(t) =
∏

s≤t

[
1− ∆Ns

Ys

]
. (3.4)

Definition 3.2 (Kaplan-Meier estimator for the survival function). This is the estimator
given by (3.4).

The Kaplan-Meier estimator was introduced in [10]. It is a biased estimator, but not very
much so:

Theorem 3.1. For all t ≥ 0, it holds that

0 ≤ E[Ŝ(t)− S(t)] ≤ F (t)P (X ≤ t)n.

See Fleming and Harrington [8] for a proof.

Thus the bias E[Ŝ(t)−S(t)] is always non-negative and tends to 0 exponentially fast as the
number n tends to infinity.

Example 3.2 (continuation of Example 3.1). See the last part of Figure 3.4.

3.5 The Cox and Aalen models

It is often the case in practice that subjects are classified according to their types. For
instance, we may wish to study mortality rates of males and females, but it is unreasonable
to assume the same distribution for both. We introduce a model, which is neither fully
nonparametric nor fully parametric. It is usually referred to as semi-parametric. In it, we
assume that each observation is censored, so if T represents the actual lifetime and U a
censoring time, we observe

X = T ∧ U, δ = 1(T ≤ U)

but, along with X, we observe a vector of “covariates”

Z = (Z1, . . . , Zp).

The number p is the number of types and each Zi is a real number.†

†More generally, each Zi can be a random process, i.e. it can vary with time–see below.



3.5. THE COX AND AALEN MODELS 35

For instance, we may want to classify subjects according to sex = {0, 1} (where 0=male,
1=female) and age = {0, 1, 2} (where 0=young, 1=middle-aged, 2=old). So, here, p = 2,
and Z1 takes values in {0, 1}, while Z2 takes values in {0, 1, 2}. The vector Z = (Z1, Z2)
takes 6 values. A fully nonparametric approach would require to estimate λ(t | Z) for each
of the possible values of Z, but that may be costly.

We assume‡ the random variable T has a FOM λ(t | Z) that depends on Z in a multiplicative
manner:

λ(t | Z) = λ0(t)g(Z)

Usually,

g(Z) = exp

p∑

i=1

βpZp =: β′Z,

the βi being unknown parameters, β = (β1, . . . , βp), Z = (Z1, . . . , Zp) and β′Z denotes the
standard inner product between β and Z. This is the so-called proportional hazards model,
due to Cox [5].

Note that
λ(t | Z) = lim

h→0
h−1P (T ≤ t+ h | T > t, Z),

knowledge of λ(t | Z) implies knowledge of the survival function S(t | Z) = P (T > t | Z),
because

S(t | Z) = exp−
∫ t

0
λ(u | Z)du.

Cox also proposed a model for time-varying covariates:

λ(t | Zt) = P (T ≤ t+ h | T > t, Zt).

The problem with this is that S(t | Z) cannot be recovered.

Aalen (1978) had a better suggestion. He argued as follows. Observe that the pair of random
variables (X,U) convey precisely the same information as the pair of processes

Nt = 1(X ≤ t, δ = 1), Yt = 1(X ≥ t), t ≥ 0.

Indeed, by observing the evolution of Yt we can recover X as the first t such that Yt+ = 0,
and then we can recover δ by looking at the value of NX . If NX = 1 then δ = 1, otherwise
δ = 0. Now the compensator of Nt is, as seen before (Proposition 2.14),

Ñt =

∫ t

0
Yuµudu,

where µt is the FOM (hazard rate) of T . E.g. in the proportional hazards model,

Ñt =

∫ t

0
Yuλ0(t)e

β′Zdu.

In the time-varying case, this enables us to propose a model as follows:

Ñt =

∫ t

0
Yuλ0(t)e

β′Zudu.

This is the multiplicative intensities model of Aalen.

Note that, for constant Z, the Cox proportional hazards model coincides with the Aalen
multiplicative intensities model.

‡This IS an assumption that can be refuted, if necessary.
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3.5.1 Estimation based on partial likelihood

The problem is to estimate the coefficients β1, . . . , βp in the proportional hazards model.
We assume that there are n i.i.d. random variables T1, . . . , Tn, representing lifetimes with
common, unknown, distribution F . These are independently censored by U1, . . . , Un, so that
Xi = Ti ∧ Ui, i = 1, . . . , n are the actual observation times. Along with these, we observe
the covariates Zi = (Z1

i , . . . , Z
n
i ), i = 1, . . . , n. Let δi = 1(Ti ≤ Ui).

Example 3.3. Consider the following 15 observations.

index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

observations 5 16 12 9 8 2 6 10 20 14 7 1 18 3 11

sex M M M F F M M M F F F M M M F

censoring? N Y N N N N Y Y N N Y N N Y Y

Thus, e.g., we know that subject i = 5 is female (F), that it was not censored, and that we
observed T5 = 8. On the other hand, subject i = 8 is male (M), there was censoring, so we
observed X8 = 10; in other words, we just know that T8 = 10, but not the actual value of
T8. To differentiate between male and female subjects we arbitrarily choose Z = 0 for male
and Z = 1 for female, so our proportional hazards model consists of two hazard rates:

λ(t | 0) = λ0(t),

λ(t | 1) = λ0(t)e
β .

A fully nonparametric model would require that we estimate two functions λ(t | 0), λ(t | 1),
without specifying any a priori relationship between them. Thus, we would have to treat
the male and female populations separately, and apply the Nelson estimator for each of
them. In a real situation this may be “costly” and so we use the model above where we
a priory specify that the two unknown functions have a constant (time-independent) but
unknown ratio eβ . The problem is to estimate this ratio. From the observations we see that
just before t = 18, there are two subjects alive: subject 13 (M) and subject 9 (F). Recall
(Exercise A.2.6) that if we know that the minimum two independent random variables is t,
then the chance that the first one is the actual minimum is the ratio of its FOM divided by
the sum of the FOMs. Thus, since at time t = 18 there is an actual death, the chance that
it was actually due to the male subject is

λ(t | 0)

λ(t | 0) + λ(t | 1)
=

1

1 + eβ
.

The same logic can be applied at any actual death time, giving an estimate for the probability
that the actual death is due to a subject carrying the particular label. Of course, the
computation has to be done amongst the subjects that have not expired (died or censored)
at that time. Multiplying these terms together gives a quantity that is known as partial
likelihood and is only a function of β.

We continue by giving the heuristics for the partial likelihood function. Suppose that
(Ai, Bi), i = 1, . . . ,m is a collection of pairs of events. Then the likelihood (probability) of
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all of them is

P (A1B1A2B2 · · ·AmBm) =

= P (A1B1)P (A2B2 | A1B1)P (A3B3 | A2B2A1B1) · · ·P (AmBm | Am−1Bm−1 · · ·A1B1)

= P (A1 | B1)P (A2 | B2A1B1)P (A3 | B3A1B1A2B2) · · ·P (Am | Bm−1 · · ·A1B1)

×P (B1)P (B2 | A1B1)P (B3 | A2B2A1B1) · · ·P (Bm | Am−1Bm−1 · · ·A1B1).

Suppose that the events Ai carry more information about an unknown parameter than the
events Bi. It is “reasonable” to ignore that latter terms and use only

L := P (A1 | B1)P (A2 | B2A1B1)P (A3 | B3A1B1A2B2) · · ·P (Am | Bm−1 · · ·A1B1)

for estimation.

In the case of the proportional hazards, consider the actual deaths, i.e. the points at which
Nt jumps. Let T o

0 = 0, and, recursively,

T o
k = inf{t > T o

k−1 : Nt = Nt− + 1}.

Each T o
k corresponds to exactly one Ti. We use the notation (i) for this particular i for

which Ti = T o
k . For instance, in Example 3.3 we have that the actual deaths are

T12 = 1, T6 = 2, T1 = 5, T5 = 8, . . .

So we set

T o
1 = T12, T o

2 = T6, T o
3 = T1, T o

4 = T5, . . .

and so we have that the indices (=labels/names of subjects that died) of the ordered actual
deaths are

(1) = 12, (2) = 6, (3) = 1, (4) = 5, . . .

Define the set-at-risk at time t as

R(t) := {i : Xi ≥ t}.

Let Ak be the event that the label of the subject that dies at time T o
k is (k). Let Bk

be the event that specifies the observations (necessarily censorings) between T o
k−1 and T o

k .
Then the likelihood corresponding to the observed data is P (A1B1A2B2 · · · ). We make the
“reasonable” assumption that the Bk carry little information about the labels and so the
partial likelihood is the product of terms of the form

P (Ak | BkAk−1 · · ·A1B1).

From our earlier discussion it should be clear that

P (Ak | BkAk−1 · · ·A1B1) =
λ(T o

k | Z(k))∑
i∈R(T o

k
) λ(T o

k | Zi)

Hence the partial likelihood is

L(β) =
∏

k≥1

λ(T o
k | Z(k))∑

i∈R(T o
k
) λ(T o

k | Zi)
(3.5)
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Figure 3.3: Acheron

Fact 3.1. The jolly fellow of Figure 3.3 has something to do with lifetime estimation or
with mortality studies. (Exercise: What?)

We treat the partial likelihood as being a usual density and, applying the fundamentals of
non-parametric Statistics, we define the MLE of β as the statistic β̂ = β̂(T o

1 , T
o
2 , . . . ;Z1, . . . , Zn)

that maximised L(β):

L(β̂) = max
β

L(β).

From the general theory of MLE, we expect that β̂

1. is strongly consistent , i.e. that it converges to the true β as n→∞,

2. is approximately unbiased , i.e. that its expectation under the true β is β,

3. is very efficient , i.e. that its variance, under the true β is as small as possible (ap-
proximately equal to the lower bound of the Cramér-Rao inequality : varβ(β̂) ≈ 1/Iβ,
where Iβ ≈ Eβ [DβL(β)]2 ≈ −EβD

2
βL(β)), when n is large,

4. is asymptotically normal , i.e. that the law of β̂ is, for large n, approximatelyN (0, 1/Iβ).

3.5.2 Hypothesis testing with partial likelihood

We treat the logarithm of the partial likelihood as being a usual log-likelihood function and
apply the standard hypotheses testing methods from Statistics.

z test:

To test the hypothesis that β = β∗ vs its negation, we may use the z-test (see Section B.6).
If we believe the hypothesis, then √

Iβ∗(β̂ − β∗)
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“should” be approximately N (0, 1)–distributed. We compute
√
Iβ∗(β̂ − β∗) and if it is not

typical, we reject the hypothesis.

Score test:

Or we may use the score test (again, see Section B.6). To this end, first compute the score
function

U(β) =
∂

∂β
logL(β),

where L(β) is given by (3.5). Then, if we believe the hypothesis, the quantity

U(β∗)2/Iβ∗

“should” be approximately χ2
1–distributed. But we do not know Iβ∗ because its computation

requires taking an expectation under β∗. So we replace it by the observed quantity

I(β) =
∂2

∂β2
logL(β),

evaluated at β = β∗. Then, believing that the (now computable) quantity

U(β∗)2/I(β∗)

is approximately χ2
1–distributed, we compute it and if its value is atypical for the χ2

1 distri-
bution, we reject the hypothesis.

Likelihood ratio test:

Finally, we may consider the likelihood ratio (see Section B.7)

λ :=
supβ 6=β∗ L(β)

L(β∗)
=

L(β̂)

L(β∗)

and use the result that, if β∗ is the true value, then 2 log λ “should” have a χ2
1 distribution.
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Figure 3.4: The number-at-risk process Yt, the Nelson estimator Ht, and the Kaplan-Meier
estimator Ŝ(t) for Example 3.1



Chapter 4

Markov chains and estimation

Nonparametrics is desirable, but, in the absence of a lot of data, we have to make
do with some more concrete models. Also, a priori experience may render specific
models more accurate descriptors of the real situation. The point of the first part
is to quickly remind you of the concept of a Markov chain, in continuous time,
with discrete (mostly finite) state space, the caveat being that we will allow for
time-varying rates (=forces, in actuarial lingo). Of course, tractable models are
the good-old time-homogeneous Markov chains, which are reviewed next. We
also discuss how to estimate the parameters of a Markovian model, based on long
observations from one run of the chain, or from independent trials of the same
chain. We only discuss the case of time-homogeneous chains, the more general
case being the same, in principle, but analytically more complicated. We shall
only deal with Maximum Likelihood Estimators (MLE) whose properties we are
also going to review.

4.1 General concepts about (time-varying) chains

Recall that a stochastic process {Xt, t ≥ 0} with values in some state space S is Markov iff
for any t, (Xs, s > t) is independent of (Xs, s < t), conditionally on Xt. This means that
joint probabilities can be compute by the chain rule:

P (Xti = xi, i = 1, 2, . . . k | X0 = x0) =
k∏

i=1

P (Xti = xi | Xti−1
= xi−1),

for any 0 = t0 < t1 < · · · tk and any x0, x1, . . . , xk ∈ S. It follows that the distribution of
the process is completely specified by the distribution of the initial random variable X0 and
the conditional distributions

Ps,t(x, y) = P (Xt = y | Xs = x), 0 ≤ s < t, x, y ∈ S.

These transition probabilities are functions of four variables: two times (s, t) and two states
(x, y). It is customary, but also mathematically fruitful, to think of the dependence on the
pair of states as a matrix, and thus define the probability transition matrix Ps,t as a matrix

41
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with entries Ps,t(x, y), where x indexes the rows and y the columns. The actuarial notation
is

t−sp
xy
s = Ps,t(x, y).

Note that the sum of the rows of this matrix is 1. Also note that, owing to the Markov
property defined above, the probability transition matrices obey the multiplication rule:

Ps,t = Ps,uPu,t, whenever s < u < t.

In Mathematics, one says that the family of matrices {Ps,t} when s < t run over the positive
real numbers form a semigroup which is an algebraic structure with an identity element.
The identity here is obviously Pt,t, for an t. Indeed, Pt,t is trivially the identity matrix.
Recalling what matrix product means, the multiplication rule reads:

Ps,u(x, y) =
∑

z

Ps,u(x, z)Pu,t(z, y). (4.1)

We are only going to discuss the case where the cardinality of S is finite. In this case, the
function t 7→ Xt is piecewise constant. We consider only the case where the derivative of
P (Xt+h = y | Xt = x) with respect to h exists. The value of the derivative at h = 0 is of
particular importance and is known as transition rate .

Definition 4.1. The transition rate from state x to a different state y at time t is defined
as

qt(x, y) := lim
h↓0

1

h
P (Xt+h = y | Xt = x).

NOTE: The definition itself needs a theorem; namely, that these derivatives exist. But we
shall take it for granted that you have learnt this in your undergraduate courses. In actuarial
notation:

qt(x, y) = µxyt .

We shall think of the transition rates as a priori “given”, as part of the model, and shall
derive the transition probabilities from them. Note that we need only know qt(x, y) for
x 6= y.

Fact 4.1. If x = y, the derivative of P (Xt+h = x | Xt = x) equals

qt(x, x) := lim
h↓0

1

h
[P (Xt+h = x | Xt = x)− 1] = −

∑

x 6=y

qt(x, y).

(Exercise.)

Note that qt(x, x) is a negative number. Again, we find it fruitful to summarise the transition
rates information in the matrix Qt, which is a matrix with entries qt(x, y). Note that the
sum of the rows of this matrix is zero.

It is useful to always remember the definitions of the rates by means of the Landau symbols:

P (Xt+h = y | Xt = x) =

{
qt(x, y)h+ o(h), if x 6= y

1− |qt(x, x)|h+ o(h), if x = y
, as h→ 0. (4.2)
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Here, o(h) is any function with the property limh→0 o(h)/h = 0. Similarly, o(g(h)) is any
function with the property limh→0 o(g(h))/g(h) = 0. Note that a finite sum of o(h) functions
is also o(h), whereas ho(h) = o(h2), and if a function is o(h2) then it is o(h). We can now
translate these into matrix notation. Denote, as usual, by I the identity matrix, i.e. a matrix
whose entries in row x and column y is 1(x = y).

Fact 4.2 (Exercise in notation). Use this notation to see that the definition of transition
rates is equivalent to

Pt,t+h − I = hQt + o(h), as h→ 0.

Note that, here, o(h) is a matrix with all entries of type o(h).

The matrices Ps,t and Qt are related via

Theorem 4.1.

Kolmogorov’s forward equations:
∂

∂t
Ps,t = Ps,tQt

Kolmogorov’s backward equations :
∂

∂s
Ps,t = QsPs,t.

Proof. The adjective forward reminds us to perturb the forward index, i.e. the index t. We
have

Ps,t+h = Ps,tPt,t+h = Ps,t(I + hQt + o(h)) = Ps,t + hPs,tQt + o(h), as h→ 0,

(since linear combinations of o(h) is o(h)). But this means that

1

h
(Ps,t+h − Ps,t) = Qt +

1

h
o(h), as h→ 0.

But the limit of 1
h(Ps,t+h −Ps,t) as h→ 0 is, by definition of the derivative, ∂

∂tPs,t, and this
proves the forward equations. It doesn’t require much intelligence at this point to guess
that to derive backward equations we have to perturb the backward index, viz. the index
s.

Fact 4.3 (Exercise in notation). The forward equations, in actuarial notation, read:

∂

∂t
tp

xy
s =

∑

z 6=y

tp
xz
s µ

zy
s+t − tp

xy
s µ

yz
s+t.

(Exercise.)

These equations are not, in general, easy to solve. Here people apply numerical methods.
Even the simplest, time-varying differential equations are not solvable by quadratures.

4.2 Use of Markov chain models

Consider what is simplest of all: Namely, take S = {1, 0} and let qt(1, 0) = µt, a given
function of t. Let qt(0, 1) = 0. Interpret 1 as ‘alive’ and 0 as ‘dead’. Thus, µt is nothing else
but the FOM of the random variable T that is defined as the the first time the process takes
the value 1. Our assumption qt(0, 1) = 0 means that there is no chance for resurrection.
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1 0
µ t

Figure 4.1: A trivial time-dependent Markov chain

There is nothing to say here, except that people like to use the diagram of Figure 4.1 for
this case.

To make things more interesting and, perhaps, more realistic∗ introduce a resurrection rate
qt(0, 1) = λt so that the new diagram is as in Figure 4.2 which we may call the punabhava

chain. The rate matrix is Qt =

(
−µt µt
λt −λt

)
and the forward equations read

tλ

µ t

1 0

Figure 4.2: The punabhava chain

∂

∂t

(
Ps,t(1, 1) Ps,t(1, 0)
Ps,t(0, 1) Ps,t(0, 0)

)
=

(
−µt µt
λt −λt

)(
Ps,t(1, 1) Ps,t(1, 0)
Ps,t(0, 1) Ps,t(0, 0)

)
.

There appears to be 4 equations, but there are only 2, for the rows of the matrix Ps,t add
up to 1. A reasonable choice for the functions of the punabhava chain is: µt = t (the later it
is the easier it is to die), λt = e−t (resurrections become rarer and rarer–indeed, there were
more of them long time ago and fewer of them today). Denote by Xt the value in {1, 0} of
the chain at time t. Assume X0 = 1. The following random variables are of interest: the
time of the first death τ0 = inf{t > 0 : Xt = 0}; the time of resurrection measured after the
first death: τ1 = inf{t > 0 : Xτ0+t = 1}.
Fact 4.4. Unless µt and λt are constant, the random variables τ0, τ1 are not independent.
(Exercise.)

Now let us assume that Xs = x and define the holding time of the state x by

T x
s := inf{t > 0 : Xs+t 6= x}.

People are interested in the distribution function of T x
s :

tp
xx
s := P (T x

s > t | Xs = x).

Fact 4.5. The FOM of T x
s is

∑
y 6=x qs+t(x, y), t ≥ 0, and so (an application of Fact 2.2),

tp
xx
s = exp−

∫ s+t

s

∑

y 6=x

qu(x, y)du.

(Exercise.)

∗At least in a Mahayana Buddhist tradition
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4.3 The five most trivial chains for survival models

We discuss some very simple models.

Case 4.1 (From LIFE to DEATH without RESURRECTION).
See Figure 4.3. S = {alive = 1,dead = 0}. We take qt(1, 0) = µt, qt(0, 1) = 0. This is

nothing else but a model of a single random variable T by means of its FOM µt. We have
nothing to say, other than that P (T > t) = exp−

∫ t
0 µsds.

1 0
µ t

DEADALIVE

Figure 4.3: From life to death without resurrection

Case 4.2 (Oscillating between EMPLOYMENT and UNEMPLOYMENT).
See Figure 4.4. S = {employed = 1,unemployed = 0}. Rates: qt(1, 0) = σt, qt(0, 1) =
ρt. The model is not solvable, in general.

1 0

t

t

σ

ρ

EMPLOYED UNEMPLOYED

Figure 4.4: Oscillating between employment and unemployment

Case 4.3 (From HEALTHY/ILL to DEATH).
See Figure 4.5. S = {healthy = 1, ill = 2,dead = 0}. we take qt(1, 2) = λt, qt(1, 0) = µt,
qt(2, 0) = νt, and zeros in all other cases. The model is solvable.

tλ

1

0

µ t

λ t

ν t

2

HEALTHY ILL

DEAD

Figure 4.5: From healthy/ill to death

Case 4.4 (From LIFE to DEATH for a couple).
See Figure 4.6.
S = {both alive = 11, first alive second dead = 10, first dead second alive =
01, both dead = 00}. Suppose we take two chains of the first type. Consider first the case
where they are independent. Then we have the product chain that can be easily derived if
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we let S, T be the two independent lifetimes with FOMs αt, βt, respectively:

Xt =





11, t < S ∧ T
10, S = S ∧ T ≤ t < S ∨ T
01, T = T ∧ S ≤ t < S ∨ T
00, t ≥ S ∨ T.

The transition rates are easily found to be: qt(11, 10) = qt(01, 00) = α, qt(11, 01) =
qt(10, 00) = β, and 0 in all other cases. The model is solvable.
The second case is when S, T are not independent. (For instance, consider the case of Romeo
and Juliet.) Then we don’t have 2 distinct rates, but 4, i.e., qt(11, 10) = αt, qt(01, 00) = α′

t,
qt(11, 01) = βt, qt(10, 00) = β′t. The model is solvable. Of course, figuring out the rates from
observations may not be a trivial matter.

11 10

01 00

α

α

β β

ALIVE/ALIVE ALIVE/DEAD

DEAD/ALIVE DEAD/DEAD

Figure 4.6: From life to death for a couple

Case 4.5 (Oscillating between ABLE and ILL till RETIREMENT or DEATH).
See Figure 4.7. S = {able = 1, ill = 2,retired = 3,dead = 0}. The only nonzero rates

that we consider are: qt(1, 2) = σt, qt(2, 1) = ρt (oscillating between ABLE and ill) and
qt(1, 3) = λ, qt(1, 0) = µt, qt(2, 0) = νt. Wo don’t consider the rate qt(3, 0), simply because
we are only interested in the person while he is working or is ill while he is working; when
he retires or dies we stop caring. The model is, in general, not solvable. (If the rates σ, ρ
are constant then we can solve.)

σt

ρ
t

λ t
µ t

ν t

RETIRED

ABLE

DEAD

ILL1 2

03

Figure 4.7: Oscillating between able and ill till retirement or death
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4.4 Homogeneous Markov chains

If we assume that Ps,t is a function of t−s, then we have the so-called time-homogeneous case.
In this case (still assuming S finite) the derivative of Ps,t exists, hence we can immediately
talk about transition rates. Obviously, the transition rates q(x, y) do not depend on time.
And so the rate matrix Q is constant. We are simply going to write Pt for the matrix Ps,s+t,
since it is the same for all s. In this notation, we have

Theorem 4.2.

Kolmogorov’s forward equations:
d

dt
Pt = PtQ

Kolmogorov’s backward equations:
d

dt
Pt = QPt.

These are easily “solvable”. Indeed, define, as known from the elementary theory of linear
differential equations, the matrix

etQ :=
∞∑

n=0

tn

n!
Qn,

and observe:

Fact 4.6. d
dte

tQ = QetQ = etQQ. (Exercise.)

thereby establishing that Pt = etQ is the solution to the Kolmogorov’s equations.

Example 4.1. Consider the punabhava chain with µt = µ, λt = λ. Since Q is a 2 × 2
matrix, any power Qn with n ≤ 2 is a combination of I and Q, and so etQ = c1 + c2Q,
for appropriate scalars c1, c2. Since Q acts on its eigenspaces multiplicatively, this equation
becomes scalar one on each of the eigenspaces. The eigenvalues of Q are the numbers s for
which det(sI −Q) = 0, i.e. (s+ µ)(s+ λ)− λµ = 0, or or s2 + (λ+ µ)s = 0, whence s = 0
or s = −(λ + µ). For each such s we have ets = c1 + c2s. For s = 0 we have c1 = 1. For
s = −(λ+µ) =: −α, we have e−αt = 1− c2α, whence c2 = (1− e−αt)/α. Assembling things

together, we have found that Pt = etQ = 1−Q(1− e−αt)/α = 1
α

(
λ+µe−αt

λ+µ
µ−µe−αt

λ+µ
λ−λe−αt

λ+µ
µ+λe−αt

λ+µ

)
.

Homogeneous Markov chains (at least in a finite set S) with transition rates q(x, y) can be
constructed as follows: First consider a Markov chain (Y0, Y1, . . .) with transition probabil-
ities

P (Yn+1 = y | Yn = x) =
q(x, y)

|q(x, x)| . (4.3)

Then, for each x ∈ S, consider a sequence

σx := (σx(1), σx(2), . . .) (4.4)

of i.i.d. random variables with common exponential distribution with parameter |q(x, x)|.
Assume further that the sequences {σx, x ∈ S} are mutually independent. Define

T0 := 0, Tn := σY0
(1) + · · ·+ σYn−1

(n), n ≥ 1,

Xt :=
∑

n≥0

Yn1(Tn ≤ t < Tn+1), t ≥ 0. (4.5)
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Fact 4.7. The process (Xt) thus constructed is a homogeneous Markov chain with transition
rates q(x, y). (Exercise.)

The backward method We are interested in computing the mean and other distribu-
tional aspects of the times

σz := inf{t ≥ 0 : Xt = z},
or, more generally,

σA := inf{t ≥ 0 : Xt ∈ A}.
For, instance, if z is the graveyard state, we are interesting in the first time that the grave
is reached. And if z′ is the retirement state, and A = {z, z′}, then σA is the first time till
retirement or death, whichever comes first.

Notation: Px(·), Ex(·) mean P (· | X0 = x), E(· | X0 = x), respectively.

Let us find, for instance, the mean of σA.

Theorem 4.3 (Backwards equations for mean hitting times).

∑

y 6∈A

q(x, y)EyσA = −1, x 6∈ A.

Proof. Let x 6∈ A. Write† ExσA = Ex(σA, σA ≤ δ) + Ex(σA, σA > δ), for any (small) δ > 0.
It is easy to see that Ex(σA, σA ≤ δ) = o(δ), as δ ↓ 0. On the other hand, if σA > δ then
σA = δ + σ′A, where σ′A = inf{t ≥ 0 : Xδ+t ∈ A}, so

Ex(σA, σA > δ) =
∑

y

Ex(Xδ = y, δ + σ′A) =
∑

y

Pδ(x, y)Ex(δ + σ′A | Xδ = y).

But, by time-homogeneity, Ex(σ′A | Xδ = y) = EyσA, and so

Ex(σA, σA > δ) = δ +
∑

y

Pδ(x, y)EyσA.

Since Pδ(x, y) = 1(x = y) + δq(x, y) + o(δ), we have

ExσA = o(δ) + δ + ExσA + δ
∑

y 6∈A

q(x, y)EyσA, (4.6)

and, upon dividing by δ before sending it to 0, we conclude.

4.5 Estimation using Markovian models

4.5.1 An utterly trivial case

Let us start with a very simple situation: We observe n i.i.d. lives obeying this model (an
assumption, to be sure). Let Ti be the actual death of the i-th life. In other words, T1, . . . , Tn
are i.i.d. random variables with FOMs µt. Suppose that subject i enters the experiment at

†The notation E(X,A), where Z is a random variable and A an event, stands for E(X1A). Thus, if
A ∩B = ∅, E(X,A ∪B) = E(X,A) + E(X,B).
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1 0
µ t

time ai, and leaves at time bi if he has not died by this time. Let us make the simplifying
assumption that

µt = µ, a ≤ t ≤ b,
where a := infa≤i≤n ai, b := sup1≤i≤n bi. We wish to estimate the one and only uknown
parameter of the model, namely, µ.

First of all, we know that Ti > ai. So it is best to consider each of the variables T ′
i which,

in distribution, equals Ti − ai given that Ti > ai. What do we observe? We observe the
random variables

Xi = T ′
i ∧ ℓi

δi = 1(Ti ≤ ℓi),
where ℓi := bi − ai. Note that P (T ′

i ∈ dx) = µdx for 0 < x < ℓi, by assumption. Note
also that Xi is neither discrete nor continuous; it is a mixture. It is easy to find the joint
distribution of (Xi, δi). Clearly, Xi has a density on (0, ℓi) and a discrete mass at ℓi. (Recall
the notation dc for a mass of size 1 at the point c.) Indeed,

P (Xi ∈ dx, δi = 0) = P (ℓi ∈ dx, Ti > ℓi) = e−µℓi dℓi(dx) = e−µxµ0 dℓi(dx)

P (Xi ∈ dx, δi = 1) = P (Ti ∈ dx, Ti < ℓi) = e−µxµdx = e−µxµ1 dx.

We can compactify this as‡

P (Xi ∈ dx, δi = θ) = e−µxµθ [(1− θ) dℓi(dx) + θ dx], x ≥ 0, θ ∈ {0, 1}.
Since we have assumed independence, we can write the joint probability as

P (X1 ∈ dx1, δ1 = θ1, . . . , Xn ∈ dxn, δn = θn) =
n∏

i=1

P (Xi ∈ dx, δi = θ)

=
n∏

i=1

e−µxiµθi [(1− θi) dℓi(dxi) + θi dxi]

= e−µ
∑n

i=1
xiµ

∑n
i=1

θi

n∏

i=1

[(1− θi) dℓi(dxi) + θi dxi].

Here the variables x1, . . . , xn take values in [0, ℓ1], . . . , [0, ℓn], respectively, while the θ1, . . . , θn
take values 0 or 1 each. Thus, the likelihood corresponding to the observationsX1, . . . , Xn, δ1, . . . , δn
is

L(X, δ;µ) = e−µ
∑n

i=1
Xiµ

∑n
i=1

δi .

The maximum likelihood estimator µ̂ is defined by

L(X, δ; µ̂) = max
µ≥0

L(X, δ;µ),

and is easily found to be

µ̂ =

∑n
i=1 δi∑n
i=1Xi

.

Note that µ̂ is a veritable statistic for it is just a function of the observations.

‡The variable θ below takes values 1 or 0. It is 1 if Ti < ℓi, i.e. if we observe a death. The choice of the
letter θ comes from the greek word θα′νατoς = death.
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4.5.2 The general case

At this point, it is useful to recall the construction of homogeneous Markov chains using
(4.3) and (4.4) of Section 4.4. When in state x, the chain remains there for an exponentially
distributed amount of time (sojourn time) with parameter

µ(x) = |q(x, x)| =
∑

y 6=x

q(x, y).

At the end of this time, the chain jumps to some other state y with probability q(x, y)/µ(x).
An observation consists of a sequence of states Y0, Y1, . . . and the corresponding sojourn
times σ0, σ1, . . .. The likelihood of the observation is

L = µ(Y0)e
−µ(Y0)σ0

q(Y0, Y1)

µ(Y0)
× µ(Y1)e

−µ(Y1)σ1
q(Y1, Y2)

µ(Y1)
× · · ·

= e−µ(Y0)σ0q(Y0, Y1)× e−µ(Y1)σ1q(Y1, Y2)× · · ·
= e−

∑
x µ(x)W (x)

∏

x 6=y

q(x, y)N(x,y), (4.7)

where

W (x) :=
∑

i≥0

σi1(Yi = x), (4.8)

N(x, y) :=
∑

i≥0

1(Yi = x, Yi+1 = y) (4.9)

are the total sojourn time in state x and the total number of jumps from state x to state y,
respectively, for the sequence of our observations.

Two things may happen when we observe a Markov chain. Either we stop observing at
some predetermined time or the Markov chain reaches an absorbing state and, a fortiori, we
must stop the observation. For instance, in the Markov chain of Figure 4.8, there are three
absorbing states: a, b, c and two transient ones: 1, 2. If we start with Y0 = 1, we may be

α
1

λ 1

λ 2

α2

1 2

a

cb

β γ

Figure 4.8: Three absorbing states

lucky and observe

1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, . . .

for long time. At some point, we will get bored and stop. Or, we may observe either of the
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following trajectories

1 2, . . . , 1, a

1 2, . . . , 1, 2, a

1 2, . . . , 1, b

1 2, . . . , 1, 2, c

The likelihoods in each case are

e−(λ1+α1+β)W (1) λ
N(1,2)
1 e−(λ2+α2+γ)W (2) λ

N(2,1)
2 α

N(1,a)
1

e−(λ1+α1+β)W (1) λ
N(1,2)
1 e−(λ2+α2+γ)W (2) λ

N(2,1)
2 α

N(2,a)
2

e−(λ1+α1+β)W (1) λ
N(1,2)
1 e−(λ2+α2+γ)W (2) λ

N(2,1)
2 βN(1,b)

e−(λ1+α1+β)W (1) λ
N(1,2)
1 e−(λ2+α2+γ)W (2) λ

N(2,1)
2 γN(2,c).

The quantities N(1, a), N(2, a), N(1, b), N(2, c) take values 0 or 1 and, amongst them, only
one is 1. So we can summarise the likelihood in

L = e−(λ1+α1+β)W (1) λ
N(1,2)
1 e−(λ2+α2+γ)W (2) λ

N(2,1)
2 α

N(1,a)
1 α

N(2,a)
2 βN(1,b) γN(2,c),

an expression valid for all trajectories.

Clearly, whereas it may be possible to estimate λ1, λ2 with the observation of one trajectory
alone, this is not the case with the remaining parameters: we need independent trials of
the Markov chain. Thus, if we run the Markov chain n times, independently from time
to time, a moment of reflection shows that the form of likelihood remains the same as in
the last display, provided we interpret W (x) as the total sojourn time in state x over all
observations. Same interpretation holds for the quantities N(x, y).

Thus, the general expression (4.7) is valid, in the same manner, for n independent trials.
We can, therefore, base our MLE on (4.7). To do this, recall that µ(x) =

∑
y:y 6=x q(x, y) and

write the log-likelihood as

logL =
∑

x,y: x 6=y

[
−W (x)q(x, y) +N(x, y) log q(x, y)

]
.

So, for a fixed pair of distinct states x, y,

∂ logL

∂q(x, y)
= −W (x) +

N(x, y)

q(x, y)
.

Setting this equal to zero obtains the MLE estimator

q̂(x, y) =
N(x, y)

W (x)
. (4.10)

N.B. If censoring also occurs, then it can be taken into account, as in Section 4.5.1.

4.6 MLE estimators of the Markov chain rates

There is little to say here, other than what is known for general maximum likelihood es-
timation: Review the theory of Maximum Likelihood Estimation (summarised in Section
B.6).
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Consider the problem of estimating a single parameter θ of a Markov chain. Take, for
example, θ to be the transition rate q(x, y) between two distinct states x, y. From (4.7) we
have

logL =
∑

x 6=y

[N(x, y) log q(x, y)−W (x)q(x, y)].

The maximum likelihood estimator of θ = q(x, y) is, as shown in (4.10), given by

θ̂ =
N(x, y)

W (x)
.

We know that, as the number of observations tends to ∞, θ̂ converges to the true θ, almost
surely. Also, as the number of observations tends to ∞,

var θ̂ ≈ 1

−E
(

∂2

∂θ2
logL

) ,

where the expectation is taken under the true θ. This is because, as heuristically argued in
Section B.6, θ̂ asymptotically achieves the Cramér-Rao lower bound, and the denominator
in the last display is nothing else but the Fisher information.

Now,

− ∂2

∂θ2
logL =

N(x, y)

q(x, y)2
.

It is easy to see from (4.8) and (4.9) that

EN(x, y) = q(x, y)EW (x).

Hence,

var θ̂ ≈ q(x, y)

EW (x)
.

The asymptotic normality statement (B.7) gives that, as the number of observations tends
to ∞,

var θ̂ is approximately distributed as N
(
q(x, y),

q(x, y)

EW (x)

)
.

Now let us look at estimators of two parameters simultaneously, such as (θ1, θ2) = (q(x1, y1), q(x2, y2)).
Since the mixed derivatives

∂2

∂θ1∂θ2
logL = 0,

we have that the Fisher information matrix (see Section B.5) is diagonal. Thus, the estima-
tors θ̂1, θ̂2 are asymptotically independent and each one asymptotically normal as described
above.



Chapter 5

Crude estimation methods

Quite frequently, knowing, or being able to observe, actual times (censoring or
deaths) is a luxury. We may only have to rely on counts, i.e. on knowing how
many events (of, maybe, a certain type) occurred on some interval of time. This
information may be useful, but it may require additional simplifying hypothesis
for constructing reasonable maximum likelihood estimators of failure or mortality
rates. What we discuss is, in practice, called the Binomial model. We also
discuss a classical actuarial formula with very dubious justification and often quite
inaccurate.

5.1 The binomial model

This is a very simplistic model, a sort of quick and dirty stochastic model, used when only
the number of deaths is known (and not the actual times), within a certain period, a year,
say.

Consider N subjects. Suppose you observe D deaths during a year. Make the ad hoc
assumption that the subjects die independently with the same probability q (which you
want to estimate) and so the number of deaths D is given by

D =
N∑

i=1

ηi,

where ηi = 1 if the i-th subject dies and 0 otherwise. Since, by assumption, P (ηi = 1) = q,
we have

P (D = k) =

(
N

k

)
qk(1−q)N−k, E(D) = NE(η1) = Nq, var(D) = N var(η1) = Nq(1−q).

Our standard estimator for q is thus

q̂ =
D

N
,

so that

E(q̂) = q, var(q̂) =
q(1− q)
N

.
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To get confidence intervals and other goodies use that

D −Nq√
Nq(1− q)

is approximately standard normal.

5.2 Maximum likelihood

In this short chapter, we deal with very crude observations: for each subject, we know
whether death occurred or not on a specific interval of time. To be specific, let T1, . . . , Tn
be i.i.d. random variables. Knowing that Ti > ai, for each i = 1, . . . , n, we observe:

1(Ti ∈ [ai, bi]), i = 1, . . . , n,

where [ai, bi], i = 1, . . . , n are fixed intervals. We shall let

δi
d
=
[
1(Ti ∈ [ai, bi]) | Ti > ai

]
,

so that
P (δi = 1) = Eδi = P (ai ≤ T ≤ bi | Ti > ai) = bi−aiqai .

To ease the notational burden, we let qi := bi−aiqai and so we have

P (δ1 = θ1, . . . , δn = θn) =
n∏

i=1

qθii (1− qi)1−θi , θ1, . . . , θn ∈ {0, 1},

Thus, the likelihood corresponding to the observations is

L(δ1, . . . , δn; q1, . . . , qn) =
n∏

i=1

qδii (1− qi)1−δi . (5.1)

If the qi are distinct, then trying to obtain MLEs is silly for the maximisation of L with
respect to q1, . . . , qn would yield qi = δi for each i. The problem is meaningful if, for instance,
we can group certain qi’s together and consider them identical. For instance, if ai = a, bi = b
for all i, then qi = q and

L(δ1, . . . , δn; q) = q
∑n

i=1
δi(1− q)n−

∑n
i=1

δi

so that

q̂ = Argmax0≤q≤1 L(δ1, . . . , δn; q) =
1

n

n∑

i=1

δi (5.2)

is the MLE of q, with obvious, natural, interpretation: the fraction of observations that
where actually deaths.

Note. We may a priori know that all the Ti have exceeded a certain value x. Then,
everything we said above, and everything we’ll say below remains unchanged if we replace
each Ti by Ti,x which (recall!) is defined by P (Ti,x ∈ ·) = P (Ti − x ∈ · | Ti > x).

To deal with the problem in its generality, one resorts to further approximation, referred to
as smoothing. Assume that all observation intervals are contained in a common interval of
length, say, 1:∗

[ai, bi] ⊆ [0, 1], i = 1, . . . , n.

∗There is nothing sacred about this 1; it appears to be a convention among actuaries, so I’ll stick to it;
just think of 1 as a convenient unit of time, such as one year.
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Introduce the parameter q := P (T < 1) and, by making a “reasonable” assumption, think
of the probabilities qi as being certain smooth functions of q:

qi = bi−aiqai ≡ f(ai, bi, q).

Then the likelihood (5.1) becomes itself a smooth function of q which can be optimised.

For instance, under the uniform assumption (See Proposition 2.5),

f(a, b, q) =
(b− a)q

1− aq ,

under the Balducci assumption (See Proposition 2.9),

f(a, b, q) =
(b− a)q

1− (1− b)q ,

and under the constant FOM assumption (See Proposition 2.12),

f(a, b, q) =
(1− q)a − (1− q)b

(1− q)a

Fact 5.1. Suppose that ai = 0, bi = 1 for all i. Then, under either of the three smoothing
assumptions (uniform, Balducci, constant FOM) the MLE of q is as in (5.2). (Exercise.)

Fact 5.2. Suppose that ai ≡ a, bi ≡ b for all i. Then the MLE of q is

q̂ =





D
aD+n(b−a) , (uniform)

D
(1−b)D+n(b−a) , (Balducci)

1−
(

n
n−D

) 1

a−b
, (constant FOM)

,

where D :=
∑n

i=1 δi, the number of actual observed deaths. Therefore observe that q̂unif =
q̂bald iff b = 1− a (why is this reasonable?). (Exercise.)

5.3 The classical actuarial method

This is based † on the Balducci assumption. Just to throw you off, I first give the recipe:
1. Observe each subject between ti and si, where 0 ≤ ti < si ≤ 1. This means that we know
that the subject is alive at ti and withdraws at si either due to death due to censoring.
2. Define the quantity

E :=
n∑

i=1

(si − ti)

and call it (central) exposure.
3. Count the number of deaths D and, in fact, let δi be 1 or 0 depending on whether

subject i dies or not.
4. Estimate q by the formula

q̂ =
D

E +
∑n

i=1(1− si)δi
. (5.3)

†Actually, it appears not to be based on anything; it is an ad hoc method and, I believe, any justification
is only a posteriori.
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5. If you find this formula much too complicated then approximate further by

q̂ =
D

E + 1
2D

. (5.4)

6. Introduce a new terminology and call E + 1
2D the initial exposure.

Now, here is the a posteriori justification.

First attempt: As I said, the assumption is Balducci. So by taking expectation in D =∑n
i=1 δi we find ED =

∑n
i=1 qi. Then we remember that qi was my shorthand for si−tiqti

which, under Balducci (Proposition 2.9) ought to be set equal to si−tiqti = (si−ti)q
1−(1−si)q

. Then
try to solve the algebraic equation

ED =
n∑

i=1

(si − ti)q
1− (1− si)q

for q and use this as an estimate provided you replaced ED with the actual number of
observed deaths D. This would give an estimate, but this is not the estimate above. So we
try again.

Second attempt: Obviously,

P (T < 1 | T > a) = P (T < b | T > a) + P (T > b | T > a)P (T < 1 | T > b).

This is correct. Now use the actuarial notation and do this for each i:

1−tiqti = si−tiqti + (1− si−tiqti) 1−siqsi .

Nothing wrong with this either. Next replace si−tiqti by δi and write

1−tiqti = δi + (1− δi) 1−siqsi .

This is of course wrong. I know you are tempted to solve for δi. But don’t. First sum over
all i:

n∑

i=1

1−tiqti =
n∑

i=1

δi +
n∑

i=1

(1− δi) 1−siqsi .

Next use the Balducci assumption: 1−tiqti = (1− ti)q, 1−siqsi = (1− si)q:
n∑

i=1

(1− ti)q = D +
n∑

i=1

(1− δi) (1− bi)q,

solve for q and lo and behold! You get (5.3)!

And what about (5.4)? Well, if you were convinced that the previous arguments constituted
a proof then you will not have any problem in accepting the following argument too: Since
si occurs somewhere between 0 and 1/2 then, “on the average”, it will be 1/2. So replace
1− si by 1/2 and voila the proof of (5.4).

Here is a ... little problem. The denominator of (5.3) might be small. For instance, let ε be
a small positive number and assume that si = 1− 2ε < 1− ε = ti. Then

q̂ =
D

2εn+ εD
.

Since ε could be arbitrarily small, q̂ could be arbitrarily large. Close to infinity... Well, we
can’t have a probability that is larger than 1, can we?

The problem is not as bad with the approximation of the approximation, i.e. with (5.4),
because D/(E + 0.5D) ≤ D/0.5D = 2.
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5.4 The Poisson model

This is another simplistic model, something to do when you know the number of deaths
D on a specific, say, year. Actuaries interpret D/E as a rate of deaths and say “think of
D as a random variable which is Poisson-distributed with rate µE, where µ is unknown”.
According to this recipe,

P (D = n) =
(µE)n

n!
e−µE, n = 0, 1, 2, . . . , E(D) = µE, var(D) = µE.

Then an estimator for µ is

µ̂ =
D

E
.

This has
E(µ̂) = µ, var(µ̂) =

µ

E
.

These can be used to obtain confidence intervals etc, because

D − µE√
µE

is approximately standard normal.
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Chapter 6

Graduation testing

This chapter has nothing to do with lifetime estimation per se. It is rather a
collection of statistical methods for testing how good is a proposed smooth func-
tion approximation (or graduation in the actuarial lingoa) to crude mortality rates.
We discuss goodness of fit and other tests. We will discuss only these methods
imposed by the actuarial institution for their exams. Be warned though that some
of the tests may be silly or not that good.

aIt is unclear to me why the terminology “graduation” is used. It appears that it is just
tradition and that, nowdays, people whould say “curve fitting” or “smoothing”

6.1 Preliminaries

Consider the problem of fitting a continuous curve to a discrete collection of points in the
plane. Specifically, we shall look at pairs of points (x, q̂x), where x ranges over a finite set,
say x ∈ {ℓ, ℓ + a, ℓ + 2a, . . . , ℓ + (n − 1)a}, representing ages. Here q̂x is meant to be an
estimate for the probability that an individual aged x dies within x and x+ a years. These
numbers have been obtained by raw data: if we compute the number of deaths Dx among
Nx individuals then we set q̂x = Dx/Nx.

People don’t like to report pairs of points (x, q̂x); they’d rather have a formula for a smooth
continuous function of x, where x ranges over the real numbers between ℓ and ℓ+(n−1)a. A
procedure for obtaining a smooth function is called “graduation” in the actuarial business.
The smooth function is denoted by q̇x.

Here, we shall not learn how to obtain such a function. Rather, we shall describe several
tests that test the accuracy of such a function. You will learn how to obtain such a function
in the second part of the course, next term. A typical form of such a function used in
practice is

q̇x = 1/(1 + e−p(x)),

where p(x) is a certain polynomial of degree k − 1: p(x) = a0 + a1x + · · · + ak−1x
k−1,

ak−1 6= 0. Some terminology: The function z 7→ 1/(1 + e−z) is the inverse of the function

59
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y 7→ log(y/(1− y). The latter is called the logistic function:

logit(y) := log(y/(1− y)), logit : (0, 1)→ R

logit−1(z) := 1/(1 + e−z), logit−1 : R→ (0, 1).

In practice, for each age x, we have a number of individuals Nx. We observe the number
Dx of deaths among them and, estimate q̂x by q̂x = Dx/Nx and, following some method, we
compute a smooth function q̇x that is supposed to approximate q̂x. In doing so, we have to
estimate, from the raw data, a number of parameters for the function; e.g., in the logistic
equation with a polynomial of degree k − 1 we need to estimate k coefficients. We then
compute, for each x, the standardized Dx, i.e. the quantity

Zx :=
Dx −Nxq̇x√
Nxq̇x(1− q̇x)

.

“Theory” tells us that, for each fixed x, this is supposed to be approximately standard
normal.

6.2 The χ
2 test

I am going let x range over the set 1, 2, . . . , n, where 1 refers to the first age group, 2 the sec-
ond, and so on, just because I want to have simple subscripts in the variables Z1, Z2, . . . , Zn.

Whereas for each x, Zx is supposed to be N (0, 1), jointly, the variables Zl, Z2, . . . , Zn are
not independent because of the constraints imposed by the estimation of the parameteres
in the function q̇x. In principle, the random vector Z = (Z1, Z2, . . . , Zn lives in a linear
subspace of Rn which has dimension n − k, where k, the number of estimated parameters.
This means that the square of the Euclidean norm of Z, namely the quantity

||Z||2 =
n∑

x=1

Z2
x,

is supposed to have a χ2
n−k distribution (chi-squared with n− k degrees of freedom; degrees

of freedom is a name for the dimension of the support of Z).

We can then have the following test for the hypothesis that the model is OK: Compute
||Z||2 and if the number is not typical for the χ2

n−k reject the hypothesis. For instance, if we
have n − k = 3 and compute, from data, ||Z||2 = 11.523, say, then we should immediately
reject the hypothesis that things are OK, because the value 11.523 is not typical for the χ2

3

distribution. Indeed, a typical value of χ2
3 is 7.81, because with probability about 95%, a

χ2
3–random variable will fall below 7.81, whereas the chance that a χ2

3–random variable is
above 11 is about 1%.

6.3 The standardised deviations test

Another name for this test is the likelihood ratio test for the multinomial distribution. See
Section B.7 and, in particular, Theorem B.2. Whereas we argued that the different Zx are
not independent, we shall now make the assumption that they are... Apparently, when n
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(number of age groups) is large and the number of parameters k small, then the assumption
is not too bad.

The problem then is: Given the Z1, . . . , Zd, do the following. Consider a partition of the
real line into s disjoint intervals B1, . . . , Bs, where s is a relatively small number. E.g.,
B1 = (−∞,−2], B2 = (−2,−1], B3 = (−1, 0], B4 = (0, 1], B5 = (1, 2], B6 = (2,∞). Count
the number of variables falling in each interval:

N(Bi) =
n∑

x=1

1(Zx ∈ Bi), , i = 1, . . . , s.

If Z1, . . . , Zd were i.i.d. standard normal variables then, clearly, (N(B1), . . . , N(Bs)) would
have a multinomial distribution:

P (N(B1) = n1, . . . , N(Bs) = ns) =

(
n

n1, . . . , ns

)
θ∗n1

1 · · · θ∗ns
s .

Here

θ∗i = P (ζ ∈ Bi) =

∫

Bi

(2π)−1/2e−z2/2dz

is the chance that a standard normal is in Bi. We want to test the hypothesis that this is
true, i.e. that the θ∗i are the correct ones, vs. its negation. By the Likelihood Ratio Test, we
have to compute the likelihood ratio

λ :=
supθ 6=θ∗ L(θ)

L(θ∗)
=

maxθ L(θ)

L(θ∗)

where θ = (θ1, . . . , θs) and L(θ) is the likelihood

L(θ) =

(
n

N(B1), . . . , N(Bs)

)
θ
N(B1)
1 · · · θN(Bs)

s (6.1)

so that the value of θ that maximises L(θ) is the MLE statistic. It is not difficult to do this:

Fact 6.1. Maximising L(θ) over all θ = (θ1, . . . , θs) with θ1 + · · · + θs = 1 results in the
maximiser θ̂i = N(Bi)/n, i = 1, . . . , s. (Exercise.)

Therefore,

λ =
s∏

i=1

θ̂
N(Bi)
i

θ
∗N(Bi)
i

=
s∏

i=1

(
N(Bi)

nθ∗i

)N(Bi)

By Theorem B.2, 2 log λ should be distributed as χ2
s−1. Now,

2 log λ = 2
s∑

i=1

N(Bi) log

(
N(Bi)

nθ∗i

)
≈

s∑

i=1

(N(Bi)− nθ∗i )2

nθ∗i
. (6.2)

The latter approximation is justified by the Taylor expansion

x log(x/x0) = (x− x0) +
(x− x0)2

2x0
+ o((x− x0)2),

as x− x0 → 0, and it is justified since, under the hypothesis, N(Bi) should not differ from
its mean by too much. The last sum of (6.2) is the Pearson χ2 statistic.
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Summarising, we consider the standardised deviations Zx, split the real line into boxes
B1, . . . , Bs, find the number N(Bi) of the Zx falling into Bi, for each i, compute the θ∗i
from a normal table and then the Pearson statistic. If the value of it is atypical for the χ2

s−1

distribution the we reject the hypothesis; which means that the graduation is not that good.

Note: The test makes no sense when n is not large.

6.4 The sign test

If we believe that the Z1, . . . , Zn are i.i.d. normals then

S :=
n∑

x=1

1(Zx > 0)

should be Binomial(n, 1/2):

P (S = s) =

(
n

s

)
2−n, s = 0, 1, . . . , n.

So we compute S from the data and if S is atypical for the Binomial(n, 1/2) distribution
then we are alarmed.

When n is large we can use the standard CLT which says that (S − E(S))/
√

var(S) =
(S − (n/2))/

√
n/4 is approximately standard normal.

6.5 The change of sign test

This method tests whether changes in sign are typical. Let sgn(x) be +1, −1 or 0 if x > 0,
x < 0 or x = 0, respectively. Then consider

C =
n−1∑

x=1

1(sgn(Zx) 6= sgn(Zx+1)).

Essentially, we have n i.i.d. random variables ξ1, . . . , ξn with P (ξ1 = 1) = P (ξ1 = 0) = 1/2
and then C is distributed as

C =
n−1∑

i=1

|ξi − ξi+1| =
n−1∑

i=1

δi,

where δi = |ξi − ξi+1|. We can prove that the δi are independent. We do so by induction:
First we have P (δ1 = 1, δ2 = 1) = P (ξ1 6= ξ2, ξ2 6= ξ3) = P (ξ1 = 1, ξ2 = 0, ξ3 = 1) +
P (ξ1 = 0, ξ2 = 1, ξ3 = 0) = 1/8 + 1/8 = 1/4. Similarly, P (δ1 = 0, δ2 = 1) = 1/4. Next,
assume P (δ1 = ε1, . . . , δn−1 = εn−1) = 2−(n−1), for all ε1, . . . , εn−1 ∈ {0, 1} and observe
that P (δ1 = ε1, . . . , δn = εn) = P (δ1 = ε1, . . . , δn−1 = εn−1) × P (δn−1 = εn−1 | δ1 =
ε1, . . . , δn−1 = εn−1) = 2−(n−1)P (δ1 = ε1 | δn−1 = εn−1) = 2−(n−1) · 2−1 = 2−n. Therefore,
C is Binomial(n− 1, 1/2).

So we check whether the value of C is typical for that distribution. Alternatively, if n is
large we may check (C − (n− 1)/2)/

√
(n− 1)/4 against a standard normal.
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6.6 The cumulative deviations test

If certain groups of ages are important, it is desirable to test whether the sum of the
deviations over this group comes from a normal distribution. Let I be the range of groups
deemed important. Then

∑
x∈I Zx is expected to be N (0, |I|) where |I| is the size of I (e.g.,

|I| = n if all variables are considered.

6.7 The grouping of signs test

Assume once more that Z1, . . . , Zn are n i.i.d. N(0, 1) variables, and let

ξi = 1(Zi > 0), i = 1, . . . n.

Clearly, ξ1, . . . , ξn are i.i.d. coin tosses with P (ξi = 1) = P (ξi = 0) = 1/2. We say that
[ξℓ, ξm] is a positive group if ξℓ = · · · = ξm = +1 and ξℓ−1 6= +1, ξm+1 6= +1. In other
words, all variables from index ℓ to index m form a maximal group of positive variables.
Let G be the number of positive groups. For example, in

+ + + +−−−+−+−−−−−+ + +−+−+ +

there are 6 positive groups.

We defineG to be a random variable whose distribution is the number of +groups conditional
on the number of positive signs be equal to n1 (and the number of negative signs equal to
n2 = n−n1). Consider an urn∗ with a lid and let it contain n = n1 +n2 items, out of which
n1 are labelled + and n2 are labelled −. Pick the items at random without replacement and
let ηi = 1(i-th item picked has label +). Then, clearly, G is the number of positive groups
among η1, . . . , ηn. To find the distribution P (G = t) we think as follows: There are

(
n
n1

)

ways to arrange the n1+n2 signs in a row. This is the size of the sample space. So P (G = t)
is the size of the set {G = t} divided by the size of the sample space. To find the size of
the set {G = t}, i.e. those arrangements that contain exactly t +groups, all we have to do
is realise that we have n2 + 1 empty spaces around the n2 minus signs. E.g., in the example
above, we have n2 = 11 minus signs and 12 empty spaces:

− − − − − − − − − − −

To put t = 6 +groups, all we have to do is choose t out of the n2 + 1 empty spaces, e.g., in
the example above,

+ − − − + − + − − − − − + − + − +

where a + in a box indicates that this box is replace by a +group. There are
(
n2+1

t

)
ways

to choose t boxes out of the n2 + 1. And now we have to arrange the n1 +signs in the t
+groups. Each +group contains at least one +sign, so there remain n1 − t +signs to be
arranged. But the number of ways to place N identical balls in K boxes is

(
N+K−1
K−1

)
. In our

∗The concept of an urn is familiar from Statistics. An urn is a container, especially a large round one on a
stem, which is used for decorative purposes in a garden, or one which has a lid and is used for holding a dead
person’s ashes (c.f. http://dictionary.cambridge.org). Its use is therefore quite appropriate in mortality
studies.
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case, N = n1 − t, K = t, so we have
(
N+K−1
K−1

)
=
(
n1−1
t−1

)
. Putting things together, we find

that the size of the set {G = t} is
(
n2+1

t

)(
n1−1
t−1

)
. Therefore,

P (G = t) =

(
n2+1

t

)(
n1−1
t−1

)
(
n
n1

) , 1 ≤ t ≤ min(n1, n2 − 1). (6.3)

(Or if we simply let
(
N
M

)
= 0 for M > N , we need no restriction on t.)

Comparing (6.3) and (B.12) of §B.9 we see that G has a hypergeometric distribution:

P (G = t) = H(n, n2 + 1, n1, t). (6.4)

From this realisation, and formulae (B.13), (B.14) of §B.9, we can find the first two moments
of G:

EG =
n1(n2 + 1)

n
, varG =

n1n2(n1 − 1)(n2 + 1)

(n1 + n2)2(n1 + n2 − 1)

(This required setting K = n, R = n2 + 1, and k = n1 in (B.13), (B.14).) Note that, when
n1, n2 are large numbers we have

EG ≈ n1n2
n

, varG ≈ (n1n2)
2

n3
.

Finally, we can translate this to the r.v.G and assert thatG is approximatelyN (n1n2/n, (n1n2)
2/(n1+

n2)
3). (And we also know the conditions: This is a statement that holds when n is large

and when ni/n remain constant as n→∞, i = 1, 2.)

Finally, one can prove that, for large n1, n2,

the distribution of G is approximately N
(
EG, var(G)

)
. (6.5)

There is a very neat normal approximation argument going on here, one that requires the
observation (i) that G has a hypergeometric distribution and (ii) that the hypergeometric
distribution is approximared by a normal. To understand why, read §B.9; look at the result
(B.17) stating the normal approximation to a hypergeometric distribution and, using (6.4),
translate it to the statement (6.5).

The test then is as follows: Count, from the data, the number n1 of positive signs, and the
number G of positive groups. Let n2 = n − n1. See if the quantity (G − EG)/

√
var(G) is

typical for the standard normal distribution.

6.8 The serial correlation test

Define the sample covariance between two random vectors X = (X1, . . . , Xm), and Y =
(Y1, . . . , Ym) by

CX,Y =
1

m

m∑

i=1

(Xi −MX)(Yi −MY ),

where MX ,MY are the sample means:

MX =
1

m

m∑

i=1

Xi, MY =
1

m

m∑

i=1

Yi.
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By the Cauchy-Schwarz inequality we have

C2
X,Y ≤ CX,XCY,Y ,

where

CX,X =
1

m

m∑

i=1

(Xi −MX)2, CY,Y =
1

m

m∑

i=1

(Yi −MY )2

are the sample variances. Hence the quantity

ρX,Y =
CX,Y√
CX,XCY,Y

=

∑m
i=1(Xi −MX)(Yi −MY )√∑m

i=1(Xi −MX)2
∑m

i=1(Yi −MY )2

is between −1 and +1 and is called the sample correlation†.

The lag-k correlation of Z1, Z2, . . . , Zn is the correlation between (Z1, . . . , Zn−k) and (Zk+1, . . . , Zn):

ρn(k) =

∑n−k
i=1 (Zi −Mn−k)(Zk+i −M ′

n−k)√∑n−k
i=1 (Zi −Mn−k)2

∑n−k
i=1 (Zk+i −M ′

n−k)2
,

where

Mn−k =
1

n− k
n−k∑

i=1

Zi, M ′
n−k =

1

n− k
n−k∑

i=1

Zk+i,

The sequence of random variables ρn(k), n = k+1, k+2, . . ., has a well-known distributional
limit (see e.g. Brockwell and Davis [4]), which can be described by saying that

√
n− k ρn(k)

is approximately N (0, 1)–disributed. This provides a an obvious test.

6.9 An example

In this example, we consider n = 16 age groups. Each group is represented by a typical
age x. Next to it, we have the number Nx of individuals observed, and the observed deaths
Dx. The crude mortality rates are estimated by qx = Dx/Nx. The graduated values are
estimated using the equation

q̇x = logit−1(a0 + a1x+ a2x
2),

where a0 = −6.148874m a1 = −0.001511, a2 = 0.000697. The values of Nxq̇x are sum-
marised in the next column. Finally, the standardised deviations Zx := Dx−Nxq̇x√

Nxq̇x(1−q̇x)
are in

the last column.

†or sample correlation function
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Age Nx Dx Nxq̇x Zx

1. 12 8119 14 18.78 -1.104
2. 17 7750 20 19.68 0.071
3. 22 6525 22 18.83 0.731
4. 27 5998 23 20.37 0.584
5. 32 5586 26 23.10 0.603
6. 37 5245 28 27.35 0.124
7. 42 4659 32 31.70 0.054
8. 47 4222 37 38.77 -0.286
9. 52 3660 44 46.92 -0.429

10. 57 3012 54 55.70 -0.229
11. 62 2500 68 68.81 -0.098
12. 67 2113 87 89.10 -0.226
13. 72 1469 100 97.26 0.287
14. 77 883 95 93.36 0.179
15. 82 418 70 70.87 -0.113
16. 87 181 49 48.40 0.100

We now run various tests to decide on the goodness of the graduation.

The χ2 test We find ||Z||2 =
∑

x Z
2
x = 3.003. Since we estimated 3 parameters, Z actually

lives in a (n−3) = 13 –dimensional space. Hence ||Z||2 is compared against a χ2
13. We have

that the probability, under χ2
13 of (3,∞) is at least 0.99. Hence the observed value is typical

and the test shows nothing unsatisfactory.

The standardised deviations test Split the real line intow s = 4 boxes

B1 = (−∞,−1], B2 = (−1, 0], B3 = (0, 1], B4 = (1,∞).

Let θ∗i be the chance that a standard normal falls in Bi:

θ∗1 = θ∗4 = 0.159, θ∗2 = θ∗3 = 0.5− 0.159 = 0.341.

Let N(Bi) be the number of the Zx in Bi. We find:

B1 B2 B3 B4

nθ∗i 2.54 5.47 5.47 2.54
N(Bi) 1 6 9 0

Next compute Pearson’s statistic

2 log λ ≈
4∑

i=1

N(Bi)− nθ∗i )2

nθ∗i
= 5.87.

Since (5.87,∞) has chance 0.12 under χ2
3, we have evidence that something goes wrong.

Attempting to define the Bi in different ways, also gives evidence against the goodness of
the graduation.
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The sign test We count the number S of the Zx which are positive. We find S = 9. We
expect that S is Binomial(16, 1/2). The value 9 is typical for this distribution. So the test
shows nothing wrong.

The change of sign test We count the number C of sign changes: C = 5. We expect
that C is Binomial(15, 1/2). Again, C = 5 is not atypical.

The cumulative deviations test We compute
∑

x Zx = −4.7 × 10−7. Clearly, this is
quite typical for N (0, 16).

The grouping of signs test There are n1 = 9 positive and n2 = 7 negative signs. We
observe G = 3 positive groups. We use (6.3) for the theoretical distribution of G given
n1, n2. Under this distribution, we find P (G ≤ 3) = 0.16. Since EG = 4.5, var(G) ≈ 0.984.

The serial correlation test Compute the lag-1 correlation coefficient, i.e. the corre-
lation coefficient between (Z1, . . . , Zn−1) and (Z2, . . . , Zn). We finf ρn(1) = 0.461. So√
nρn(1) = 1.78. But

√
nρn(1) is supposed to be N (0, 1). The value 1.78 is not typical:

the standard normal probability of (1.7,∞) is small, about 0.05. Hence we have evidence
against uncorrelatedness.

Why should there be? As I explained initially, the random vector (Z1, . . . , Zn) is supported
in an (n − k) –dimensional space. The subsequent tests made the ad hoc assumption, in
violation to this, that the components are independent.
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Appendix A

DISCUSSION AND EXERCISES

The sections of this appendix follow the order and structure of the preceding chapters. They
contain additional points for discussion as well as problems for solution.

A.1 Introduction

The actuarial notation is useful because you will want to talk to actuaries who have been
using it for quite some time. Notation is actually a very delicate subject. Good notation
can be quite useful in the sense that it helps you think. Imagine that a few centuries ago,
people did not use the sign + or the relation =, they simply did not have the symbols.

Here is a symbol I will be using all the time: that of an indicator function. If Ω is a set and
A ⊆ Ω, then 1A, often written as 1(A), is the function that assigns the value 1 to every
ω ∈ A, and 0 otherwise. Frequently, A is defined by means of a logical statement, so we
tend to interpret 1A as the truth of A.

EXERCISE A.1.1. Establish that 1Ac = 1A, 1A∩B = 1A1B. Use these rules to show that
1A∪B = 1A+1B−1A∩B and that 1A∪B∪C = 1A+1B+1C−1A∩B−1B∩C−1C∩A+1A∩B∩C .

Now assume that P is a probability on (a class of subsets of) Ω. Then, is A belongs to the
domain of P , E1A = P (A). Hence

EXERCISE A.1.2. Deduce, from Exercise A.1.1, the inclusion-exclusion formula P (A ∪
B) = P (A) + P (B)− P (A ∩B).

Here is something more subtle, but, as you will probably remember, one of the most useful
things in Probability. Suppose that you know that the events An, n = 1, 2, . . ., have prob-
abilities P (An) so small that they tend to zero so fast that

∑∞
n=1 P (An) < ∞. Show that

the the probability of the event “an infinite number of An occur” is zero. We approach the
problem as follows. Since 1An is 1 is An occurs, the random variable Z =

∑∞
n=1 1An is the

total number of events that occur. But E(Z) =
∑∞

n=1E1An =
∑∞

n=1 P (An) < ∞. Since
E(Z) < ∞, the variable itself must be finite. But Z, being the sum of numbers that are
either 0 or 1 is finite iff there are only finitely many 1’s. Which means that finitely many
of the An occur. (This is the Borel-Cantelli lemma, one of the most trivial and most useful
results in Probability.)

69
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The “dx” notation is useful when dealing with absolutely continuous random variables. For
example, suppose that X,Y are independent, exponential rate-1 variables.

Example A.1. Compute the joint density of X,Z := X + Y .
The pdf of both X and Y is f(t) = e−t1(t > 0). To do this, write

P (X ∈ dx, Z ∈ dz) = P (X ∈ dx, x+ Y ∈ dz),

at which point we remember that X,Y are independent, so the above display equals

f(x)dxf(z − x)dz.

Thus the joint density of X,Z equals

fX,Z(x, z) = e−x1(x > 0)ez−x1(z − x > 0) = ez1(0 < x < z).

In the notation qx, which stands for 1qx, and means P (Tx < 1), i.e. P (T < x + 1 | T > 1)
the constant 1 has no special significance. It means “one unit of time”. It could be 1 year,
or, 1 month; it depends on the units we choose, and on the granularity of the mortality rate
data. Knowing qx, for x a multiple of the unit 1, is partial information about the random
variable.

EXERCISE A.1.3. The random variable Tx was defined distributionally by saying that
Tx is distributed as T − x given that T > x. Hence Tx takes values in [0,∞). Another
variable that takes values in [0,∞) is (T −x)+ = max(T −x, 0). Are these random variables
different? In what way?

Some more notation:

1. x ∨ y := max(x, y)

2. x ∧ y := min(x, y)

3. x+ = max(x, 0)

4. x− = max(−x, 0) = (−x)+

EXERCISE A.1.4. If S, T are independent positive random variables, then (S ∧ T )x
d
=

Sx ∧ Tx
EXERCISE A.1.5. Can you do something as clean and nice for S ∨ T?

EXERCISE A.1.6. Let T1, T2, . . . be i.i.d. exponential rate λ1, λ2, . . ., respectively. Show
that An = min(T1, . . . , Tn) is exponential rate λ := λ1 + · · · + λn ansd that P (An = Ti) =

λi/λ. If the λi are all equal, say to 1, show that Bn = max(T1, . . . , Tn)
d
= T1 + (T2/2) +

(T3/3)+ · · ·+(Tn/n). Deduce that EBn = 1+(1/2)+(1/3)+ · · ·+(1/n), so that, as n→∞,
EBn ≈ log n.

EXERCISE A.1.7. Let S, T be independent exponential rate 1 variables. Compute E(S∨
T | S ∧ T ). Interpretation: S, T are independent lifetimes. Given that we observed one
death, what is the expected time for the other death?
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A.2 Force of mortality

As we discussed, FOM’s are defined only for absolutely continuous random variables, and
we do take the variables to be positive. Since µtdt has the interpretation of a probability
of failure within t and t + dt, and probability has no units (dimensionless), we measure
µt in units of time−1; which is in agreement with its name “rate”. Being a rate, it does
not need to be smaller or bigger than 1. It can be anything, as long as it is nonnegative.
So, if µt is given in units months−1 and we want to find P (T > 267 days) we can either
convert days to months (267/30 = 8.9) and do P (T > 8.9 months) = exp−

∫ 8.9
0 µtdt or

convert the units of µt. To convert the units of µt, we must convert both the independent
and dependent variables. So if µt is measured in months−1 and t has the month as a
unit, then the correct change is 30µ30s in days−1 where s now run over days. Indeed,
P (T > 267 days) = exp−

∫ 267
0 30µ30sds.

EXERCISE A.2.1. Recall that if f(x) is the density of a random variable X then the
density of X/α is αf(αx).

Mortality rates have been dramatically higher about 100
years ago, even in economically advanced countries

Estimated Chicago infant mortality rates: 1870 to 1999
(deaths under 1 year of age per 1000 live births)

EXERCISE A.2.2. Discuss how you would use the information on the graph above.

EXERCISE A.2.3. Suppose that S, T are independent lifetimes with FOMs µt, λt. Find
the FOM of S ∧ T . (Hint: Show it is the sum of the FOM’s.) What about the FOM of
S ∨T? Fix x, y and consider Tx, Sy (independent). Find the FOM of Tx ∧Sy. (Hint: Recall
that the FOM of Tx is the FOM of T translated by x.)

EXERCISE A.2.4. Pick your favourite distributions and find their FOM’s.

EXERCISE A.2.5. Extensive mortality studies yield the following estimates: q0 = 0.500, q1 =
0.333, q2 = 0.250, q3 = 0.200, q4 = 0.167, q5 = 0.143, . . ., where, as usual, qn = P (T < n+ 1 |
T > n). An actuary decides to model this by letting qn = 1/(n+ 2), n = 0, 1, 2, . . ..
(i) Using the Balducci interpolation, whereby P (Tn > t) = (1 − qn)/(1 − (1 − t)qn) for
0 < t < 1, show that the T is modelled as a random variable with P (T > t) = 1/(t + 1),
t > 0.
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(ii) Why is this a bad model? (Hint: Consider ET .)
(iii) Under a different interpolation scheme, say P (Tn > t) =: gn(t), 0 < t < 1, show that

P (T > t) =

∏[t]
n=0(1− qn)

1− (1− t+ [t])q[t]
,

where [t] is the integer part of t.
(iv) Would the choice of (i) become more reasonable under a different interpolation scheme?

EXERCISE A.2.6. (i) If S, T are independent with FOMs λt, µt, respectively, show that

P (S < T | S ∧ T = t) =
λt

λt + µt
.

(ii) Generalise this to an arbitrary number of independent absolutely continuous random
variables.

EXERCISE A.2.7. If T has survival function S(t) = P (T > t) then Tx has survival
function Sx(t) = P (Tx > t) = S(x+ t)/S(x), t ≥ 0. If T has density f then Tx has density
fx(t) = f(x+ t)/S(x), t ≥ 0.

EXERCISE A.2.8. Prove that Tt,x = Tt+x for any t, x ≥ 0.

EXERCISE A.2.9. Show that µt is the negative of the logarithmic derivative of S(t), i.e.
µt = −S′(t)/S(t).

EXERCISE A.2.10. By making use of the actuarial notation, show that:

s+tpx = tpx · spx+t

f(t) = tp0 · µt
fx(t) = tpx+t · µx+t

tp0 = exp−
∫ t

0
µsds

tpx = exp−
∫ x+t

x
µsds

tqx =

∫ t

0
spx · µx+sds

EXERCISE A.2.11. (i) Suppose that S(t) = e−λt, t ≥ 0, for some positive constant
λ. Show that µt ≡ λ. (ii) Suppose that T is uniform on the interval [0, 1]. Show that
µt = 1/(1− t), for 0 ≤ t < 1 (and zero otherwise). (iii) Suppose that S(t) = t−α, for t ≥ 1,
for some positive constant α. Show that µt = α/t, for t ≥ 1.

EXERCISE A.2.12. Find a random variable with non-monotonic force of mortality.

EXERCISE A.2.13. Show that, among positive continuous random variables, only the
exponential has the memoryless property. Also show that the memoryless property can be
written as tps = tp0 for all s, t ≥ 0.

EXERCISE A.2.14. Show Fact 2.4 and thus show that the uniform assumption is equiv-
alent to

tqx = tqx.
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EXERCISE A.2.15. The Balducci assumption is equivalent to

1−tqx+t = (1− t)qx, 0 ≤ t ≤ 1.

EXERCISE A.2.16. The FOM assumption is equivalent to

µx,t = µx+t = − log(1− qx), 0 ≤ t ≤ 1,

and to

tqx = P (Tx > t) = (1− qx)t.

EXERCISE A.2.17. Show that the process Ñ defined in (2.3) is the compensator of the
point process N of Example 2.5.

EXERCISE A.2.18. Let T be an absolutely continuous positive random variable with
density f(t), distribution function F (t), survival function S(t) = 1 − F (t), and FOM µt =
f(t)/S(t). Show that the compensator Ñt of the point process {T} is given by

Ñt = − logS(T ∧ t).

Hint: This same Ñt was derived in equation (2.2).

EXERCISE A.2.19. Let µt be the FOM of T and assume that U is independent of T .
Then the compensator of Nt is given by

∫ t

0
1(X ≥ s)µsds = − logS(t ∧ T ∧ U).

(Exercise.)

EXERCISE A.2.20. Prove this last proposition in detail. Basically, check that the argu-
ments preceding it are correct and fill in the gaps, if necessary.

EXERCISE A.2.21. Let T1, . . . , Tn be i.i.d. with common FOM µt. Let U1, . . . , Un be
independent random variables, and independent of the T1, . . . , Tn. Define Xi = Ti ∧ Ui,
i = 1, . . . , n (censoring). Consider the point process

Nt :=
n∑

i=1

1(Xi ≤ t, Ti ≤ Ui).

Define the number-at-risk process

Yt :=
n∑

i=1

1(Xi ≥ t).

Then the compensator of Nt is given by

Ñt =

∫ t

0
Yuµudu.

EXERCISE A.2.22. The process Ht defined in (2.4) has a compensator given by

H̃t =

∫ t

0
GudÑu,

i.e. (2.5) holds. (Exercise.)

EXERCISE A.2.23. The jolly fellow of Figure 3.3 has something to do with lifetime
estimation or with mortality studies. (Exercise: What?)
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A.3 Lifetime estimation

EXERCISE A.3.1. Suppose you have n observations representing actual failure times. For
instance, you may have been assigned the job of an inspector in a factory that manufactures
electric motors. The motors are run continuously till they fail. You started work in January
2005. During the next 12 months you record the actual day at which a motor fails. But
when you started work, because of bureaucracy, nobody could tell you the exact day at
which each motor was put into operation. Therefore, the times T1, . . . , Tn you record are
absolute failure epochs. Your task is to estimate the distribution of the lifetime of a motor.
You assume that all lifetimes are i.i.d. following a common unknown distribution F . Prior
experience, and some background research, shows that you may assume that Ti > Vi where
Vi is a random epoch in the past with known distribution G. Also, the Vi’s are i.i.d. and
independent of the Ti’s. Discuss how you would go about estimating F .

EXERCISE A.3.2 (computer exercise). Pick your favourite distribution F , e.g., uniform
on [0, 1]. Generate n i.i.d. samples from it and plot the empirical distribution function F̂n.
Do it, e.g., for n = 100 and n = 1000, using maple. You next want to be 95% confident
that the distance between the estimated F̂n and the actual F is less than 0.01. How many
samples n should you produce?

EXERCISE A.3.3 (computer exercise). Repeat Exercise A.3.2 but do introduce censoring.
First introduce censoring by an independent random variable U with mean twice the mean
of T , and then with mean 10 times the mean of T . Construct the Kaplan-Meier estimator
in each case. Discuss and compare.

EXERCISE A.3.4. The 30 following numbers were produced as i.i.d. samples from a given
distribution on [0, 1]. Estimate it.
0.864, 0.756, 0.100, 0.841, 0.729, 0.608, 0.688, 0.462, 0.100, 0.784,
0.129, 0.361, 0.676, 0.225, 0.980, 0.756, 0.152, 0.102, 0.722, 0.792,
0.129, 0.462, 0.270, 0.176, 0.921, 0.980, 0.739, 0.864, 0.640, 0.324
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A.4 Markov chains and estimation

To better understand the general Markov models, consider the following situation:

0
αt→ 1

βt→ 2.

We have a stochastic process that starts at X = 0, at some point of time it becomes 1 and,
later, 2 where it remains forever.

EXERCISE A.4.1 (Nonhomogeneous Markov). Interpret it as a Markovian model with
the transition rates shown Let τ0 = inf{t ≥ 0 : Xt = 1, τ1 = inf{t ≥ 0 : Xτ0+t = 2}.
Show that τ0, τ1 are not independent and derive a formula for their joint density. Find the
expectation of T = τ0 + τ1.

Now change the model.

EXERCISE A.4.2 (Semi-Markov). Suppose that τ0, τ1 are independent random variables
with FOMs αt, βt, respectively. Define Xt = 0, t < τ0, Xt = 1, τ0 ≤ t < τ0 + τ1, Xt = 2, t ≥
τ0 + τ1. Find the expectation of T = τ0 + τ1. Show that {Xt, t ≥ 0} is not Markov. Let
σt := inf{s ≥ 0 : Xt+s 6= X(t+s)−}. (In words: It takes time σt after t till the next jump of
the process.) Show that {(Xt, σt), t ≥ 0} is Markov.

In a sense, the clock restarts when the jump occurs, in the second model. This is an example
of a semi-Markov process. Just a glimpse into these models: Recall the construction of a
homogeneous continuous-time Markov chain via the discrete chain (4.3) and the exponen-
tial random variables (4.4). Replace the exponential distribution by a general distribution
(different for each x), and you get a semi-Markov model.

EXERCISE A.4.3. For the model of Case 4.2:
(i) Write down the Kolmogorov backwards equations.
(ii) Solve them when the rates are constant.
(iii) Find the long-run fraction of time that the person is employed.
(iv) Suppose that the chain starts at state unemployed. Find the distribution of the time
it takes for this state to be reached for a second time.
Hint: This is the same as the punabhava chain.

EXERCISE A.4.4. For the model of Case 4.3:
(i) Write down and solve the Kolmogorov backwards equations.
(ii) When the rates are constant, and the initial state is healthy, find the average time till
death occurs.
(iii) Introduce a rate ρ of resurrection (q(0, 1) = ρ). Find the long-run fraction of time the
person spends in the dead state.
(iv) If we start from the ill state, how long does it take, on the average to becom healthy
again (necessarily through resurrection)?

EXERCISE A.4.5. For the model of Case 4.4, assuming that the initial state is 11:
(i) Assuming αt, βt are time-varying, find the expected time till one of the two people passes
away.
(ii) Repeat when the rates are constant.
(iii) With constant rates again, find the expected time till both people die.
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EXERCISE A.4.6. For the model of Case 4.5:
(i) Assuming constant rates, find the expected time till retirement or death.
(ii) Write and solve the Kolmogorov backwards equations.
(iii) For the time-dependent case, assuming that σt ≡ 0, write and solve the Kolmogorov
backwards equations.
(iv) Assuming constant rates, and assuming that the chain never hits the set of states
retired, death, find the transition rates from able to ill. (Practical meaning: If it takes
extremely long time till retirement or death occurs, then the model behaves like another
Markov chain, in fact, like a punabhava chain; what are its rates?)

EXERCISE A.4.7. Translate the semigroup equation (4.1), Ps,u(x, y) =
∑

z Ps,u(x, z)Pu,t(z, y)
in actuarial notation.

EXERCISE A.4.8. If x = y, the derivative of P (Xt+h = x | Xt = x) equals

qt(x, x) := lim
h↓0

1

h
[P (Xt+h = x | Xt = x)− 1] = −

∑

x 6=y

qt(x, y).

EXERCISE A.4.9. Use Landau’s symbols to see that the definition of transition rates is
equivalent to

Pt,t+h − I = hQt + o(h), as h→ 0.

EXERCISE A.4.10. Prove the backward equations.

EXERCISE A.4.11. The forward equations, in actuarial notation, read:

∂

∂t
tp

xy
s =

∑

z 6=y

tp
xz
s µ

zy
s+t − tp

xy
s µ

yz
s+t.

EXERCISE A.4.12. Write the backward equations in actuarial notation.

EXERCISE A.4.13. Argue that, in the Punabhava chain, unless µt and λt are constant,
the random variables τ0, τ1 are not independent.

EXERCISE A.4.14. Show that the FOM of T x
s := inf{t > 0 : Xs+t 6= x} is

∑
y 6=x qs+t(x, y),

t ≥ 0, and so show, by applying Fact 2.2, that

tp
xx
s := P (T x

s > t | Xs = x) = exp−
∫ s+t

s

∑

y 6=x

qu(x, y)du.

EXERCISE A.4.15. For a time-homogeneous chain, show that d
dte

tQ = QetQ = etQQ.

EXERCISE A.4.16. The process (Xt) constructed in Section 4.4, via (4.3), (4.4), and
(4.5), is a homogeneous Markov chain with transition rates q(x, y). Hint: Show that (4.2)
hold.

EXERCISE A.4.17. Derive an equation for Px(σA ≤ t), along the lines of the derivation
of (4.6).

EXERCISE A.4.18. Going back to nonhomogeneous chains, discuss why it is necessary
to replace the notation Px, Ex, by Px,t, Ex,t, i.e. Px,t(A) = P (A | Xt = x). How could one
write backwards equations then?
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EXERCISE A.4.19. Consider the chain of Figure 4.4 with constant rates σ, ρ. Suppose
we want to simultaneously estimate them. We observe the chain, for a long period of time
and find that N(1, 0) = 100, N(0, 1) = 50, W (1) = 400, W (2) = 500, where N(x, y) is the
total number of transitions from x to y and W (x) is the total time spent in state x. Compute
the MLE (λ̂, µ̂) of (λ, µ) and find a 99% confidence interval for each of the parameters.

EXERCISE A.4.20. Consider the chain of Figure 4.7 with constant rates. Discuss how
to set up an experiment to estimate all the rates. Write down their MLEs. Discuss their
asymptotic properties.
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A.5 Crude estimation methods

Some of the exercises in Section A.2 are actually useful for this section as well. Do review
the relevant material from Section 2.2 on interpolation.

EXERCISE A.5.1. Suppose that [ai, bi] of Section 5.2 are either [a1, b1] or [a2, b2]. For-
mulate and find the MLEs of this 2-parameter problem.

EXERCISE A.5.2. Suppose, in Section 5.2, that ai = 0, bi = 1 for all i. Then show, that
under either of the three smoothing assumptions (uniform, Balducci, constant FOM) the
MLE of q is as in (5.2).

EXERCISE A.5.3. Suppose, in Section 5.2, that ai ≡ a, bi ≡ b for all i. Then show that
the MLE of q is

q̂ =





D
aD+n(b−a) , (uniform)

D
(1−b)D+n(b−a) , (Balducci)

1−
(

n
n−D

) 1

a−b
, (constant FOM)

,

where D :=
∑n

i=1 δi, the number of actual observed deaths. Therefore observe that q̂unif =
q̂bald iff b = 1− a (why is this reasonable?).

EXERCISE A.5.4. Within a year, the following were observed: D = 35 deaths among
N = 947 individuals, and E = 593 years. Assuming the Poisson model, find an estimator
for the death rate µ as well as a 99% confidence interval.

EXERCISE A.5.5. Here are some data from a mortality inverstigation. We observed 4
individuals during the year 1996. Individual i is observed between ai and bi, and δi = 1 if
he/she dies during this time or 0 otherwise:

i ai bi δi
1 0.98 0.99 0
2 0.90 0.95 0
3 0.85 0.98 1
4 0.95 0.98 1

Let q be the probability of death by the end of the year. This is an unknown parameter we
wish to estimate.
(i) Use the Uniform assumption in the likelihood (5.1) and compute the MLE q̂ of q.
(ii) Estimate the variance of q̂ by using var(q̂) ≈ −1/L′′(q̂) and the standard error by√

var(q̂).
(iii) Apply the classical actuarial formula (5.3) to get an estimate q̂act for q.
(iv) How do the two numbers q̂ and q̂act compare?

EXERCISE A.5.6. As in the Exercise A.5.5, we have

i ai bi δi
1 0 1 0
2 0.25 1 0
3 0 1 1
4 0.25 0.75 1

(i) Find MLE of q under Uniform assumption, and an estimate of its standard error.
(ii) Repeat for Balducci.
(iii) Repeat for constant FOM.
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EXERCISE A.5.7. Show that the MLE of q, using (5.1) and, either the Uniform or the
Balducci assumption, is found by solving a polynomial equation.
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A.6 Graduation testing

This chapter is a potpourri of standard statistical tests. Standard numerical exercises can
be assigned, and they are of very routine nature: All you have to do is understand Example
6.9.

So, essentially, there is nothing to teach except why and how these tests work.

There are some practical rules you need to know as well. But these you do know from
Statistics. For instance, in runnning the Standardised Deviations Test, you may want to
chose the boxes so that the probabilities θ∗i are equal.

EXERCISE A.6.1. Maximise the L(θ) of (6.1) over all θ = (θ1, . . . , θs) with θ1+· · ·+θs = 1
and show that the maximiser is θ̂i = N(Bi)/n, i = 1, . . . , s.

EXERCISE A.6.2. In n i.i.d. fair coin tosses η1, . . . ηn (labelled + or −), let C be the
number of sign changes and G the number of +groups. Let Cu be the number of sign changes
from − to + and Cd the number of sign changes from + to −. Show that |Cu − Cd| ≤ 1,
G = Cu ∨ Cd + 1(η1 = +), and so G ≈ C/2.

EXERCISE A.6.3. Compute the (unconditional) mean and variance of G. Using this
show that EG ≈ n/4, var(G) ≈ n/16. Observe that this is compatible with the result of
the Exercise A.6.2.

EXERCISE A.6.4. Compute the (unconditional) probability P (G = t).

EXERCISE A.6.5. In 10, 000 fair coin tosses (sides are labelled + or −) find: The proba-
bility that there are exactly 5000 +signs, 4000 sign changes and 2000 +groups. Is this event
unlikely?

EXERCISE A.6.6. Suppose that if Z = (Z1, . . . , Zn) is N (0, R) where R is a n × n
covariance matrix with rank r. Let Y =

∑n
k=1 Z

2
k/σ

2
k, where σ2k = Rk,k = varZk. Find

(describe an algorithm) r independent N (0, 1) random variables W1, . . . ,Wr so that Y =
W 2

1 + · · ·+W 2
r .

EXERCISE A.6.7. A graduation has been carried out for n = 10 age groups and the
following standardised deviations were computed:

− 0.05, − 0.34, + 0.22, + 1.34, − 1.31, − 0.01, − 0.26, + 0.24, + 0.75, − 0.16,

+ 2.05, − 0.64, − 1.42, − 1.45, − 0.91, + 0.15, − 0.31, + 0.42, − 0.88, − 0.04

Suppose that 2 parameters were estimated. Carry out verious tests and draw your conclu-
sions.
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PROBABILITY & STATISTICS
MISCELLANY

B.1 Exponentiality

A positive random variable T is exponential if

P (T > t+ s | T > s) = P (T > t),

for all s and t. It follows that P (T > t) = e−λt, t > 0. The positive constant λ is called
rate. We have ET = 1/λ, varT = 1/λ2. We allow λ to take value 0 (then T = ∞) or ∞
(then T = 0).

A Poisson process on the real line is a point process N with the property that for any disjoint
sets B1, B2, . . ., the number of points N(B1), N(B2), . . . are independent and EN(B) is finite
with mean proportional to the length |B| of B. It follows that N(B) Poisson with parameter
λ|B|:

P (N(B) = n) =
(λ|B|)ne−λ|B|

n!
, n = 0, 1, 2, . . .

If we let T1 < T2 < · · · be the points of the point process, then T1, T2 − T1, T3 − T2, . . . are
i.i.d. exponentials with rate λ. If we know that N [0, t] = n, then the n points are actually
i.i.d. uniform random variables.

The distribution of Tn is called Gamma(n, λ) and has density

λn
xn−1

Γ(n)
e−λx, x > 0,

where Γ(n) = (n− 1)!. The density is a valid density for non-integral values of n provided
that we define Γ(n) =

∫∞
0 xn−1e−xdx.

B.2 Linearity (= Normality)

A zero-mean random variable X with finite variance is said to be normal if for any two
numbers a1, a2 there exists a number a such that

a1X1 + a2X2
d
= aX, (B.1)

81
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where X1, X2 are i.i.d. copies of X. It follows, by taking variances on both sides, that the
Pythagorean theorem

a2 = a21 + a22

holds. With i =
√
−1, if we let ϕ(θ) = EeiθX be the characteristic function of X then we

have, directly from (B.1),
ϕ(aθ) = ϕ(a1θ)ϕ(a2θ),

so that, if ψ(θ) := logϕ(
√
θ),

ψ(a21θ
2 + a22θ

2) = ψ(a21θ
2) + ψ(a22θ

2).

By continuity, we see that the only solution to the last equation must be linear: ψ(x) = cx.
Hence ϕ(θ) = ecθ

2

. But ϕ′′(0) = 2c and, on the other hand, ϕ′′(0) = −EX2, so c = −EX2/2.
Let σ2 denote EX2 and so we have

ϕ(θ) = e−σ2θ2/2, θ ∈ R,

Standard Fourier inversion gives the density of X:

P (X ∈ dx) =
1√

2πσ2
e−x2/2σ2

dx.

When σ2 = 1 we have a standard normal random variable.

EXERCISE B.2.1. Suppose that X,Y are two independent, absolutely continuous random
variables, such that the joint distribution of (X,Y ) does not change under rotations (i.e. if
A is a 2× 2 rotation matrix then (X,Y )′ = A(X,Y )′ has the same joint density as (X,Y )).
Then show that

f(x, y) ∝ e−(x2+y2).

A finite sequence X1, . . . , Xd of zero-mean random variables is said to be normal if for any
real numbers c1, . . . , cd, the random variable c1X1 + · · ·+ cdXd is normal. This implies that

E exp(iθTX) = exp(iθTµ− 1

2
θTRθ) ,

where θTX := θ1X1 + · · · + θdXd, and µ = (µ1, . . . , µd)T = (EX1, . . . , EXd)T, R = E(X −
µ)(X − µ)T, i.e. R is a d× d matrix with entries cov(Xk, Xℓ) (the covariance matrix). If R
is invertible, then X has a density on R

d given by

f(x) =
1√

(2π)d det(R)
exp

(
−1

2
(x− µ)TR−1(x− µ)

)
. ←− The N (µ,R) density

More generally, if R has rank r, i.e. r is the dimension of the linear space V spanned by the
columns (or rows–the matrix is symmetric) of R then

P (X ∈ V ) = 1,

and if we choose a coordinate system on V we can express the density of X on V in the
above form, provided that we replace µ by its restriction µ|V on V , and R by R|V , the
restriction of R on V , which is always invertible.

The vector-valued random variable X = (X1, . . . , Xd) has N (µ,R) distribution if the density
is given as above. It is standard normal N (0, I) if µ = 0, R = I, the d× d identity matrix.
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More generally, if X belongs to a subspace V of Rd, we say that it is standard normal if,
for all θ ∈ R

d,

Eeiθ
TX = e−||θ||2/2,

where ||θ||2 = θ21 + · · ·+ θ2d.

If (X1, Y1, . . . , Ym) is Normal then conditional expectation E(X1 | Y1, . . . , Ym) is easily
computed from the requirement that it is an affine function

E(X1 | Y1, . . . , Ym) = c+ b1Y1 + · · ·+ bmYm,

where c = EX1 and the bi are determined by the orthogonality

cov(X1 − (c+ b1Y1 + · · ·+ bmYm), Yi) = 0, i = 1, . . . ,m.

It should be noticed that the conditional variance is deterministic and thus easily computed.
If (X,Y ) = (X1, . . . , Xn;Y1, . . . , Ym) is Normal then we let E(X | Y ) be a vector with
entries E(Xi | Y1, . . . , Ym) then we can determine it by applying the previous, component-
by-component.∗

If X is standard normal in V and V has dimension r then we say that ||X||2 has a χ2
r

distribution (standard chi-squared with r degrees of freedom). Clearly, χ2
r is the distribution

of the sum of the squares of r i.i.d. scalar standard normals with a density that is easily
found to be

(
1

2

)r/2 x
r
2
−1

Γ(r/2)
e−x/2, x > 0. ←− The χ2

r density

(This is generalisable to any r > 0, not necessarily integer.) Clearly, χ2
r ≡ Gamma(r/2, 1/2).

When X1, . . . , Xn are i.i.d. normals then the sample mean Xn := 1
n

∑n
i=1Xi and the sample

variance S2
n := 1

n−1

∑n
i=1(Xi−Xn) are independent with Xn being distributed asN (µ, σ2/n)

and S2
n as σ2 ·χ2

n−1. (To see that S2
n has a chi-squared distribution is easy because the vector

Y := (X1 −Xn, . . . , Xn −Xn) is Normal in R
n. To see that it has n− 1 degrees of freedom

observe that the sum of the components of Y =0, i.e. Y lives in an (n − 1)–dimensional
subspace of Rn. To see that ES2

n = σ2 is a matter of simple computation. This, incidentally,
shows that S2

n is an unbiased estimator of σ2.†) The ratio

√
n(Xn − µ)

S2
n

has a distribution that does not depend on µ or σ2 and has density given by

ν−1/2B(1/2, ν/2)−1(1 + t2/ν)−(ν+1)/2, t > 0, ←− The tν (Student) density

with ν = n− 1, and is known as the student tν density. The density works for any positive
value of ν. The function B(K,L) is defined by

B(K,L) =

∫ 1

0
xK−1(1− x)L−1dx =

Γ(K)Γ(L)

Γ(K + L)
,

for any K,L > 0.

∗This is the basis of multivariate linear estimation.
†This is the basis of ANOVA, the Analysis of Variance.
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B.3 The Brownian motion and bridge

A collection of random variables {Xt} is said to be normal if any finite subcollection is
normal. Therefore, a normal collection of random variables‡ is defined by means of two
functions:

µ(t) := EXt, r(s, t) := EXsXt.

For instance, when

µ(t) = 0, r(s, t) := min(s, t), s, t ≥ 0,

we have the infamous Brownian motion. If {Xt, t ≥ 0} is a Brownian motion, then

Bt := Xt − tX1, 0 ≤ t ≤ 1

is, by definition, a Brownian bridge. This B, being a linear function of X, is also Gaussian
(normal). Hence we just need to compute the two functions mentioned above in order to
know its law completely. Clearly,

EBt = 0,

EBsBt = E(Xs − sX1)(Xt − tX1) = EXsXt − sEX1Xt − tEX1Xs + stEX2
1

= min(s, t)− st− st+ st = min(s, t)− st
= min(s, t)[1−max(s, t)].

Via these functions, any event associated with B has, in principle, a well-defined probability.
For instance, it can be shown that

P ( max
0≤t≤1

Bt > x) = e−2x2

. (B.2)

See, e.g., Karatzas and Shreve [11]. Also,

P ( max
0≤t≤1

|Bt| > x) = 2
∞∑

j=1

(−1)j+1e−2j2x2

. (B.3)

See, e.g. Billingsley [2, eq. 11.39].

B.4 The fundamental theorem of Probability

This is the

Theorem B.1 (The Strong “Law” of Large Numbers). Suppose that X1, X2, . . . are inde-
pendent random variables with common mean µ. Then

P ( lim
n→∞

X1 + · · ·+Xn

n
= µ) = 1.

Proof. We will ONLY prove it in a simple, but useful, case: Assume the Xi are i.i.d. and
bounded. Let Sn = X1 + · · ·+Xn−nµ = Y1 + · · ·+Yn, where Yi = Xi−µ. Note that if the

‡Also known as a Gaussian process
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Xi are bounded then so is Sn. Therefore all its moments exist. In particular, we compute
the fourth moment:

ES4
n = E

(∑

i

Y 4
i +

∑

i,j

′
Y 2
i Y

2
j +

∑

i,j

′
Y 3
i Yj +

∑

i,j,k

′
Y 2
i YjYk +

∑

i,j,k,ℓ

′
YiYjYkYℓ

)
,

where a prime over a sum means that it is taken over distinct values of the indices. Since
EYi = 0, only the first two sums survive after we take expectation. But then

ES4
n = nEY 4

1 + (n2 − n)EY 2
1 EY

2
2 ≤ Cn2,

where C is a constant. But then, for any fixed ε > 0,

Cn2 ≥ ES4
n = ES4

n1(|Sn| > nε) ≥ n4ε4E1(|Sn| > nε) = n4εP (|Sn| > nε),

giving that

P (|Sn| > nε) ≤ C

εn2
.

The quantity Z :=
∑∞

n=1 1(|Sn| > nε) is the total number of times n that Sn/n exceeds ε,
in absolute value. But

EZ =
∞∑

n=1

P (|Sn| > nε) ≤ C

ε

∞∑

n=1

1

n2
<∞.

Since EZ < ∞ we have that P (Z < ∞) = 1. But this means that, no matter how small ε
is, Sn/n will be between −ε and ε forever after some finite time. But this means precisely
that, with probability 1, Sn/n→ 0.

B.5 Unbiased estimators

We here adopt the standard framework of (non-Bayesian) Statistics. There is a family
of probability measures {Pθ, θ ∈ Θ}, with Θ being an interval of R, and each Pθ has
density p(x, θ). A statistic Y is an unbiased estimator§ of the parameter θ if, under the true
probability measure Pθ, its expectation is equal to θ, and this is a requirement that should
hold for all θ. This is expressed, of course¶, as

∫
Y (x)p(x, θ)dx = θ for all θ. The function

(random variable) Y , being a statistic, does not depend on θ. We let X(x) = x. The random
variable p(X, θ) is called likelihood, whereas its (natural) logarithm log p(X, θ) is the log-
likelihood. We shall assume that p(x, θ) as “smooth” in θ (at least twice differentiable) for all
values of θ. We let Dθ denote differentiation with respect to θ and D2

θ twice differentiation.
Notice that

EθDθ log p(X, θ) =

∫
Dθp(x, θ)dx = 0,

provided we have enough regularity in order to interchange differentiation and integral.
Denote by varθ the variance taken under the measure Pθ. The Fisher information is the
quantity

Iθ := Eθ[Dθ log p(X, θ)2 = varθDθ log p(X, θ)

§Unbiasedness is a property that leads us to some nice theory (see below) but one should not consider
it as an indispensable property without which estimators are bad; it is, simply, convenient and, sometimes,
rational.

¶When we write
∫

without a specification of the range we mean over the whole space.
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The Cramér-Rao inequality states that for any unbiased estimator

varθ(Y ) ≥ I−1
θ .

This is essentially the Cauchy-Schwarz inequality‖. To see this, notice that, by unbiasedness,

1 = DθEθY = Dθ

∫
Y (x)p(x, θ)dx =

∫
Y (x)Dθp(x, θ)dx

(provided we have enough regularity in order to interchange differentiation and integral).
But then

1 =

∫
Y (x)(−Dθ log p(x, θ))p(x, θ)dx = covθ(Y,−Dθ log p(X, θ)

≤ varθ(Y ) varθDθ log p(X, θ) = varθ(Y ) · Iθ.

The last inequality is equality iff Dθ log p(X, θ) and Y are linerarly related: Dθ log p(X, θ) =
aY + b. Taking expectations we find 0 = EθDθ log p(X, θ) = aEθY + b = aθ+ b, so b = −aθ.
Taking variances we find Iθ = varθDθ log p(X, θ) = a2 varθ Y = a2Iθ, so a = Iθ. Thus, when
the lower bound is achieved we have Y (x) = I−1

θ Dθ log p(X, θ) + θ. (One may check that
the expression on the right does not depend on θ; one then knows that the estimator is
“best”. Incidentally, an unbiased estimator is said to be efficient if its variance is close to
the Cramér-Rao lower bound.)

EXERCISE B.5.1. Show that, under additional regularity, Iθ = −EθD
2
θ log p(X, θ).

We point out that
Uθ(X) := Dθ log p(X, θ)

is also known as the score.

Note that, in what we said above, we could very well have assumed that X is a random
vector in R

d.

EXERCISE B.5.2. If X = (X1, . . . , Xn) has i.i.d. components then the Fisher information
for the vector X is n times the Fisher information of X1.

To estimate, simultaneously, a parameter θ = (θ1, . . . , θs) ranging in a set Θ ⊆ R
s, we

consider an unbiased estimator Y = (Y1, . . . , Ys), as an estimator such that EθY = θ (where
this equality is to be interpreted component-wise: EθiY = θi for i = 1, . . . , s). We define
the score Uθ(X) as the vector with components Dθi log p(X, θ) and the information matrix
by

Iθ := Eθ[Uθ(X)Uθ(X)T].

The covariance matrix of Y is

covθ(Y ) := Eθ[(Y − θ)(Y − θ)T].

Note that both matrices are positive-semidefinite∗∗ Assume that Iθ is also invertible. The
analogue of the Cramér-Rao lower bound states that the matrix covθ(Y ) − I−1

θ is positive
semidefinite.††

‖This states that for any two random variables X,Y with finite variances we have | cov(X,Y )| ≤√
varX

√
varY , with equality iff P (aX + bY + c = 0) = 1 for some constants a, b, c

∗∗A symmetric square matrix A is positive semi-definite if xTAx ≥ 0 for all vectors x.
††Notice that we can introduce a partial ordering on matrices by saying that A is below B if B − A is

positive semi-definite. This relation is reflexive and transitive. So, the Cramér-Rao lower bound here really
says that covθ(Y ) is above Iθ in this partial order.
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B.6 Maximum likelihood

A Maximum Likelihood Estimator (MLE) for a parameter θ is a statistic Y such that
p(x, Y (x)) = maxθ∈Θ p(x, θ). Under “nice” assumptions, MLEs have good properties (con-
sistency, efficiency, ...) and are asymptotically normal. We give the ideas (=heuristics)
that lead to this. Suppose that X1, . . . , Xn are i.i.d. random variables with Pθ(Xi ∈ dt) =
f(t, θ)dt, so that Pθ(X1 ∈ dx1, . . . , Xn ∈ dxn) = f(x1, θ) · · · f(xn, θ)dx1 · · · dxn. We let
p(x, θ) = p(x1, . . . , xn, θ) = f(x1, θ) · · · f(xn, θ) denote the joint density and assume that
Yn is a MLE of θ based on these n random variables: p(x1, . . . , xn, Yn(x1, . . . , xn)) =
maxθ p(x1, . . . , xn, θ). Suppose that θ0 is the true parameter. We argue that Yn(X1, . . . , Xn)→
θ0 as n → ∞. Consider the log-likelihood evaluated at a parameter θ, not necessarily the
true one: log p(X1, . . . , Xn, θ) =

∑n
i=1 log f(Xi, θ). Thus, log p(X1, . . . , Xn, θ) is a sum of

i.i.d. random variables with common mean Eθ0 log f(X1, θ). The strong law of large numbers
says that

Pθ0

(
lim
n→∞

1

n
log p(X1, . . . , Xn, θ) = Eθ0 log f(X1, θ)

)
= 1. (B.4)

A stronger version of the LLN, and additional assumptions, can guarantee that the limit
above is uniform in θ. This in turn implies that Yn(X1, . . . , Xn) = Argmax 1

n log p(X1, . . . , Xn, θ)
converges to Argmax 1

nEθ0 log f(X1, θ). Showing that the later quantity is θ0 is a conse-
quence of Jensen’s inequality:‡‡

For all θ, Eθ0 log f(X1, θ) ≤ Eθ0 log f(X1, θ0).

We now argue that
\begin{heuristics}

Eθ0Yn(X1, . . . , Xn) ≈ θ0, (B.5)

varθ0 Yn(X1, . . . , Xn) ≈ 1

nIθ0
, (B.6)

where Iθ0 = Eθ0 [Dθ0 log f(X1, θ0)]
2, and that

√
nIθ0 [Yn(X1, . . . , Xn)− θ0] converges in law to N (0, 1). (B.7)

To do this, write x = (x1, . . . , xn) for brevity, consider the function V (x, θ) := Dθ log p(x, θ)
and, assuming enough smoothness, let V ′(x, θ) = DθV (x, θ) = D2

θ log p(x, θ) and Taylor-
expand it around a fixed θ:

V (x, η) = V (x, θ) + (η − θ)V ′(x, θ) +R(x, θ, η), (B.8)

where R(x, θ, η) = o(|η − θ|) as |η − θ| → 0 (a statement which we surely want to hold
uniformly in x (assumption!)). Now recall that θ = Yn(x) maximises the function θ 7→
log p(x, θ). Assume that the usual first-order maximality conditions hold. Namely, the first-
order derivative with respect to θ vanishes at θ, i.e. V (x, Yn(x)) = 0. Hence, from (B.8),
and a Newton-Raphson kind of argument, we can claim that

Yn(X1, . . . , Xn)− θ0 ≈
V (X1, . . . , Xn, θ0)

−V ′(X1, . . . , Xn, θ0)
. (B.9)

‡‡Jensen’s inequality says that if g is a convex function then Eg(W ) ≤ g(EW ). In the case at hand, we
take g = − log and W = f(X1, θ)/f(X1, θ0) and consider E as Eθ0 .
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For the denominator we have:

− 1

n
V ′(X1, . . . , Xn, θ0) =

1

n

n∑

i=1

(−D2
θ) log f(Xi, θ0),

and this converges (Strong Law of Large Numbers), under the true probability Pθ0 , to
Eθ0(−D2

θ) log f(X1, θ0), which, by Exercise B.5.1, equals Iθ0 . For the numerator we have:

1√
n
V (X1, . . . , Xn, θ0) =

1√
n

n∑

i=1

Dθ log f(Xi, θ0),

where the Dθ log f(Xi, θ0), i = 1, . . . , n, are i.i.d. with mean (under Pθ0) zero and variance
Iθ0 and so (Central Limit Theorem) the distribution of the scaled numerator converges to
a normal N (0, Iθ0). The different scaling factor in numerator and denominator forces us to
multiply (B.9) by

√
n and, taking into account that a N (0, Iθ0) random variable divided by

Iθ0 is distributed as N (0, 1/Iθ0), we see that
√
n[Yn(X1, . . . , Xn) − θ0] converges in law to

N (0, 1/Iθ0), which justifies the assertion (B.7).
\end{heuristics}

Incidentally, (B.4) says that the MLE is strongly consistent , (B.5) that it is approximately
unbiased and (B.6) that it is very efficient, when n is large.

In practice, one may use the above to test the hypothesis that θ = θ∗ vs its negation.

• The z-test: If we believe that the true parameter is θ∗ then
√
nIθ∗(Yn − θ∗) should be

approximately N (0, 1)–distributed. So we compute the value of
√
nIθ∗(Yn − θ∗) from the

data and, if it is not typical for the N (0, 1) distribution, we reject the hypothesis; otherwise,
we do not reject it.

• The score test: If we believe that the true parameter is θ∗ then V (X1, . . . , Xn, θ
∗)2/nIθ∗

should be approximately χ2
1–distributed (the square of a standard normal). Again, we

compute the value of V (X1, . . . , Xn, θ
∗)2/nIθ∗ and, if it is not typical for the χ2

1, we reject
the hypothesis; otherwise, we do not reject it.

B.7 Likelihood ratios

When we test a hypothesis θ ∈ Θ0 vs the alternative θ 6∈ Θ0, a common-sense, but also often
mathematically justified, test depends on finding a critical value for the likelihood ratio

λ(x) =
supθ 6∈Θ0

p(x, θ)

supθ∈Θ0
p(x, θ)

, (B.10)

i.e. a value κ such that for a given α (the so-called size of the test),

sup
θ∈Θ0

Pθ{x : λ(x) > κ} ≈ α. (B.11)

If we find such a κ, then we reject the hypothesis if the observed λ(x) exceeds κ and,
otherwise, we do not reject it. This arises from our desire to minimise a type-II error while
keeping a type-I error small. A type-I error is the probability that we reject the hypothesis
if it is true. A type-II error is the probability that we accept the hypothesis if is false. Thus,
if R is the set of observations x that will tell us when to reject the hypothesis, the type-I
error is

εI(θ) = Pθ(R), θ ∈ Θ0,
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while the type-II error is
εII(θ) = Pθ(R

c), θ 6∈ Θ0.

Incidentally, 1 − εII(θ) is called the power function of the test. So we would like to find R
so that the worst possible type-II error supθ 6∈Θ0

Pθ(R
c) is as small as possible, under the

constraint that the worst possible type I error supθ∈Θ0
Pθ(R) does not exceed α.

For instance, if Θ contains just a two points θ0, θ1, with the null hypothesis being Θ0 = {θ0},
and we do find a κ such that

Pθ0{x : λ(x) = p(x, θ1)/p(x, θ0) > κ} = α,

then we set
R∗ := {x : λ(x) = p(x, θ1)/p(x, θ0) > κ}

and if x ∈ R∗ we reject; otherwise we don’t. In this case, we can see exactly why R∗ is best,
i.e. that

Lemma B.1 (Neyman-Pearson). Among all sets R of x such that Pθ0(R) ≤ α, we have
Pθ1(R∗) ≤ Pθ1(R).

Indeed, from the total probability formula,

Pθ1(R∗)− Pθ1(R) = Pθ1(R∗Rc)− Pθ1(R∗cR).

But Pθ1(A) = Pθ0(A, λ(X)), for any A. Hence

Pθ1(R∗Rc) ≥ κPθ0(R∗Rc)

because λ ≥ κ on R∗. Since the opposite happens on R∗c, i.e. λ < κ on R∗c, we have

Pθ1(R∗cR) ≤ κPθ0(R∗cR).

Putting the last three displays together, we conclude

Pθ1(R∗)−Pθ1(R) ≥ κ(Pθ0(R∗Rc)−Pθ0(R∗cR)) = κ(Pθ0(R∗)−Pθ0(R)) = κ(α−Pθ0(R)) ≥ 0.

In general, solving (B.11) is hard. If only we knew something about the distribution of
λ(X) we would be in better shape. But the distribution under what probability measure?
Observe that (B.11) wants us to know the distribution of λ(X) under all Pθ for θ ∈ Θ0. So,
unless Θ0 consists of a single point, we still have a problem. However, the GREAT thing is
that if X = (X1, . . . , Xn) consists of a large number of i.i.d. observations under some Pθ for
θ ∈ Θ0 then the distribution of λ(X) is, for large n, the same for all θ ∈ Θ0.

Theorem B.2. Let Θ ⊆ R
s and let Θ0 be a manifold of dimension s− r for some 0 ≤ r ≤

s− 1. Then, as n→∞, the law of 2 log λ(X1, . . . , Xn) converges to χ2
r.

The ideas behind this theorem are simple. Indeed, observe that, because of the maximisa-
tions in (B.10), we are dealing with MLEs. so the asymptotic normality result for MLEs
should apply. Let θ0 be the true parameter and suppose θ0 ∈ Θ0. Then the denominator
of (B.10) is maximised at the MLE Yn for the family p(x, θ), θ ∈ Θ0. Let also Ỹn be the
maximiser of the numerator. Under reasonable assumptions, Yn is close to Ỹn and so they
are both close to θ0.

TO BE WRITTEN
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B.8 The fundamental theorem of Statistics

Consider the empirical distribution function

Fn(x) =
1

n

n∑

i=1

1(Xi ≤ x), x ∈ R,

corresponding to i.i.d. random variables. From the Fundamental Theorem of Probability we
have that

P ( lim
n→∞

Fn(x) = F (x)) = 1, for all x ∈ R.

Indeed, the 1(Xi ≤ x), i = 1, . . . , n, are i.i.d. with common mean

E1(Xi ≤ x) = P (Xi ≤ x) = F (x).

In other words, for each x, the random variable Fn(x) is a consistent estimator of the NUM-
BER F (x). But the Fundamental Theorem of Statistics says something MUCH stronger:

Theorem B.3 (Glivenko-Cantelli).

P ( lim
n→∞

sup
x∈R
|Fn(x)− F (x)| = 0) = 1.

In other words, the function Fn is a consistent estimator of the FUNCTION F .

Proof. (Only for the case where F is continuous.) Suppose that F is a continuous function.
It is easy to see that we have to prove that Fn(x) converges to F (x) uniformly for all x on
an interval of positive length. Since F is continuous, it is uniformly continuous on any finite
interval [a, b]. Therefore, for any ε > 0, we can find a δ > 0 such that |F (x)−F (x′)| ≤ ε for
all x, x′ ∈ [a, b] with |x − x′| ≤ δ. Consider then two points x, x′ in the interval [a, b] such
that 0 < x′−x < δ. Since Fn is an increasing function we have that Fn(x) ≤ Fn(x′). Hence

Fn(x)− F (x) ≤ Fn(x′)− F (x) = Fn(x′)− F (x′) + F (x′)− F (x)

and so

|Fn(x)− F (x)| ≤ |Fn(x′)− F (x′)|+ F (x′)− F (x) ≤ |Fn(x′)− F (x′)|+ ε.

Hence if we choose an n0 such that |Fn(x′)−F (x′)| ≤ ε for all n ≥ n0, we can use the same
n0 for all x smaller than x′ and at distance at most δ from x′ to assert that |Fn(x)−F (x)| ≤ ε
for all n ≥ n0. But this is exactly uniform convergence over any interval of length δ. Clearly,
this can be extended to the interval [a, b] and then to the whole of R.

B.8.1 Ramification of the Fundamental Theorem of Statistics

We learnt that Fn(x)−F (x) converges to zero, uniformly in x. But we need to know at what
rate. In other words, can we multiply this difference, which converges to 0, by a certain
function a(n) so that a(n)[Fn(x) − F (x)] has a finite limit (in some sense)? The answer is
yes, if we choose a(n) =

√
n, as in the standard Central Limit Theorem.

Theorem B.4. Assume that F is uniform on [0, 1]. The distribution of the random function
{√n(Fn(x) − F (x)), 0 ≤ x ≤ 1} converges, as n → ∞, to the distribution of a Brownian
bridge {Bx, 0 ≤ x ≤ 1}.
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Proof. See Billingsley [2].

To compute the distribution of Dn := supx∈R |Fn(x)− F (x)| we apply this theorem to get

Corollary B.1. The random variable
√
nDn has a distribution which converges, as n→∞

to that of the random variable max0≤x≤1 |Bx|.

The Brownian bridge was introduced in Section B.3. Therefore, we can use the approxima-
tion

P (Dn > k) = P (
√
nDn >

√
nk) ≈ P ( max

0≤x≤1
|Bx| >

√
nk)

≤ 2P ( max
0≤x≤1

Bx >
√
nk) = 2e−2nk2 ,

where the last equality is from (B.2). See Section 3.2 for an application of this.

If we do not want to use the last crude inequality then we use the exact expression for
P (max0≤x≤1 |Bx| >

√
nk), from (B.3):

P (Dn > k) = P (
√
nDn >

√
nk) ≈ P ( max

0≤x≤1
|Bx| >

√
nk)

= 2
∞∑

j=1

(−1)j+1e−2j2nk2 = 2e−2nk2 − 2e−8nk2 + 2e−18nk2 ± · · ·

Incidentally, the distribution of max0≤x≤1 |Bx| is known as the Kolmogorov distribution.

B.9 Hypergeometric distribution and approximations

B.9.1 Sampling without replacement

Given an urn with K balls, out of which R are red and K − R blue, pick k balls and ask
for the probability H(K,R, k, r) that you picked r red and k − r blue balls. There are

(
K
k

)

ways to pick our sample. The number of possible samples consisting of r red and k− r blue
balls is the number of ways to pick r red balls (=

(
R
r

)
) times the number of ways to pick

k − r blue balls =
(
K−R
k−r

)
). Thus

H(K,R, k, r) =

(
K

k

)−1(R
r

)(
K −R
k − r

)
. (B.12)

So let us understand H better. To do this, consider the symbols

ξ1 = · · · = ξR = 1; ξR+1 = · · · = ξK = 0.

Let i be a random permutation of the numbers 1 through K. Thus, i maps 1 to i1, etc., K
to iK , and each (i1, . . . , iK) is a collection of K distinct integers assuming each one of the
possible K! values with probability 1/K!. When we pick the balls from the urn, we pick the
random variables ξi1 , ξi2 , . . .. We pick k of them, i.e., we pick ξi1 , ξi2 , . . . , ξik . The number
of 1’s amongst them is X = ξi1 + ξi2 + · · ·+ ξik . Hence

H(K,R, k, r) = P (X = r).
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From this we have

∑

r

rH(K,R, k, r) = EX = E(ξi1 + ξi2 + · · ·+ ξik) = kEξi1 = kR/K. (B.13)

Here we used the fact that ξi1 , ξi2 , . . . all have the same distribution, and that Eξi1 =
P (ξi1 = 1) = R/K. We can continue this and compute a few moments of X. For instance,

∑

r

r2H(K,R, k, r) = EX2 = E(ξi1 + ξi2 + · · ·+ ξik)2

=
∑

p,q

Eξipξiq =
∑

p=q

Eξipξiq +
∑

p 6=q

Eξipξiq

= kEξ2i1 + (k2 − k)Eξi1ξi2

= kP (ξi1 = 1) + (k2 − k)P (ξi1 = 1, ξi1 = 2)

= k
R

K
+ (k2 − k)

R

K

R− 1

K − 1
.

The variance of X is

varX = EX2 − (EX)2 =
R

K

K −R
K

k(K − k)

K − 1
. (B.14)

B.9.2 Normal approximation

Consider the situation corresponding to an urn with K balls, R of which are red. Pick k
balls at random without replacement. Let H(K,R, k, r) denote the probability P (X = r)
that our sample contains exactly r red balls. (X denotes the number of red balls in our
sample.) This probability is given by formula (B.12) which is hard to apply. (For instance,
think of K = 10, 000, R = 5, 500, k = 1000, r = 900.)

We will approximate this formula by a normal distribution, when K is large. To start with,
we assume that

R = [sK], k = [tK], (B.15)

where 0 ≤ s ≤ t ≤ 1, and [a] denotes the integer part of the real number a. WARNING:
We will pretend sK, tK are integers and omit the integer part.

We consider a different experiment: that of tossing i.i.d. coins with probability of heads
equal to s. Let ηi be the result of the i-th toss. We let ηi = 1 if the i-th toss is heads, or
ηi = 0 if tails. Thus,

P (ηi = 1) = s, P (ηi = 0) = 1− s, i = 1, 2, . . .

Let
Sm = η1 + · · ·+ ηm.

We first show that, conditionally on the event

AK := {SK = R},

the variables (η1, . . . , ηK) behave like the variables (ξi1 , . . . , ξiK ) of the previous section.
This is easily seen by computing their joint probabilities. For instance, P (η1 = 1|AK) =
P (η2 = 1|AK) = · · · = P (ηK |AK), and, since

∑K
i=1 P (η1 = i|AK) =

∑K
i=1E(ηi|AK) =
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E(SK |AK) = R, we have P (η1 = 1|AK) = R/K. We can compute P (η1 = 1, η2 = 1|AK)
by a similar method. Observe that E(S2

K |AK) = R2. But E(S2
K |AK) = E((

∑K
i=1 ηi)

2|AK)
= KE(η21|AK) + (K2 −K)E(η1η2|AK) = KP (η1 = 1|AK) + (K2 −K)P (η1 = η2 = 1|AK)
= R + (K2 −K)P (η1 = η2 = 1|AK). Thus, R2 = R + (K2 −K)P (η1 = η2 = 1|AK), which
gives P (η1 = η2 = 1|AK) = R(R− 1)/K(K − 1), as expected. The other joint probabilities
are computed in the same fashion.

Hence formulae (B.13) and (B.14) apply. Note that the variable denoted as X there has the
same law as Sk given that AK occurs. Therefore, (B.15), we have:

E(Sk|AK) = kR/K

var(Sk|AK) =
R

K

K −R
K

k(K − k)

K − 1
.

Now take into account (B.15) to write these as

E(StK |AK) = tsK

var(StK |AK) = s(1− s)t(1− t) K2

K − 1
.

The standard Central Limit Theorem (CLT) asserts that the distribution of (Sm−ESm)/
√
m

converges to a normal distribution with mean 0 and variance equal to the variance of η1,
i.e.,

var η1 = Eη21 − (Eη1)
2 = s− s2 = s(1− s).

We denote such a normal distribution by N (0, s(1−s)). We let Zs, Z
′
s i.i.d. random variables

with distribution N (0, s(1− s)). We denote the aforementioned convergence by

(Sm − ESm)/
√
m⇒ Zs

We apply the CLT as follows.

(StK − EStK)/
√
K ⇒

√
tZs

(SK − StK − E(SK − StK))/
√
K ⇒

√
1− tZ ′

s

The reason that the second holds is that SK − StK has the same distribution as S(1−t)K .
What is important to realise is that, since StK and SK−StK are independent, we can ALSO
assert that the joint distribution of (StK −EStK)/

√
K and (SK −StK −E(SK −StK))/

√
K

converges to the joint distribution of
√
tZs and

√
1− tZ ′

s. We write this as

1√
K

(
StK − tsK, SK − StK − (1− t)sK)

)
⇒
(√
tZs,

√
1− tZ ′

s

)
.

Hence the first component, together with the sum of the two components will converge:

1√
K

(
StK − tsK, SK − sK

)
⇒
(√
tZs,

√
tZs +

√
1− tZ ′

s

)
.

This implies that the conditional distribution of StK − tsK given that SK − sK = 0 (i.e.,
given that AK occurs) converges to the conditional distribution of

√
tZs given that

√
tZs +√

1− tZ ′
s:

1√
K

(
StK − tsK | AK)⇒

(√
tZs |

√
tZs +

√
1− tZ ′

s = 0
)
. (B.16)
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It remains to read this formula. All we have to do is to compute the latter conditional
distribution. But this is conditioning between two jointly normal random variables.

We do the computation separately. Let W1,W2 be jointly normal, both with 0 mean, and
let ri,j = EWiWj , i, j = 1, 2. It is known that the distribution of W1 given W2 is again
normal with mean E(W1|W2) and variance var(W1|W2). To compute the mean, we recall
that E(W1|W2) is a linear function of W2, i.e. E(W1|W2) = αW2, where the constant α is
computed from the requirement that the error W1 − αW2 be independent of W2:

0 = E(W2(W1 − αW2)) = r12 − αr22, α = r12/r22.

But then

var(W1|W2) = var(W1 − αW2|W2) = var(W1 − αW2) = EW 2
1 − α2EW 2

2

= r11 − (r12/r22)
2r22 = (r11r22 − r212)/r22.

In our case, we have W1 =
√
tZs, W2 =

√
tZs +

√
1− tZ ′

s. So we have

r11 = EW 2
1 = ts(1− s)

r22 = EW 2
2 = ts(1− s) + (1− t)s(1− s) = s(1− s)

r12 = EW1W2 = ts(1− s).

and so

E(W1|W2) = tW2

var(W1|W2) = t(1− t)s(1− s).

Taking these into account, we write (B.16) as

1√
K

(
StK − tsK | AK)⇒ N (0, s(1− s)t(1− t)).

For all practical purposes, we read the latter as

The distribution of (StK |AK) is N (tsK, s(1− s)t(1− t)K) when K is large.

Remembering that (StK |AK) has a hypergeometric distribution, we can now assert that the
hypergeometric distribution converges to a normal, i.e.,

∑

r≤x

H(K, sK, tK, r) ≈
∫ x

−∞
ϕ((y + st)/

√
s(1− s)t(1− t))dy, (B.17)

with ϕ(y) = 2π−1/2 exp(−y2/s).
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